# Chemistry 

PUBLISHED BIWEEKLYBYTHEAMERICAN GHEMICAL SOCIETY


63538 Manganese (III) acetate pract. (Manganic acetate)
50 g sFr. 50.- US $\$ 25.00$
$\mathrm{Mn}\left(\mathrm{OCOCH}_{3}\right)_{3} .2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{MnO}_{6} .2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{MN} 268.10$
Reagent for the oxidation of olefins and aramatic hydrocarbons: L. Fieser
M. Fieser., "Reagents for Organic Synthesis", 2, 263, 4, 318, 6, 355; John

Wiley and Sons, Inc.; J.R. Gilmore, J.M. Mellor, J.Chem.Soc. (C) (1971) 2355
$\mathrm{Mn}\left(\mathrm{OCOCH}_{3}\right)_{3}+$



Tridom Chemical Inc., 255 Oser Avenue, Hauppauge, New pyork 1199f, Telephone (516) 273-0110, Telex 96-7807 Exclusive North American Representative of Flucargio (FUukA-Orocricits are available from stock)

Concerning prices outside of North America and Switzerland, please contact our local agent; for Germany Fluka Feinchemikalien GmbH, Lilientiralstrasse 8, D 7910 Neu-Ulmonpelephone (073) 74088-89, Telex 712316



## Asymmetric Organic Reactions

James D. Morrison and Harry S. Mosher
Now available for the first time in paperback-this corrected reprint edition is designed as a complete course and guide to prior literature in the field concentrating on published research from 1933 through 1968.

This valuable sourcebook includes introduction and background material plus specific treatments of narrow regions within the broad area of asymmetric organic reactions. Ten sections cover:

- reactions of achiral reagents with chiral keto esters and w th chiral aldehydes and ketones
- various asymmetric addition reactions of carbonyl compounds; hydrogen transter from chiral reducing agents to achiral substrates; asymmetric synthesis at hetero atoms
- asymmetric synthesis of amino acids: asymmetric rearrangements and elimination reactions: and asymmetric additions to alkenes
Modern developments in the field are based on the classical literature reviewed and analyzed in this volume-making it particularly useful as a graduate level text supplement or reference book for both the synthetic and organic chemist.
465 pages (1976) paperback $\$ 10.00$ Corrected reprint ed tion. First published by Prentice-Hall, Inc. (1971). Reprintec by arrangement with the authors. LC 75-21608 ISBN 0-8412-0296-6

SIS/American Chemical Society 1155 16th St., N.W./Wash., D.C. 20036

Please send $\qquad$ copies of Asymmetric Organic Reactions at $\$ 10.00$ per book.
$\square$ Check enclosed for \$ $\qquad$ $\square$ Bill me Postpaid in U.S. and Canada, plus 40 cents elsewhere

Name

## Address

## USEFUL REAGENTS FOR SYNTHETIC ORGANIC CHEMISTS

## TRIFLUORONITROSOMETHANE

$\mathrm{CF}_{3} \mathrm{NO}$ reacts with primary, secondary and tertiary amines to yield corresponding trifluoromethylazo compounds, i.e. $\mathrm{R}-\mathrm{N}=\mathrm{N}-\mathrm{CF}_{3}$, which undergo photolysis in good yields to form trifluoromethyl derivatives.
Reference:

1. P. Golitz \& A. de Meijere, Angew. Chem. Int. Ed. Engl., 854, 16 (197?) No. 12.

Available from stock:
18640-3 Trifluoronitrosomethane
$10 \mathrm{~g}-\$ 50.00 ; 25 \mathrm{~g}-\$ 100.00$

## TRIMETHYLSLYL ODDE

A new reagent has recently appeared on the scene which promises to show wide application in organic chemistry. Trimethylsilyl iodide has already been shown to dealkylate esters ${ }^{1}$ and ethers ${ }^{2}$ under neutral conditions and to convert alcohols into iodides. ${ }^{3}$

Quantitative dealkylation occurs when alkyl esters are treated with trimethylsilyl iodide in an aprotic solvent. The free acid is easily obtained by hydrolysis of the trimethylsilyl ester.

Ethers are cleaved in high yields; alcohols give corresponding iodides in high yields. For details, check the references listed below.

## References

1. M. E. Jung and M. A. Lyster, J. Am Chem. Soc., 99, 969 (1977).
2. M. E. Jung and M. A. Lyster, J. Org. Chem. 42, 3761 (1977).
3. M. E. Jung and P. L. Ornstein. Tet. Letters. 2659 (1977).

Available from stock
11957-8 Trimethylsilyl iodide $\quad 10 \mathrm{~g}-\$ 15.00 ; 50 \mathrm{~g}-\$ 60.00$
34020-8 Hexamethyldisilazane (highest ourity)
$100 \mathrm{~g}-\$ 12.00 ; 500 \mathrm{~g}-\$ 25.00$

## EPOXYSILANES

$a$-Chloroethyltrimethylsilane ${ }^{1}$ and Chloromethyltrimethylsilane ${ }^{2}$ yield carbanions when treated with s-BuLiin THF at -78. The ca:banion reacts with a carbonyl compound to yield an a, $\beta$-epoxysilane which, when hydrolyzed, gives the corresponding ketone in good yields.

The references report a wide variety of carbonyl compounds which undergo these reactions including aliphatic, aromatic and steroidal substrates.

The $a_{n} \beta$-epoxysilanes, besides being precursors to homologous carbonyl compounds are convenient intermediates in the syntheses of stereospecific olefins via $\beta$-hydroxysilanes, ${ }^{3}$ vinyl ethers, bromides and enamides. ${ }^{4}$ The simplest $a, \beta$-epoxysilane, epoxyethyltrimethylsilane, can be prepared from vinyltrimethylsilane by reaction with perphthalic acid. ${ }^{5}$
a-Chloroethyltrimethylsilane (1) and chloromethyltrimethylsilane (3), precursors to the epoxisilane intermediates are both available from PCR.

## References

1. F. Cooke \& P. Magnus, J. C. S. Chem. Comm., 513 (1977).
2. C. Burford, F. Cooke, E. Ehlinger, \& P. Magnus, J. Am. Chem. Soc., 994536 (1977).
3. P. F. Hudrlik, D. Peterson \& R. J. Rona, J. Org. Chem., 402264 (1975)
4. P. F. Hudrlik, A. M. Hudrlik, R. J. Rona, R. N. Misra \& G. P. Withers J. Am. Chem. Soc., 991993 (1977).
5. V. Bazart \& V. Matousak, Coll. Czech. Chem. Comm., 243758 (1959).

Available from PCR

| 11965-1 | a-Chloroethyltrimethylsilane | $25 \mathrm{~g}-\$ 32.50 ; 100 \mathrm{~g}-\$ 15.00$ |
| :--- | :--- | ---: |
| $29070-0$ | Chloromethyltrimethylsilane | $25 \mathrm{~g}-\$ 28.00 ; 100 \mathrm{~g}-\$ 97.00$ |
| 29270-6 | Vinyltrimethylsilane | $25 \mathrm{~g}-\$ 35.00 ; 100 \mathrm{~g}-\$ 110.00$ |

29270-6 Vinyltrimethylsilane
$25 \mathrm{~g}-\$ 35.00 ; 100 \mathrm{~g}-\$ 110.00$

# the journal of Organic Chemistry 

EDITOR-IN-CHIEF: FREDERICK D. GREENE
Department of Chemistry, Massachusetts Institute of Technology, Cambridge. Massachusetts 02139

## SENIOR EDITORS

Werner Herz<br>Florida State University<br>Tallahassee, Florida

James A. Moore<br>Unicersity of Delauare<br>Newark, Delaware

Martin A. Schwartz<br>Florida State University<br>Tallahassee, Florida

## ASSISTANT EDITOR: Theodora W. Greene

## ADVISORY BOARD

| Eugene C. Ashby | David A. Evans | Carl R. Johnson | Marvin L. Poutima | William J. Sheppard |
| :--- | :--- | :--- | :--- | :--- |
| Robert A. Benkeser | Janos H. Fendle: | William M. Jones | William A. Pryor | Nicholas J. Turrc |
| John I. Brauman | Neville Finch | Jay K. Kochi | Henry Rapopo-t | Milan R. Uskokovic |
| Robert M. Coates | Paul G. Gassman | Albert I. Meyers | William H. Saunders, Jr. | Earle Van Heyningen |
| Samuel Danishefsky | Donald M. Jerina | John G. Moffatt | Martin F. Semmelhack | George W. Whitesides |

EX-OFFICIO MEMBERS: George H. Coleman, Sanibel Island. Florida
Peter A. Beak, University of Illinuis (Secretary of the Division of (Orkanic (hemistry of the American Chemical .iocirety)

## Published by the

## AMERICAN CHEMICAL SOCIETY <br> BOOKS AND JOURNALS DIVISION

D. H. Michael Bowen, Director; Marjorie Laflin. Assistant to the Director<br>Editorial Department: Charles R. Bertsch, Head: Marianne C. Brogan, Associate Head; Rojert J. Palangio and Kenneth E. Phillips, Editorial Assistants; Mark Hackworth, Staff Editor<br>Magazine and Production Department: Bac.I Guiley, Head<br>Research and Development Department: Seldon W. Terrant, Head<br>Advertising Office: Centcom, Ltd., 25 Silvan Road South, Westport, Conn. 06880.

© Ccpyright, 1978, by the American Chemical Society. Permission of the American Chemical Society is granted for libraries and other users to make reprographic copies for use beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that, for all articles bearing an artice code, the copying organization pay the stated per-copy fee through the Copyright Clearance Center, Inc. For further information write to Office of the Director, Books ard Journals Division at the ACS Washington address.

Published biweekly by the American Chemical Society at 20th and Northampton Sts.. Easton, Pa. 18042. Second class postaje paid at Washington, D.C., and at additional mailing offices.

## Editorial Iniormation

Instructions for authors are printed in the first issue of each volume. Please conform to these instructions when submitting manuscripts.

Manuscripts for publication should be submitted to the Editor, Frederick D. Greene. at his Cambridge, Mass., address.
Correspondence regarding accepted papers and proofs should be directed to the Editorial Department at the address below.
Page charges of $\$ 70.00$ per page may be paid for papers published in this journal Payment does not affect acceptance or scheduling of papesrs.

Bulk reprints or photocopies of individual articles are available. For information write to Business Operations, Books and Journals Division, at the ACS Washington address.
The American Chemical Society and its Editors assume no responsibility for the statements and opinions advanced by contributors.

## Subscription and Business Information

1978 subscription prices, printed or mi crofiche, including postage. Microfiche by air mail; printed by surface mail. Printed edition air mail or air freight rates available from Membership \& Subscription Services at th.e address below.

|  |  |  |
| :--- | ---: | ---: |
| Member | $\$ 26.50$ | Foreign |
| Nonmember | $\$ 36.00$ |  |
| Supplementary | 104.00 | 114.00 |
|  | 20.00 | 38.00 |

Claims for missing numbers will not be allowed if loss was due to failure of notice of change of address to be received in the time specified; if claim is dated, (a) North America: more than 90 days beyond iss $1 e$ date, (b) all other foreign: more than one year beyond issue date; or if the reason given is "missing from files". Hard copy claims are handled by Membership \& Subscription Services.
Microfiche editions of all ACS primary publications, by single volume or entire back issue collection, are available. For additional microfilm (and microfiche) information, contact Microforms Program at the ACS Washington address or call (202) 872-4554.
To order single issues or back volumes, printed or microfiche, contact Special Issue Sales at the ACS Washington address, or call (202) 872-4365. Current year single issue $\$ 5.00$. Prior year single issue $\$ 5.00$. Back volume $\$ 115.00$. Foreign postage additional.
Supplementary material mentioned in the journal appears in the microfilm edition. Papers containing supplementery material are noted in the Table of Contents with a $\mathbf{E}$. See Supplementary Material notice at end of article for number of pages. Orders over 20 pages are available only on $24 \times$ microfiche. Orders must state photocopy or microfiche. Full bibliographic citation including names of all authors and prepayment $\varepsilon$ re required. Prices are subject to change.

|  | U.S. | Foreign |
| :---: | ---: | ---: |
| Microfiche | $\$ 3.00$ | $\$ 4.00$ |
| Photocopy |  |  |
| $1-8$ | $\$ 5.50$ | $\$ 7.00$ |
| $9-20$ | 6.50 | 8.00 |

Single microfiche or paper copies of Supplementary Material may be ordered from Business Operations, Books and Journals Division at the ACS Washingten address, or call (202) 872-4559.

American Chemical Society
1155 1fth St., N.W.
Washington, D.C. 20036
(202) $872-4600$

Membership \& Subscription Services
American Chemical Society
P.O. Box 3337

Columbus. Ohio 43210
(614) 421-7230

Editorial Department
American Chemical Society
P.O. Box 3330

Columbus, Ohio 43210
(614) 421-6940, Ext. 3171

тres sorxal of Organic Chemistry

Leo A. Paquette,* Donald R. James,

Gerhard Klein and Leo A. Paquette*

Leo A. Paquette* and Michael J. Carmody

Herman O. Krabbenhoft
K. Saboda Quaal, Sungchul Ji, Young M. Kim, W. D. Closson,* and Jon A. Zubieta

Dale F. Shellhamer* and Melanie L. Oakes
J. F. Harris, Jr.

Jack K. Crandall* and Woodrow W. Conover II

Roger L. Clough and John D. Roberts*
S. B. Brown and M. J. S. Dewar*

Seemon H. Pines,* Robert M. Purick,
Robert A. Reamer, and George Gal
Jack E. Baldwin, ${ }^{*}$
Stephen R. Herchen, Jon C. Clardy, K. Hirotsu, and T. S. Chou

Marcus K. Meilahn,* David K. Olsen, William J. Brittain, and Ralph T. Anders
Philip Tarburton. Charles A. Kingsbury.
Alan E. Sopchik, and Norman H. Cromwell*
Vesna Čaplar, Adriana Lisini, Franjo Kajfež, Dragutin Kolblah, and Vitomir Sunjić ${ }^{*}$
Tsuruji Goka, Haruo Shizuka,* and
Kohji Matsui

1287 Impact of High-Lying $\sigma$ Orbitals and Extensive Through-Bond Interaction on Chemical Reactivity. 1. Convenient Syntheses of Hypostrophene and Its Susceptibility to Rearrangement under Electrophilic Conditions
1293 Impact of High-Lying $\sigma$ Orbitals and Extensive Through-Bond Interaction on Chemical Reactivity. 2. Solvolytic Studies of Hypostrophene Derivatives
1299 Impact of High-Lying $\sigma$ Orbitals and Extensive Through-Bond Interaction on Chemical Reactivity. 3. Solvolysis of syn- and anti-Tricyclo[4.2.0.0 ${ }^{2,5}$ ]octa-3,5-diene Derivatives
1305 Substituent Effects on the Preparations and Thermal Decarboxylations of $\beta$-Lactones Derived from the Cycloaddition of Dichloroketene with Monosubstituted Benzaldehydes

1311 Substituent Effects on Reductive Cleavage of V-Methylarenesulfonanilides. Cleavage by Sodium Anthracene and Electrochemically at the Vitreous Carbon Electrode

1316 Addition of Halogens to Cyclopropylacetylene

1319 Free-Radical Reactions of Pentafluorobenzenesulfenyl Chloride with - Alkanes and Alkylbenzenes

1323 Peracid Oxidations of Cyclopropenes and Cyclopropenones

1328 Internal Rotation in peri-Phenylnaphthalenes

1331 Centrosymmetric 1,5-Naphthyridine Derivatives: Synthesis,

- Tautomerism, and Thermal Rearrangements

1337 New Aspects of Intramolecular Hydrogen Transfer in Some Ortho-Substituted Aryl Radicals
1342 Preparation of $6 \beta$-Imidopenicillinate $1(S)$-Oxides

1346 Haloaziridines. 2. Synthesis and Pyrolysis of Some gem-Dichloraziridines

1350 Carbon-13 Nuclear Magnetic Resonance Study of Representative transand cis-1-Alkyl-2-aryl(alkyl)-3-aroylaziridines

1355 Synthesis of the 2,3-Dihydro-6H-1,4-oxazin-2-ones Chiral at C(3) and

- Asymmetric Induction in Hydrogenation of the Azomethine Bond

1361 Photolyses of 2-Azido-4-methoxy-6-(1-naphthyl)-1,3,5-triazines: Reactions of Singlet and Triplet 1,3,5-Triazinylnitrenes with Solvents
31. คค. 2521



## MICROANALYSES

Analysis For All Elements, Trace Analyses And Molecular Weights

GALBRAITH LABORATORIES, INC.
P.O. Box 4187-2323 Sycamore Drive Knoxville, TN. 37921-615/546-1335

## PFALTZ \& BAUER

THE SUPERMARKET OF

## RESEARCH CHEMICALS

Your single source for both ORGANICS \& INORGANICS

Send for the latest
PFALTZ \& BAUER
CATALOG
of over 40,000
"easy-to-find"
listings


Peter Beak,* Jae-keun Lee, and B. Gary McKinnie
A. I. Meyers,* Richard Gabel, and Edward D. Mihelich
P. A. Zoretic,* P. Soja, and N. D. Sinha

Daniel J. Pasto,* Richard H. Shults, Joseph A. McGrath, and Andrew Waterhouse
Daniel J. Pasto,* Shine-King Chou, Andrew Waterhouse, Richard H. Shults, and George F. Hennion

Daniel J. Pasto,* Shine-King Chou, Edward Fritzen, Richard H. Shults, Andrew Waterhouse, and George F. Hennion Nathan Kornblum,* Stephen C. Carlson, Jörg Widmer, Michael J. Fifolt, Barry N. Newton, and Ronald G. Smith
C. Battistini, P. Crotti, B. Macchia, F. Macchia,* and C. H. DePuy

Kenneth J. Kolonko and Robert H. Shapiro ${ }^{*}$

Michael F. Lipton and Robert H. Shapiro*
Masashi Tashiro,* Takehiko Yamoto, and Gouki Fukata

William J. Bailey* and Frank Cesare
Louis D. Quin* and Shin Ok Lee
K. F. Koch, K. E. Merkel, S. C. O'Connor, John L. Occolowitz, Jonathan W. Paschal, and Douglas E. Dorman*
Jean-Louis Grandmaison and Paul Brassard*

Karsten Schröder and Heinz G. Floss* D. J. Vanderah and Carl Djerassi*

Stephen P. Singer and K. Barry Sharpless*

Tetsuo Hori, Stephen P. Singer, and K. Barry Sharpless*
K. Grant Taylor* and J. Brandon Simons

James A. Kloek* and Kindrick L. Leschinsky
Ikuo Iijima, Jun-ichi Minamikawa, Arthur E. Jacobson, Arnold Brossi, and Kenner C. Rice*

Howard Haubenstock* and
N.-L. Yang

1367 Methylation of Protomeric Ambident Nucleophiles with Methyl Fluorosulfonate: A Regiospecific Reaction
1372 Nucleophilic Aromatic Substitution on o-(Methoxy)aryloxazclines. A Convenient Synthesis of o-Alkyl-, o-Alkylidene, and o-Arylbenzoic Acids
1379 Sulfenylation and Sulfinylation of Lactams and Imino Ethers
1382 Clarification of the Mechanism of the Reaction of Terminal Propargylic Chlorides with Alkyl Grignard Reagents

1385 Transition Metal Catalysis in Allene Formation from Grignard Reagents and Propargyl Chlorides

1389 Allene Formation in Reactions of Propargyl Chlorides with Dialkylcuprates and Alkylallenylcuprates

1394 Synthesis of Highly Branched, $\beta$-Arylated Nitroparaffins

1400 Nucleophilic Step of Ring-Opening Reactions of Cyclopropanes with Electrophiles. Electronic Substituent Effects on Stereoselectivity of Reactions of Some 1-Arylbicyclo[4.1.0]heptanes with Mercuric Salts

1404 Elimination of Tertiary $\alpha$ Hydrogens from Tosylhydrazones with Lithium Diisopropylamide: Preparation of Trisubstituted Alkenes

1409 Regiospecific Synthesis of Homoallylic Alcohols from Tosylhydrazones

1413 Studies on Selective Preparation of Aromatic Compounds. 15. The Lewis Acid Catalyzed Transalkylation of Some tert-Butyldiphenylmethanes and -ethanes in Aromatic Solvents

1421 Pyrolysis of Unsaturated Compounds. 2. Pyrolysis of Ketones
1424 Stereochemical Consequences of $C$-Methylation of 1-Methylphosphorinane and Its Sulfide and Oxide: A Carbon-13 and Phosphorus-31 Nuclear Magnetic Resonance Study

1430 Structures of Some of the Minor Aminoglycoside Factors of the Nebramycin Fermentation

1435 Reactions of Ketene Acetals. 10. Total Syntheses of the Anthraquinones Rubrocomatulin Pentamethyl Ether, 2-Acetylemodin, 2-Acetyl-5-hydroxyemodin Tetramethyl Ether, and Xanthorin

1438 Biosynthesis of $\alpha$-Naphthocyclinone
1442 Marine Natural Products. Synthesis of Four Naturally Occurring 20 $\beta$-H Cholanic Acid Derivatives

1448 Synthesis of dl-Gabaculine Utilizing Direct Allylic Amination as the Key Step

## NOTES

1456 Allylic Deuteration and Tritiation of Olefins with $N$-Sulfinylsulfonamides
1459 Aliphatic Azoxy Compounds. 7. Unsymmetrical
(Dialkoxymethyl)phenyldiazenes: Deoxygenation of an Azoxy Function
1460 An Improved Method for the Synthesis of Stabilized Primary Enamines and Imines

1462 of ( + )-Morphine

1463 Cleavage of Tetrahydrofuran by Lithium
Bis(2,6-di-tert-butylphenoxy)aluminum Hydride

Waldemar Adam,* Omar Cueto, Luis N. Guedes, and Luis O. Rodriguez

Frank E. Scully, Jr.,* and Richard C. Davis

Richard C. Larock* and Bernhard Riefling M. Mark Midland* and Alfonso Tramontano
Hiyoshizo Kotsuki,* Sacho Kitagawa, Hitoshi Nishizawa, and Takashi Tokoroyama

## COMMUNICATIONS

1466 Solvent Effects and Secondary Isotope Effects for Probing Diradical Character in the Thermal Decarboxylation of $\beta$-Peroxy Lactones

1467 Superoxide in Organic Synthesis: A New Mild Method for the Oxidation of Amines to Carbonyls via $N$-Chloramines

1468 Mercury in Organic Chemistry. 15. A Novel Stereospecific Synthesis of 1,3-Dienes via "Head-to-Tail" Dimerization of Alkynes
1470 B-Alkyl-9-borabicyclo[3.3.1|nonanes as Mild, Chemoselective Reducing Agents for Aldehydes
1471 Diels-Alder Reaction of Thiophene with Maleic Anhydride at Very High Pressure

- Supplementary material for th:s paper is available separately (consult the masthead page for ordering information);
it will also appear following the paper in the microfilm edition of this journal.

> * In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

Adam, W., 1466
Anders, R. T., 1346
Bailey, W. J., 1421
Baldwin, J. E., 1342
Battistini, C., 1400
Beak, P., 1367
Brassard, P., 1435
Brittain, W. J., 1346
Brossi, A., 1462
Brown, S. B., 331
Caplar, V., 1355
Carlson, S. C., 1394
Carmody, M. J., 1299
Cesare, F., 1421
Chou, S.-K., 1385, 1389
Chou, T. S., 1342
Clardy, J. C., 1342
Closson, W. D., 1311
Clough, R. L., 1328
Conover, W. W., II, 1323
Crandall, J. K., 1323
Cromwell, N. H., 1350
Crotti, P., 1400
Cueto, O., 1466
Davis, R. C., 1467
DePuy, C. H., 1400
Dewar, M. J. S., 1331
Djerassi, C., 1442
Dorman, D. E., 1430
Fifolt, M. J., 1394
Floss, H. G., 1438
Fritzen. E., 1389

Fukata, G., 1413
Gabel, P., 1372
Gal, G., 1337
Goka, T., 1361
Grandmaison, J.-L., 1435
Guedes, L. N., 1466
Harris, J. F., Jr., 1319
Haubenstock, H., 1463
Hennion, G. F., 1385, 1389
Herchen, S. R., 1342
Hirotsu, K., 1342
Hori, T, 1456
Iijima, I., 1462
Jacobscn, A. E., 1462
James, D. R., 1287
Ji, S., 1311
Kajfež, F., 1355
Kim, Y. M., 1311
Kingsbary, C. A., 1350
Kitagawa, S., 1471
Klein, G., 1287, 1293
Kloek, J. A., 1460
Koch, K. F., 1430
Kolbah, D., 1355
Kolonko, K. J., 1404
Kornblum, N., 1394
Kotsuki, H., 1471
Krabbenhoft, H. O., 1305
Larock, R. C., 1468
Lee, J. 1367

Lee, S. O., 1424
Leschinsky, K. L., 1460
Lipton, M. F., 1409
Lisini, A., 1355
Macchia, B., 1400
Macchia, F., 1400
Matsui, K., 1361
McGrath, J. A., 1382
McKinnie, B. G., 1367
Meilahn, M. K., 1346
Merkel, K. E., 1430
Meyers, A. I., 1372
Midland, M. M., 1470
Mihelich, E. D., 1372
Minamikawa, J., 1462
Newton, B. N., 1394
Nishizawa, H., 1471
Oakes, M. L., 1316
Occolowitz, J. L., 1430
O'Connor, S. C., 1430
Olsen, D. K., 1346
Paquette, L. A., 1287, 1293, 1299
Paschal, J. W., 1430
Pasto, D. J., 1382, 1385, 1389
Pines, S. H., 1337
Purick, R. M., 1337
Quaal, K. S., 131:
Quin, L. D., 1424
Reamer, R. A., 1337
Rice, K. C., 1462

Riefling, B., 1468
Roberts, J. D., 1328
Rodriguez, L. O., 1466
Schröder, K., 1438
Scully, F. E., Jr., 1467
Shapiro, R. H., 1404, 1409
Sharpless, K. B., 1448, 1456
Shellhamer, D. F., 1316
Shizuka, H., 1361
Shults, R. H., 1382, 1385, 1389
Simons, J. B., 1459
Singer, S. P., 1448, 1456
Sinha, N. D., 1379
Smith, R. G., 1394
Soja, P., 1379
Sopchik, A. E., 1350
Sunjić, V., 1355
Tarburton, P., 1350
Tashiro, M., 1413
Taylor, K. G., 1459
Tokoroyama, T.. 1471
Tramontano, A., 1470
Vanderah, D. J., 1442
Waterhouse, A., 1382, 1385, 1389
Widmer, J., 1394
Yamoto, T., 1413
Yang, N.-L., 1463
Zoretic, P. A., 1379
Zubieta, J. A., 1311

# тef oonaxul or Organic Chemistry 

# Impact of High-Lying $\sigma$ Orbitals and Extensive Through-Bond Interaction on Chemical Reactivity. 1. Convenient Syntheses of Hypostrophene and Its Susceptibility to Rearrangement under Electrophilic Conditions 

Leo A. Paquette,* Donald R. James, ${ }^{1}$ and Gerhard Klein<br>Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210

Received September 15, 1977


#### Abstract

Two practical syntheses of hypostrophene (6) beginning with cyclopentadiene ( $14.6 \%$ overall) and cyclopentanone $(21.6 \%)$ are reported. Both routes converge at the stage of keto ketal 8 , which is subsequently photocyclized and transformed to diiodide 14. Exposure of 14 to sodium-potassium alloy delivers the title diene. When 6 was treated with elemental bromine or $N$-bromosuccinimide in aqueous dimethyl sulfoxide, extensive structural rearrangement occurred with formaticn of the end $\jmath$-dicyclopentadiene derivatives 17 and 23, respectively. Under acidic conditions, epoxide 26 was similarly isomerized to diol 30 , the skeletal rearrangement again involving eight of the ten carbon atoms contained in the hypostrophene framework. A possible correlation between the high-lying $\sigma$ orbitals present in 6, its marked preference for through-bond instead of through-space interaction, and strain relief is presented in rationalization of this proclivity for deep-seated structural change.


In molecules such as cubane (1) and pentaprismane (4), two identical alicyclic rings are brought together in face-toface proximity within a rigid prismatic molecular framework. At least in the case of 1 ( 4 remains unknown), such a bonding arrangement engenders sizable strain energy ${ }^{2}$ with resultant high chemical reactivity. ${ }^{3}$ The state of hybridization demanded by the novel geometry of $1^{42}$ is reflected in the high acidity of its protons, ${ }^{4 \mathrm{~b}}$ its very low ( $8.74 \epsilon \mathrm{~V}$ ) first ionization potential, ${ }^{5}$ and its behavior on electron impact. ${ }^{6}$ Progression through the series 1-3 and 4-6 results in substantial strain

amelioration. The pair of internal hydrogens in secocubane (2) are known to cause outward puckering of the upper and lower cyclobutene rings. ${ }^{7}$ A comparable steric situation likely prevails in 5.

The removal of two contiguous lateral bonds in 1 and 4 leads to $3^{8}$ and $6,{ }^{9}$ respectively, having pairs of nonconjugated cisoid $\pi$ orbitals whose inner lobes are tightly compressed. Despite their obvious proximity, however, the dousle bonds in syntricyclo[4.2.0.0 $0^{2,5}$ ]octa-3,7-diene ${ }^{10}$ and hyFostrophene ${ }^{11}$ experience vastly more effective through-bond interaction than through-space coupling. This results because of the continued presence of exceptionally high-lying $\sigma$ orbitals which serve to reverse the normal ordering, wherein the out-of-phase linear
combination of the two $\pi$ orbitals is located at higher energy than the in-phase combination. ${ }^{12}$ Since few known organic molecules possess structural and stereoelectronic features capable of effectively overriding customary through-space interaction, the reactivities of 3,6 , and suitable derivatives thereof merit serious experimental investigation.

Although these interesting molecules hold p:omise as possible sources of new theoretical and mechanistic understanding, they have been subjected to very limited scrutiny, apparently due to their relative inaccessibility. It is currently recognized that neither diene is capable of $\left(\pi 2_{s}+\pi 2_{s}\right)$ photochemical cyclization, since through-bond coupling destroys the usual symmetry allowedness of this closure. In contrast, the capability of both molecules for sequential degenerate Cope rearrangement of low temperatures is not inhibited. ${ }^{9,13}$ Therefore, these substances can endlessly interchange two sets of carbon atoms with regeneration of the original structures. At somewhat more elevated temperatures, 3 is transformed into cyclooctatetraene ${ }^{14}$ and 6 gives rise to an isomeric $(\mathrm{CH})_{10}$ hydrocarbon. ${ }^{9}$

In this and the two accompanying reports, ${ }^{15,16}$ we have attempted to relieve this imbalance through development of practical synthetic routes to 6 , analysis of its response to electrophilic reagents, and investigation of the solvolytic behavior of appropriately functionalized derivatives of 3 and 6.

## Results

Synthetic Considerations. Pettit's original synthesis of hypostrophene provides the hydrocarbon in $0.7 \%$ yield from cyclooctatetraene and is not only costly but also tedious. Therefore, the development of rather less expensive and more flexible routes to 6 was initially investigated. Two series of interconversions were developed to gain access to the pivotal intermediate 8 (Scheme I). The first of these began with cy-


Scheme I


clopentadiene, ${ }^{17}$ nitrosation of which provided dioxime $7 .{ }^{18}$ Through sequential transoximation with levulinic acid ${ }^{19}$ and selective ketaiization with ethylene glycol in benzene containing $p$-toluenesulfonic acid, ${ }^{20}$ this dioxime was efficiently converted to 8 . Although this sequence is quite satisfactory for either small- or large-scale preparations of 8 , there remain undesirable economic and technical problems in the handling of bulk quantities of levulinic acid. These drawbacks were totally eliminated through use of cyclopentanone as starting material. Conversion to its ethylene ketal ${ }^{21}$ followed by dibromination with elemental bromine in dioxane ${ }^{20 \mathrm{~b}}$ gave 9 . To achieve maximum yields in the latter step, 9 should be isolated immediately without unnecessary heating during solvent removal and used directly. When left at room temperature for any length of time, the dibromo ketal is transformed to a dense black oil. Dehydrobromination of 9 and in situ dimerization were achieved through the use of refluxing sodium methoxide in methanol, ${ }^{20 \mathrm{~b}}$ or preferably sodium or potassium tert-butoxide in tert-butyl alcohol. Partial hydrolysis of 10 to 8 could be reproducibly achieved in $95 \%$ yield by stirring with hydrochloric acid in tetrahydrofuran at room temperature for 2 h . Extension of the reaction time to $4-5 \mathrm{~h}$ invariably caused drastic reductions in yield.

Upon irradiation of 8 in ether through Pyrex with a Hanovia 450-W lamp, photoclosure to 11 was routinely realized in $95 \%$ yield. Although the subsequent hydrolysis of 11 to 12 is somewhat capricious and requires careful attention to detail, this approach to 12 is vastly superior to that involving direct photocyclization of dicyclopentadienone, ${ }^{22}$ since no photochemical side reactions compete. Lithium aluminum hydride reduction of 12 , treatment of diol mixture 13 a with sulfene, ${ }^{23}$ and $\mathrm{S}_{\mathrm{N}} 2$ displacement with sodium iodide in anhydrous hexamethylphosphoramide afforded the nicely crystalline 14 as a mixture of epimers (Scheme II).
Initially, the conversion of diiodide 14 to hypostrophene was effected with sodium-potassium allcy in anhydrous tetrahydrofuran at room temperature ( 54 के yield). To remove the last traces of solvent and some polymerization product, the impure 6 was generally sublimed. But contamination with a saturated hydrocarbon byproduct of comparable volatility persisted. These complications do nct arise if ether is originally employed as solvent. Under these conditions, chromatography on silica gel (unfeasible earier) suffices to provide pure hypostrophene ( $61 \%$ ). Other methods such as those involving sodium naphthalenide or sodium phenanthrenide suffer from the problem of ultimate separation of volatile 6 from aromatic compounds and are substantially less desirable.

These procedures therefore permit the ready production of hypostrophene in $14.6 \%$ overall yield from cyclopentadiene or, more impressively, in $21.6 \%$ yield from cyclopentanone.


Scheme II

Chemical Consequences of Through-Bond Interaction.
To assess in reasonably systematic fashion the degree of control that high-lying $\sigma$ orbitals can exert upon chemical reactivity, comparisons with one or more compounds lacking through-bond interaction are warranted. For the present purposes, homohypostrophene (15) is considered particularly attractive because of its close structural similarities to 6 . Although photoelectron spectroscopic analysis of 15 has yet to be reported, this diene lacks laterally fused cyclobutane rings and probably is endowed with normal orbital ordering. That through-space interaction does dominate in 15 is suggested by its closure to -omopentaprismane ( $16 \mathbf{a}$ ) upon ultraviolet

irradiation in the presence of xanthone or acetone. ${ }^{24} \mathrm{~A}$ further chemical test in support of this conclusion is found in the bromination of $\mathbf{1 5}$, which proceeds straightforwardly by 1,4 addition to give exclusively 16 b. ${ }^{25,26}$

Reaction of 6 at $0^{\circ} \mathrm{C}$ in carbon tetrachloride with 1 equiv of bromine gave a single oily dibromide (17) in excellent yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of 17 displays four olefinic protons, thereby ruling out the operation of simple transannular chemistry as exhibitéd by 15 . Because reduction of 17 with lithium aluminum hydride afforded an isomerically pure monobromide, it became immediately apparent that its halogens are situated in differing chemical environments. The finding that further dehalogenation with sodium in liquid ammonia furnished endo-dicyclopentadiene (19) implicated the prior formation of 17 and 18 (Scheme III). The syn stereochemical assignment to the 8 -bromo substituent in these

molecules is founded upon the selective reactivity of 18 toward dihalocarbenes generated under phase-transfer conditions ${ }^{28}$ and upon mechanistic reasoning (vide infra). ${ }^{29}$ The steric shielding which arises with this substitution plan causes 18 to be subject only to monoaddition with formation of 20a and 20b under conditions where parent hydrocarbon 19 undergoes reaction at both olefinic sites to give 22 . Upon reductive dehalogenation, 20a and 20b were transfo-med to the known hydrocarbon $21 .{ }^{30}$

When hypostrophene was treated with $N$-bromosuccinimide in wet dimethyl sulfoxide, a reagent known to lead regioand stereospecifically to bromohydrins ${ }^{313}$ with skeletal rearrangement occurring only infrequently, ${ }^{31}{ }^{31}$ there was isolated only the extensively isomerized bromo alcchol 23 . The identity of 23 is based upon its formation by hydrolysis of 17 and the spectral properties of its more stable acetate derivative 24 (see


Experimental Section). These results are taken as an indication that hypostrophene possesses a powerful latent drive for rearrangment that is accompanied by strain release and made possible by its electron-rich lateral bonds.

Nonetheless, reagents such as G -borabicyclononane (9BBN), ${ }^{32} \mathrm{~m}$-chloroperbenzoic acid, dibromocarbene, and iodomethylzinc iodide engage 6 in chemical eeaction (exo attack only) without inducing skeletal isomerization. With 9-BBN, the multiplicity of addition could be controlled to give alcohol 25 in $>70 \%$ isolated yield. We have directed efforts toward the maximization of monoaddition in all instances, but the $70+\%$ limit has been repeatedly realized under individually tailored experimental circumstances. For example, $m$-chloroperbenzoic acid in chloroform at $0{ }^{\circ} \mathrm{C}$ provided monoepoxide 26 ( $73 \%$ ) and diepoxide 27 ( $15 \%$ ). With potassium tert -butoxide and bromoform in pentane at $-30^{\circ} \mathrm{C}$, there was isolated $77 \%$ of 28 a and $15 \%$ of 29 a. Simmons-Smith cyclopropanation

$\stackrel{25}{\sim}$


26


$28 \underset{\sim}{a}, x=B r$ $\underset{\sim}{b}, X=H$


29 $\underset{\sim}{a}, x=B r$
$\underset{\sim}{b}, X=H$
similarly gave a mixture of $\mathbf{2 8 b}$ and $\mathbf{2 9 b}$, and the need for preparative VPC separation substantially lcwered the isolated yields in this case. Reductive debromination ${ }^{33}$ of $28 a$ is the preferred route to 28 b .

No rearrangement products are formed in the above reactions due to the absence of mechanistic requirements that cationic intermediates intervene. When this is purposefully undertaken as, for example, when 26 is dissolved in $10 \%$ aqueous perchloric acid at room temperature, rapid conversion to the known 1-exo-8-syn-diol 30 does occur.


## Discussion

An intriguing feature of tie conversion of hypostrophene to 17 and 23 is the involvement of eight of this hydrocarbon's ten constituent carbon atoms in the skeletal rearrangement. We believe that electrophilic attack begins with exo approach to generate 31. This intermediate subsequently $\epsilon$ xperiences transannular bonding with the normal kinetic preference for 5 -ring closure (Scheme IV) to deliver 32. Two sequential cyclobutane bond cleavages follow. The first phase leading to 33 is quite likely facilitated by the electron-rich nature of the lateral bond and controlled by strain release since the new cationic center does not appear to be particularly stabilized relative to that in 32 . The energetic value of the sesond phase which gives rise to 34 probably lies chiefly in the development of allylic resonance, although a further diminution in strain also obtains. As a direct consequence of the prevailing symmetry in 34, nucleophilic capture can take place with equal probability at either allylic terminus.

The behavior of epoxide 26 in acidic solution is entirely comparable. Here, electrophilic ring opening leacis to 31 (X $=\mathrm{OH}$ ) which then proceeds to 30 in the predescribed manner.

We have been singularly unsuccessful in our attempts to intercept such hypostrophene rearrangements even with most reactive uniparticulate electrophiles ${ }^{34}$ such as TCNE and CSI. Due to the geometric limits imposed upon intramolecular charge annihilation when uniparticulate reagents arə involved, only the capture of 31 and 33 becomes feasible under such circumstances. However, tar:y polymeric substarces which defied characterization were produced with CSI under the various conditions examined. TCNE proved unreactive. It is, therefore, perhaps more reascnable to view the corversion of 31 to 34 as a concerted electronic reorganization, al-hough we recognize that this hypothesis is based upon negative rather than positive evidence. In this interpretation, the synchronous flow of electron density which undulates between the two "wafered" cyclopentane rings such that $80 \%$ of the carbon atoms experience rehybridization can be viewed as the result of the extensive $\sigma \pi$ orbital mixing which prevails. Certainly, if any barriers to bond making and bond breaking do exist on this energy profile, their magnitudes have been greatly reduced as compared to the situation in 15 and other structurally related molecules.

Scheme IV


## Experimental Section

Melting points are uncorrected. Proton magnetic resonance spectra were obtained on Varian T-60A and HA-100 spectrometers; apparent splittings are given in all cases. Infrared spectra were obtained with Perkin-Elmer Model 137 and 467 spectrometers, whereas mass spectra were measured with an AEI-MS9 spectrometer at an ionization potential of 70 eV . Elemental analyses were performed by the Scandinavian Microanalytical Laboratory, Herlev, Denmark.
endo-Dicyclopentadienone. A substantial quantity of bisoxime 7 was prepared in $77 \%$ yield by the method o: Doering and DePuy. ${ }^{18}$ The crude solid obtained by Soxhlet extraction of the reaction mixture was used without further purification. Its infrared spectrum was identical with that reported.
A mixture of 20 g ( 105 mmol ) of bisoxime 7 in 480 mL of freshly distilled levulinic acid and 54 mL of hydrochloric acid was stirred at room temperature for 3 h during which time the solids dissolved. The orange solution was heated on a steam bath for 3 h , cooled, diluted with 1000 mL of water, and extracted with four portions of methylene chloride totalling 2000 mL . The combined organic layers were carefully neutralized with saturated sodium bicarbonate solution, followed by washing with 100 mL of $20 \%$ sodium hydroxide solution and finally with water until color was no longer extracted. The dried solution was filtered and evaporated to leave a yellow solid which was purified by column chromatography on neutral alumina ibenzene elution). There was isolated $13.13 \mathrm{~g}(78 \%)$ of dicyclopentadierone as off-white crystals whose spectral properties proved identical with the reported data. ${ }^{18}$
endo-Dicyclopentadienone 8-Ethylene Ketal (8). A. Selective Ketalization of endo-Dicyclopentadienone. A solution of 5.10 g ( 31.8 mmol ) of endo-dicyclopentadienone, 3.95 g ( 63.7 mmol ) of ethylene glycol. and 100 mg of $p$-toluenesclfonic acid in 50 mL of benzene was heated under reflux while water was azeotropically removed in a Dean-Stark trap. After 22 h the mixture was cooled, extracted with equal volumes of saturated sodium bicarbonate solution and water, and dried. Elution of the filtrate through 10 g of neutral alumina and evaporation of solvent gave $5.15 \mathrm{~g}(81 \%)$ of 8 as a white solid. This material could be recrystallized from carbon tetrachloride to a melting point of $94-95^{\circ} \mathrm{C}$ (lit. ${ }^{20 \mathrm{a}} \mathrm{mp} 94-95^{\circ} \mathrm{C}$ ), or used without further purification.
B. Partial Hydrolysis of 10. Cyclopentanone ethylene ketal (87\% yield) and 2,5-dibromocyclopentanone ethylene xetal ( $96 \%$ yield) were prepared according to literature procedures. ${ }^{20 b}, 21$
To 2000 mL of dry tert -butyl alcohol was added 141 g ( 3.6 g -atom) of potassium metal portionwise during 1 h under a nitrogen atmosphere with mechanical stirring. The mixture was gently refluxed to achieve reaction of the last amounts of potassium. To this potassium tert-butoxide solution was added $281.28 \mathrm{~g}(0.98 \mathrm{~mol})$ of 9 dropwise under nitrogen. The resultant black mixture was heated gently for 12 h and diluted with 2000 mL of water. The tert-butyl alcohol was removed under reduced pressure and the black aqueous mixture was diluted to 5000 mL and extracted continuo asly with diethyl ether to give $104 \mathrm{~g}(86 \%)$ of 10 as light yellow crystals. Recrystallization from ether gave colorless crystals: mp $91-92{ }^{\circ} \mathrm{C}$ (lit..$^{20 \mathrm{~b}} \mathrm{mp} 92{ }^{\circ} \mathrm{C}$ ); NMR $6.10-6.33 \delta_{\mathrm{Me}_{4} \mathrm{si}}\left(\mathrm{CDCl}_{3}\right)(\mathrm{m}, 1), 5.5-5.97(\mathrm{~m}, 3), 3.82-4.07(\mathrm{~m}, 8)$, 3.33-3.62 (m, 1), and 2.58-3.05 (m, 3).

A solution of $60.8 \mathrm{~g}(0.245 \mathrm{~mol})$ of 10 in a mixture of 96 mL of concentrated hydrochloric acid and 960 mL oz tetrahydrofuran was allowed to stand at room temperature for 2 h and no longer. Water ( 1 L) was added and the aqueous mixture was neutralized carefully with sodium carbonate. The tetrahydrofuran was removed on a rotary evaporator and the aqueous layer was diluted to 1000 mL , extracted exhaustively with diethyl ether, and dried. Filtration and evaporation gave $49.36 \mathrm{~g}(100 \%)$ of 8 as colorless crystals, $\mathrm{mp} \mathrm{94-95}{ }^{\circ} \mathrm{C}$.

Pentacyclo[5.3.0.0 2.5.0 ${ }^{3.9} .0^{4,8}$ ]decane-6,10-dione 6-Ethylene Ketal (11). ${ }^{20}$ A solution of $28.6 \mathrm{~g}(0.14 \mathrm{~mol})$ of 8 in 1500 mL of dry benzene was placed in a large Pyrex vessel and irradiated with a 450-W Hanovia lamp contained in a quartz immersion well equipped with a Pyrex filter for 36 h . Filtration of the resultant yellow solution through 10 g of Florisil removed colored impurities and led to the isolation of $27.0 \mathrm{~g}(94 \%)$ of 11 as a colorless oil. If desired, crystallization could be achieved at $-60^{\circ} \mathrm{C}$ from diethyl ether.

Pentacyclo[5.3.0.0. ${ }^{2,5} .0^{3,9} .0^{4,8}$ ]decane-6,10-dione (12). A hetergeneous mixture of $2.39 \mathrm{~g}(11.7 \mathrm{mmol})$ of $11,110 \mathrm{~mL}$ of $10 \%$ aqueous sulfuric acid, and 20 mL of tetrahydrofuran was heated at $80-90^{\circ} \mathrm{C}$ for 3 h with stirring. After cooling, the mixture was poured onto 100 $g$ of ice and carefully neutralized with solid sodium bicarbonate. The contents of the flask was diluted to 700 mL with water and extracted continuously with methylene chloride. Evaporation of the organic phase gave 1.71 g of orange oil, chromatography of which on silica gel
(elution with benzene/ethyl acetate, 4:1) gave 12 as colorless crystals $(1.42 \mathrm{~g}, 76 \%)$. The physical and spectral properties of 12 coincided with those described in the literature. ${ }^{22}$

This diketone, on standing open to the air, gradually forms a hydrate which appears as a white powder.

Pentacyclo[5.3.0.0 $0^{2.5} .0^{3,9} .0^{4,8}$ ]decane-6,10-diol (13a). To a stirred suspension of $9.9 \mathrm{~g}(0.26 \mathrm{~mol})$ of lithium aluminum hydride in 300 mL of dry tetrahydrofuran under nitrogen was added dropwise a solution of $20.7 \mathrm{~g}(0.13 \mathrm{~mol})$ of 12 in 400 mL of dry tetrahydrofuran. The resultant mixture was heated under reflux for 24 h , cooled, and treated carefully with 10 mL of water, 10 mL of $15 \%$ sodium hydrisxide solution, and 30 mL of water. The mixture was suction filtered and the solids were leached sepeatedly with diethyl ether. The combined organic filtrates were evaporated under reduced pressure to give 19 g ( $90 \%$ ) of a pale yellow oil. Recrystallization from benzene gave 6.84 g of colorless crystals: mp $185-197^{\circ} \mathrm{C}$ (mixture of epimers); NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 2.10$ (br s, 2), $2.68(\mathrm{~m}, 4), 2.88(\mathrm{~m}, 4)$, and singlets at $3.98,4.20$, and 4.36 (total 2 H ) (the three methine signals appeared in the ratio 5:16:4); IR $\nu^{\prime}$ max (neat) $3320 \mathrm{~cm}^{-1}$.

6,10-Bis(methanesulfonyloxy) pentacyclo[5.3.0.0 $\left.0^{2,5} .0^{3,9} .0^{4,8}\right]$ decane ( 13 b ). To a solution of $1.61 \mathrm{~g}(9.8 \mathrm{mmol})$ of 13 a in 200 mL of methylene chloride at $0^{\circ} \mathrm{C}$ was added $2.52 \mathrm{~g}(22 \mathrm{mmol})$ of triethylamine under nitrogen. Methanesulfonyl chloride ( $3.0 \mathrm{~g}, 29.7 \mathrm{mmol}$ ) was added dropwise over 30 min at $0^{\circ} \mathrm{C}$ and the resultant clear solution was maintained at $0^{\circ} \mathrm{C}$ for an additional 20 min before being poured into 200 mL of ice water. The aqueous phase was extracted with 100 mL of methylene chloride and the combined organic layers were washed consecutively with cold 5 N hydrochloric acid ( 200 mL ) and saturated sodium bicarbonate solution, prior to drying and evaporation. There was obtained 2.68 g ( $85 \%$ ) of a white crystalline solid, recrystallization of which from ethyl acetate gave colorless
 3.2 (m, 4), and singlets at 4.74, 4.90, and 5.04 (total 2 H ).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{~S}_{2}$ : C. 44.99: H, $5.03 ; \mathrm{S}, 20.0$ \&. Found: C, 44.93; H, 5.06; S, 19.81.

6,10-Diiodopentacyclo[5.3.0.0 $0^{2,5} \cdot 0^{3,9} \cdot 0^{4,8}$ ]decane (14). A mixture of $200 \mathrm{mg}(0.6 \mathrm{mmal})$ of dimesylate 13 b and $1.88 \mathrm{~g}(12.5 \mathrm{mmol})$ of sodium iodide in 4 mL of anhydrous hexamethylphosphoramide was heated to $130-140^{\circ} \mathrm{C}$ under nitrogen for 2 days. The resultant black solid mixture was cooled and treated with 50 mL of water. The suspension was extracted with diethyl ether followed by washing of the combined organic phases with 6 N hydrochloric acid, water, and saturated sodium bicarbonate solution. Drying, filtration, and evaporation left 230 mg of orange oil which solidified on standing. The diiodide was purified by column chromatography on sil:ca gel (pentane elution). The colorless crystals so obtained ( $216 \mathrm{mg}, 90 \%$ ) were recrystallized from petroleum ether: mp $171-173^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{Me}} \mathrm{Si}$ $\left(\mathrm{CDCl}_{3}\right)$ 2.44-3.60 (br m, 8) together with singlets at $3 .{ }^{7} 6,3.88$, and 4.02 (total 2 H ).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{I}_{2}$ : C, 31.28; H, 2.63. Found: C, $31.56 ; \mathrm{H}$, 2.77.

Tetracyclo[5.3.0.0 $0^{2,6} .0^{3,10}$ ]deca-4,8-diene (6). Method A. A dry $250-\mathrm{mL}$ three-neck, round-bottom flask was charged with 2 g ( 87 mg -atom) of sodium and 2 g ( 51 mg -atom) of potassium under nitrogen. The flask was evacuated to 0.1 mm and the meta.s were fused by heating with a Bunsen burner. The flask was permitted to cool and the vacuum was sarefully released under nitrogen. The sodiumpotassium alloy was treated with 50 mL of dry tetrahydrofuran followed by the drop wise addition of $4.95 \mathrm{~g}(12.9 \mathrm{mmol})$ of 14 in 100 mL of the same solvent. The resultant gray suspension was stirred for 12 $h$ and allowed to settle. The supernatant solution was removed by syringe and the flask was rinsed with 25 mL of pentane which was again removed by syringe. The combined organic layers were suction filtered through a pad of Celite to remove inorganic solids and the filtrate was carefully concentrated under reduced pressure ( 80 mm ) at $10^{\circ} \mathrm{C}$ to a volume of 25 mL . The dark solution was diluted to 250 mL with water and extracted with three $100-\mathrm{mL}$ portions of pentane. The combined organic extracts were washed several times with water and brine prior to drying. After filtration, the volume of solution was reduced to 10 mL as before and the solution was placed ir. a sublimator where the remainder of the solvent was removed under vacuum. Sublimation of typostrophene from the resultant orange oil was achieved at $25^{\circ} \mathrm{C}$ and 0.1 mm with the use of a dry ice cooled cold finger to give 891 mg ( $54 \%$ ) of 6 as pungent colorless plates. The spectra of this hydrocarbon were identical with those cescribed earlier. ${ }^{9}$

Method B. A dry 1-L round-bottom flask was charged with 8.0 g of sodium and 8.0 g of potassium. After evacuation, the alloy was prepared as described above. After cooling, anhydrous ether ( 200 mL ) was added under a nitrogen atmosphere. The resulting mixture was
stirred magnetically. A solution of $14(20 \mathrm{~g})$ in 400 mL of ether was added dropwise, and stirring was maintained at room temperature for 15 h . Workup in the predescribed manner (except washing with ether) followed by careful removal of solvent left 5.2 g of a low melting solid which was chromatographed on silica gel (pentane elution). The amount of hypostrophene recovered was $4.1 \mathrm{~g}(61 \%)$.

Bromination of Hypostrophene. To an ice-cold solution of 6 ( 0.5 g ) in 20 mL of carbon tetrachloride was slowly added 0.62 g of bromine with a syringe. Stirring was continued for 30 min prior to washing with water and drying. Removal of the solvent left $1.12 \mathrm{~g}(95 \%)$ of 17 as a pale yellow oil which turned dark green after several hours at room temperature: $\mathrm{NMR} \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 5.92(\mathrm{~m}, 2), 5.72$ (m, 2!, 3.92 (m, 1 ), and $3.70-3.0$ ( $\mathrm{m}, 4!$; $\mathrm{m} / \mathrm{e}$ calcd 287.9150 , found 287.9156
syn-3-Bromo-endo-dicyclopentadiene (18). A solution of 17 (1.0 g ) in 5 nL of anhydrous ether was added dropwise to a stirred suspensior. of lithium aluminum hydride ( 0.3 g ) at $20^{\circ} \mathrm{C}$, cooled to $0^{\circ} \mathrm{C}$, and treated sequentially with 0.3 mL of water, 0.3 mL of $15 \%$ sodium hydrox.de solution, and 0.9 mL of water. The precipitated salts were removed by filtration and rinsed well with ether. The filtrate was washed with brine, dried, and evaporated to give $0.57 \mathrm{~g}(80 \%)$ of 18 : NMR $\delta_{\mathrm{MeasI}^{\mathrm{SI}}}\left(\mathrm{CDCl}_{3}\right) 5.93(\mathrm{~m}, 2), 5.48(\mathrm{~m}, 2), 3.92(\mathrm{~m}, 1), 3.42-2.40(\mathrm{~m}$, $5)$, and 2.27-1.98 (m, 1 ); m/e calcd 210.0045, found 210.0048 .
endo-Dicyclopentadiene (19). To a stirred solution of 0.40 g of sodium in 40 mL of liquid ammonia maintained at $-78^{\circ} \mathrm{C}$ was added dropwise 900 mg of 18 dissolved in 10 mL of ether. After 30 min , solid ammonium chloride was added to discharge the blue color, the ammonia was allowed to evaporate, water ( 25 mL ) was added, and the product was extracted into ether $(3 \times 20 \mathrm{~mL})$. The combined organic layers uere dried and evaporated to give $510 \mathrm{mg}(92 \%)$ of hydrocarbon 19, the spectral properties of which were identical with those of an authentic sample.

Dibromocarbene Addition to 18. To a solution containing 250 mg of $18,50 \mathrm{mg}$ of triethylbenzylammonium bromide, 7.6 g of bromoform, and 3 mL of benzene was added 1.6 mL of $50 \%$ sodium hydroxide solution and the mixture was stir:ed at room temperature for 48 h . Water ( 10 mL ) was added and a small amount of tarry solid was removed by filtration. The layers were separated and the aqueous phase was extracted with chloroform ( $3 \times 25 \mathrm{~mL}$ ). The combined organic solutions were washed with brine, dried, and evaporated. There was obtained 0.4 g of an oil which solidified on overnight storage in a refrigerator. Two recrystallizations from ethanol afforded 250 mg $(55 \%)$ of pure 20a: mp $105-106{ }^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.17(\mathrm{~m}, 2)$, $3.90(\mathrm{~m}, 1), 3.30-3.10(\mathrm{~m}, 1), 3.10-2.28(\mathrm{~m}, 3)$, and 2.25-1.57(m, 4).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Br}_{3}$ : C, 34.50; H, 2.90. Found: C, $34.84 ; \mathrm{H}$, 3.05 .

Dichlorocarbene Addition to 18. The identical procedure was followec, except for substitution of bromoform by chloroform. There was obtained a $71 \%$ yield of $20 \mathrm{~b}, \mathrm{mp} 78-79^{\circ} \mathrm{C}$, after two recrystallizations from ethanol. The ${ }^{1} \mathrm{H}$ NMR spectrum of 20 b was similar in many respects to that of 20a.

Reduction of 20 a . A solution of 20a ( 200 mg ) in 3 mL of ether was added dropwise to a solution of sodium metal ( 300 mg ) in liguid ammonia ( 50 mL ) maintained at $-70^{\circ} \mathrm{C}$. After 30 min , the excess sodium was destroyed by addition of solid ammonium chloride. The ammonia was allowed to evaporate, water was carefully added, and the aqueous mixture was extracted with ether $(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried and carefully evaporated to leave $70 \mathrm{mg}(70 \%)$ of 21 : NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.15(\mathrm{~m}, 2), 3.0-2.15(\mathrm{~m}, 4), 1.84-0.71(\mathrm{~m}, 6)$, $0.61-0.31(\mathrm{~m}, \mathrm{l})$, and 0.19 to $-0.42(\mathrm{~m}, 1) .^{29}$

Dichlorocarbene Addition to 19. A mixture of endo-dicyclopentadiene ( 0.70 g ), triethylbenzylammonium bromide ( 50 mg ), and chloroform ( 5 mL ) was treated with 3.5 mL of $50 \%$ sodium hydroxide solution and stirred at room temperature for 60 h . Workup in the predescribed fashion furnished 1.0 g of 22 : $\mathrm{NMR} \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.04$ (m, 1), $4.42(\mathrm{~m}, 1)$, and $3.05-1.40(\mathrm{~m}, 10)$; $\mathrm{m} / e$ calcd 295.9693 , found 295.9696.
syn-8-Bromo-exo-1-hydroxy-endo-dicyclopentadiene (23). A. By Rearrangement of Hypostrophene. An ice-cold solution of hypostrcphene ( 100 mg ) in 1 mL of dimethyl sulfoxide was treated with 0.2 mL of water and 140 mg of $N$-bromosuccinimide and stirred at $0^{\circ} \mathrm{C}$ for 2 h . Saturated sodium bicarbonate solution ( 20 mL ) was added, the mixture was extracted with ether $(3 \times 20 \mathrm{~mL})$, and the combined organic layers were washed with brine and dried. Evaporation of solvent left $13\left(1 \mathrm{mg}(74 \%)\right.$ of 23 as a colorless oil: NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}$ $\left(\mathrm{CDCl}_{3}\right) 5.90(\mathrm{~m}, 2), 5.70(\mathrm{~m}, 2), 4.09(\mathrm{~m}, 1), 3.95(\mathrm{~m}, 1), 3.55-3.20(\mathrm{~m}$, 2), 3.20-2.95 (m, 1), 2.68-2.45 (m, 1), and $2.40(\mathrm{br} \mathrm{s}, 1)$.

The bromo alcohol was converted to its crystalline acetate $24, \mathrm{mp}$ $90-91{ }^{\circ} \mathrm{C}$ (from pentane-ether, $9: 1$ ), for further characterization: NMR $\delta_{\mathrm{M}=4 \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.20-5.55(\mathrm{~m}, 4), 4.95(\mathrm{~m}, 1), 3.98(\mathrm{~m}, 1), 3.60-3.25$ ( $\mathrm{m}, 2$ ), 3.25-3.0 (m, 1), 2.60-2.45 (m, 1), and $2.02(\mathrm{~s}, 3)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{2}$ : C, $53.55 ; \mathrm{H}, 4.87$. Found: $\mathrm{C}, 53.61 ; \mathrm{H}$, 5.03 .
B. Hydrolysis of 17. A mixture of 17 ( 500 mg ), water ( 6 mL ), acetone ( 12 mL ), and calcium carbonate ( 500 mg ) was stirred at $20^{\circ} \mathrm{C}$ for 24 h . The acetone was removed under reduced pressure, the residue was diluted with water and extracted with ether ( $3 \times 25 \mathrm{~mL}$ ), and the combined organic layers were washed with brine and dried. After solvent removal, there remained 350 mg ( $80 \%$ ) of 23 which also was directly converted to its acetate, $\mathrm{mp} 90-91^{\circ} \mathrm{C}$.
exo-Tetracyclo[5.3.0.0 ${ }^{2,6} \cdot 0^{3,10}$ ]dec-4-en-8-ol (25). A solution of $2.6 \mathrm{~g}(20 \mathrm{mmol})$ of 6 in 40 mL of dry tetrahydrofuran was cooled to 0 ${ }^{\circ} \mathrm{C}$ under nitrogen and 9 -borabicyclononane in tetrahydrofuran solution ( $0.5 \mathrm{M}, 40 \mathrm{~mL}, 20 \mathrm{mmol}$ ) was added dropwise during 2 h . The resultant mixture was allowed to warm to ambient temperature during 1.5 h and cooled again to $0^{\circ} \mathrm{C}$. Sodium hydroxide solution ( $15 \%, 10$ mL ) was added, followed by 8 mL of $30 \%$ hydrogen peroxide. This mixture was stirred for 8 h pricr to saturation with potassium carbonate and separation of the layers. The aqueous phase was extracted with 100 mL of ether and the combined organic phases were dried. Filtration and solvent evaporation gave a large quantity of yellow oil which was chromatographed on Florisil (elution with ligroin-ether). Recovered hypostrophone amounted to 0.72 g while later fractions yielded 1.58 g ( $73 \%$ ) of exo alcohol 25 as a low-melting, semicrystalline material. Purification could be achieved by gas chromatography on a $6 \mathrm{ft} \mathrm{SE}-30$ column at $110^{\circ} \mathrm{C}$ : NMR $\delta_{\mathrm{Me}} \mathrm{Si}\left(\mathrm{CDCl}_{3}\right) 6.31(\mathrm{~m}, 2), 4.20$ $\left(\mathrm{dd}, J_{\mathrm{sym}}=7 \mathrm{~Hz}, 1\right), 3.32(\mathrm{~m}, 5), 2.92(\mathrm{~m}, 1), 2.15\left(\mathrm{dd}, J_{\mathrm{gem}}=15, J_{\mathrm{syn}}\right.$ $=7 \mathrm{~Hz}, 1), 1.89(\mathrm{~s}, 1)$, and $1.56(\mathrm{~m}, 1)$.
The 3,5-dinitrobenzoate of 25 , prepared by the customary procedure and recrystallized from ether, was obtained as off-white crystals, mp $136-137^{\circ} \mathrm{C}$

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}$ : C, 59.65; $\mathrm{H}, 4.12 ; \mathrm{N}, 8.19$. Found: C, 59.76; H, 4.20; N, 8.03.

Epoxidation of Hypostrophene. A solution of $890 \mathrm{mg}(6.85 \mathrm{mmol})$ of 6 in 25 mL of chloroform was cooled to $0^{\circ} \mathrm{C}$ under nitrogen and a solution of $1.18 \mathrm{~g}(6.85 \mathrm{mmol})$ of $m$-chloroperbenzoic acid in 10 mL of chloroform was added dropwise during 30 min . The reaction mixture was allowed to warm to room temperature with stirring for 12 h prior to washing with saturated sodium bicarbonate solution and drying. The solvent was evaporated under reduced pressure and the resultant yellow oil was taken up in pentane and deposited on a Florisil column. Chromatography (elution with pentane) provided 78 mg of recovered hypostrophene, 667 mg of monoepoxide 26 , and 170 mg of bisepoxide 27. The yield of monoepoxide based on recovered 6 was $73 \%$, while that of 27 was $15 \%$.

The monoepoxide was recrystallized from pentane and obtained as colorless crystals: $\mathrm{mp} 170^{\circ} \mathrm{C} \mathrm{dec}$; NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.14(\mathrm{~s}, 2)$, 2.84-3.44 (br m, 5), 3.36 ( $\mathrm{s}, 2$ ), and 2.64-2.30 (m, 1).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 82.16 ; \mathrm{H}, 6.90$. Found: C, 82.02; H , 6.99 .

The bisepoxide when recrystallized from ether was isolated as colorless needles which sublimed slowly above $150^{\circ} \mathrm{C}$ and decomposed above $200^{\circ} \mathrm{C} ; \mathrm{NMR}_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) \S .51(\mathrm{~s}, 4), 3.08(\mathrm{~m}, 4)$, and 2.56 (m, 2).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$ : C, 74.05; $\mathrm{H}, 6.22$. Found: $\mathrm{C}, 73.80 ; \mathrm{H}$, 6.25 .

9,9-Dibromopentacyclo[5.4.0.0 $0^{2,6} \cdot 0^{3,11} .0^{8,10}$ ]undec-4-ene (28a). A solution of 170 mg ( 1.31 mmol ) of 6 in 5 mL of pentane was cooled to $-30^{\circ} \mathrm{C}$ and $291 \mathrm{mg}(2.6 \mathrm{mmol})$ of potassium tert-butoxide (sublimed) was added in one portion. The resultant slurry was treated slowly while magnetically stirred with $329 \mathrm{mg}(1.30 \mathrm{mmol})$ of bromoform in 2 mL of pentane. The ten colored suspension was stirred under nitrogen for 12 h at room temperature prior to addition of 25 mL of pentane and 50 mL of water. The layers were separated and the aqueous phase was further extracted with 10 mL of pentane. The combined pentane extracts were washed once with water and dried. Distillation of the pentane at $60^{\circ} \mathrm{C}$ through a short Vigreux column left a colorless solution ( 5 mL ) which deposited colorless crystals upon standing in a freezer overnight. The crystalline precipitate was filtered to give 35.5 mg ( $15 \%$ ) of bisadduct 29a. Recrystallization from hexane gave off-white plates which decomposed between 175 and $205{ }^{\circ} \mathrm{C}$ : NMR $\hat{o}_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 3.18$ (dd, 4), 2.78 (m, 2), and 2.35 (s, 4).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Br}_{4}$ : C, 30.41 ; H, 2.13. Found: C, 30.52; H, 2.20 .

The mother liquors were evaporated under reduced pressure to give a yellow oil from which was sublimed 100 mg of hypostrophene $[50-60$ $\left.{ }^{\circ} \mathrm{C}(20 \mathrm{~mm})\right]$ and finally $126 \mathrm{mg}(77 \%)$ of 23 a [ $60^{\circ} \mathrm{C}(0.15 \mathrm{~mm})$ ] as white crystals which turned yellow on standing. Recrystallization from pentane provided large, colorless crystals: mp $79-80^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{Me}} \mathrm{Si}$ $\left(\mathrm{CDCl}_{3}\right) 6.23(\mathrm{~s}, 2), 3.10-3.48(\mathrm{br} \mathrm{m}, 4), 3.01(\mathrm{~m}, 1), 2.76(\mathrm{~m}, 1)$, and 2.03 (s, 2).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Br}_{2}$ : C, 43.74; H, 3.34. Found: C, 43.84; H , 3.37.

Pentacyclo[5.4.0.0 $0^{2,6} \cdot 0^{3,11} \cdot 0^{8,10}$ ] undec-4-ene (28b). A. Sim-mons-Smith Reaction of Hypostrophene. A zinc-silver couple was prepared as follows: a mixture of 2 mg of silver acetate in 1 mL of glacial acetic acid was heated to boiling and 144 mg ( 2.2 mg -atom) of 30 mesh granclated zinc was added in one portion with stirring under nitrogen. After 30 s, the acetic acid solution was pipetted from the mixture and the couple was washed with 1 mL of fresh acetic acid followed by five $1-\mathrm{mL}$ portions of anhydrous diethyl ether. Finally, 1.5 mL of dry diethyl ether was added as the reaction solvent.

The ether suspension of the gray-brown couple was treated with $100 \mathrm{mg}(0.77 \mathrm{mmol})$ of 6 . While under nitrogen, a solution of 295 mg ( 1.1 mmol ) of diiodomethane in 1.5 mL of ether was added dropwise during 10 min . The mixture was refluxed while the progress of the reaction was followed by gas chromatography. After 88 h , the mixture was cooled to $0^{\circ} \mathrm{C}$ and pyridine was added dropwise to precipitate zinc salts. After suction filtration, the clear filtrates were again treated with pyridine until no more precipitate formed. The mixture was filtered and reduced in volume to 1 mL . Preparative gas chromatography on a $2 \mathrm{ft} \mathrm{SE}-30$ column at $65^{\circ} \mathrm{C}$ gave three components: 10 mg of recovered hypostrophene, 17 mg ( $17 \%$ yizld) of 28 b , and 15 mg (14\%) of 29b. For 28b: NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right)-0.24$ (dd, 1), 0.25 (dt, 1), 1.19 (dd, 2), 2.48-3.46 ( $\mathrm{br} \mathrm{m}, 6$ ), and 6.28 ( $\mathrm{br} \mathrm{s}, 2$ ).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12}: \mathrm{C}, 91.08 ; \mathrm{H}, 8.92$. Found: C, 91.48; H , 9.07.

For 29b: NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right)-0.33$ (dd, 2), (1.36 (dt, 2), 1.42 (dd, 4), 2.36-2.64 m .4$)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14}$ : C, 91.61; H, 8.39. Found: C, 91.26; H, 8.77.
B. Reductive Debromination of 28a. A solution of $50 \mathrm{mg}(0.165$ mmol ) of 28a in 1 mL of dry tetrahydrofuran was treated with 50 mg of lithium wire and 0.5 mL of dry tert -butyl alcohol portionwise over 30 min . After 1 h , a cloudy precipitate had formed and the lithium was visibly reacting. After an additional 3 h , the mix-ure was decanted to remove lithium pieces and the solution was diluted with 25 mL of water. The aqueous mixture was extracted with two $2.5-\mathrm{mL}$ portions of diethyl etter followed by washing of the combined organic layers with water and drying. The mixture was filtered and concentrated by distillation through a short Vigreux column ( $60^{\circ} \mathrm{C}$ bath) to a volume of 1 mL . Preparative gas chromatography on a $2 \mathrm{ft} \mathrm{SE-} 30$ column at $65^{\circ} \mathrm{C}$ gave $18 \mathrm{mg}(76 \%)$ of a colorless oil whose ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that of $\mathbf{2 8 b}$ prepared in part A.
exo-1,syn-8-Dihydroxy-endo-dicyclopentadiene (30). Epoxide $26(60 \mathrm{mg})$ was added to 5.0 mL of $10 \%$ perchloric acid. The flask was stoppered and the mixture shaken at room temperature for 3 h . Neutralization was effected with sodium bicarbonate solution. After dilution aith brine ( 150 mL ), the solution was continuously extracted with methylene chloride for 2 days. The extract was dried and concentrated to leave 50 mg ( $76 \%$ ) of 30 which was directly acetylated ( $90 \%$ ) to facilitate handling: NMR $\dot{o}_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.12-5.92(\mathrm{~m}, 1)$, 5.92-5.73 (m, 2), 5.73-5.57 (m, 1), 4.98 (m, 1), 4.58 (m, 1), 3.57-3.18 ( $\mathrm{m}, 2$ ), 3.12-2.95 (m, 1), 2.65-2.47 (m, 1), $2.03 \mathrm{cs}, 3$ ), and $1.98(\mathrm{~s}, 3)$. These compourds exhibited spectra identical with those of authentic samples. ${ }^{25}$

Acknowledgment. This investigation was supported by the National Science Foundation. The authors owe thanks also to Dr. R. F. Davis for the development of certain preliminary experimental procedures.
Registry No.-6, 34324-40-8; 7, 2652-01-5; 8, 4576-44-7; 9, 25834-57-5; 10, 4576-45-8: 11, 4514-82-3; 12, 14725-77-0; 13a, 54211-08-4; 13b, 54211-09-5; 14, 54296-38-7: 17, 65071-65-0; 18, 65071-66-1; 19, 1755-01-7; 20a, 61173-77-1: 20b, 61173-78-2; 21, 1777-42-0; 22. 65165-48-2: 23, 61173-8C-6; 24, 61173-79-3; 25,

65071-67-2; 25 3.5-dinitrobenzoate, 65071-68-3: 26, 61173-76-0; 27, 65071-69-4; 2\&a, 65071-7(1-7; 28b, 65071-71-8: 29a, 65071-72-9: 29b, 65071-73-0; 30, 61217-40-1; endo-dicyclopentadienone, 65071-59-2; ethylene glycol, 107-21-1: methanesulfonyl chloride. 124-53-0; bromoform, 75-25-2; chloroform, 67-66-3.

## References and Notes

(1) Goodyear Tire and Rubber Company Fellow, 1973-1974.
(2) P. v. R. Schleyer, , E. Williams, and K. R. Blanchard, J. Am. Chem. Soc. 92, 2377 (1970); N. L. Allinger, M. T. Tribble, M. A. Miller, and D. Wertz, ibid., 93, 1637 (1G71): E. M. Engler, J. D. Andose, and P. v. R. Schleyer, ibid., 95, 8005 (1¢73).
(3) For a recent collection of references, consult J. T. Edward. P. G. Farrell, and G. E. Langforc, J. Am. Chem. Soc., 98, 3075 (1976).
(4) (a) P. E. Eaton and T. W. Cole. Jr., J. Am. Chem. Soc., 86, 962 (1964); (b) T.-Y. Luh and L. M. Stock, ibid., 96, 3712 (1974).
(5) N. Bodor, M. J. S. Dewar, and S. D. Worley, J. Am. Chem. Soc., 92, 19 (1970).
(6) B. D. Kybett, S. Carroll, P. Natalis, D. W. Bonnell, J. L. Margrave, and J. L. Franklin, J. Am. Chem. Soc., 88, 626 (1966)
(7) W. G. Dauben and L. N. Reitman, J. Org. Chem., 40, 835 (1975).
(8) (a) M. Avram, I. G. Dinulescu, E. Marica, G. Mateescu, E. Sliam, and C. D Nenitzescu. Chem Ber., 97, 382 (1964); (b) L. A. Paquette and M. J. Carmody, J. A.m. Chem. Soc., 98, 8175 (1976).
(9) J. S. McKennis, L. Brener. J. S. Ward, and R. Pettit, J. Am. Chem. Soc., 93, 4957 (1971).
(10) R. Gleiter, E. Heilbronner, M. Hekman, and H.-D. Martin, Chem. Ber., 106, 28 (1973)
(11) W. Schmidt and B. T. Wilkins, Tetrahedron, 28, 5649 (1972)
(12) The electronic properties of norbornadiene are illustrative: F. Hoffmann Acc. Chem. Res., 4, 1 (1971).
13) M. J. Carmody, unpublished observations
(14) H. M. Frey. H.-D. Atartin, and M. Hekman, J. Chem. Soc., Chem. Commun. 204 (1975).
(15) G. Klein and L. A. Paquette, J. Org. Chem., companion faper in this issue
(16) L. A. Paquette anc M. J. Carmody, J. Org. Chem., companion paper in this issue.
17) For a preliminary report on this approach, see L. A. Paquette R. F. Davis, and D. R. James, Tetrahedron Lett., 1615 (1974).
(18) W. v. E. Doering and C H. DePuy. J. Am. Chem. Soc., 75, 5955 (1953).
(19) C. H. DeP 」y and B. W. Ponder, J. Am. Chem. Soc., 81, 4629 (1959).
(20) (a) E. Vogel and E.-G. Wyes, Chem. Ber., 98, 3680 (1965); (b) see aiso N. B. Chapman, J. M. Key, and K. J. Toyne, J. Org. Cherr.., 35, 3860 (1970).
(21) P. E. Eaton and R. A. Hudson, J. Am. Chem. Soc., 87, 2769 (1965).
(22) E. Baggiolini, E. G. Herzog, S. Iwasaki, R. Schorta, and K. Schaffner, Helv. Chim. Acta, 50, 297 (1965).
(23) R. K. Crossland and K. L. Servis, J. Org. Chem., 35, 3195 (1970).
(24) P. E. Eaton, L. Cassar, R. A. Hudson. and D. R. Hwang. J. Org. Chem., 41, 1445 (1976).
(25) G. R. Underwood and B. Ramamoorthly, Tetrahedron Lett., 4125 (1970).
26) Other chemistry of homohypostrophenyl systems has rece tlly been reported: E. C. Smith and J. C. Barborak, J. Org. Chem., 41, 1433 (1976): A. P. Marchand, T -C. Chou, J. D. Ekstrand. and D. van der Helm, ibid., 41, 1438 (1976).
(27) A preliminary report describing these findings has appeared G. Klein and L. A. Paquette, Tetrahedron Lett. 2419 (1976).
(28) M. Makosza and W. Wawrzyniewicz, Tetrahedron Lett., 4059 (1969); C M. Starks, J. Am. Chem. Soc., 93, 195 (1971).
(29) Stereochemical assignments in norbornyl systems of this sort have previously been made on the basis of long-range coupling between the norbornenyl olefinic protons and the hydrogen in the bridge position: E . I. Snyder and B. Franzus, J. Am. Chem. Soc., 86, 1166 (1964).
(30) L. Ghosez, P. Laroche. and L. Bastens, Tetrahedron Lett., 3745 (1964).
(31) (a) D. R. Dalton, V. P. Dutta, and D. C. Jones, J. Am. Chem. Soc., 90, 5498 (1968); D. R. Dalton and V. P. Dutta, J. Chem. Soc. B, 85 (1971); (b) D. R. Dalton, R. K. Rodebaugh. and C. W. Jefford, J. Org. Chem., 37, 362 (1972) see also L. H. Zak kow and A. C. Oehlschlager, ibid., 29, 1625 (1964).
(32) E. F. Knights and H. C Brown, J. Am. Chem. Soc., 90, 5281 (1968).
(33) L. F. Fieser and D. H. Sachs. J. Org. Chem., 29, 1113 (1964;; M. Z. Nazer. ibid., 30, 1737 (1965).
(34) L. A. Pacuette, G. R. Allen, Jr., and M. J. Broadhurst, J. Am. Chem. Soc., 93, 4503 (1971): L. A. Paquette, M. J. Broachurst, L. K. Read, and J. Clardy ibid., 95. 4639 , 1973): L. A. Paquette, M. J. Broadhurst, C. Lee, and J. Clardy. ioid., 954647 (1973).
(35) R. B. Wcodward and T. J. Katz, Tetrahedron. 5, 70 (1959).

# Impact of High-Lying $\sigma$ Orbitals and Extensive Through-Bond Interaction on Chemical Reactivity. 2. Solvolytic Studies of Hypostrophene Derivatives ${ }^{1}$ 

Gerhard Klein and Leo A. Paquette*<br>Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210

Received September 15, 1977


#### Abstract

Acetolysis of exo- and erdo-tetracyclo[5.3.0.0 $0^{2,6} .0^{3,10}$ ]decan-4-yl tosylates ( $\mathbf{6 b}$ and $8 \mathbf{b}$ ) in buffered HOAc at $71{ }^{\circ} \mathrm{C}$ produced $16 \mathbf{b}$ (together with $2 \%$ of $\mathbf{6 c}$ in the endo case), but at rates estimated to differ by a factor of 170 (with $\mathbf{6 b}$ faster). Comparable solvolysis of the unsaturated exo tosylate $\mathbf{3 b}\left(\right.$ at $25.9^{\circ} \mathrm{C}$ ) led rapidly to $\mathbf{1 8 b}(5(1 \%), 19 a(5 \%)$, and $19 \mathrm{~b}(45 \%)$, a product distribution quite unlike that obtained from its endo epimer $\mathbf{5 b}$ ( 18 b accompanied by some polymer formation). These findings demonstrate that the frequently observed ability of a proximate double bond to engage in transannular participation has been overridden by lateral $\sigma$-bond participation. The kinetic and product data suggest that the first cation emanating from $\mathbf{5 b}$ is classical, while that from $\mathbf{3 b}$ is generated with anchimeric assistance and characterized by $\sigma$ delocalization. Whereas acetolysis ( $71^{\circ} \mathrm{C}$ ) of exo-cyclopropyl derivative 10 b returned only 20 a , its endo counterpart $\mathbf{1 5 b}$ gave a complex acetate product mixture at a rate approximately 440 times slower. The involvement of neighboring-group participation could again be implicated for $\mathbf{1 0 b}$, since interaction of the cationic center with the cyclopropane ring is effectively repressed. The rate constants and product distributions provide convincing demonstration of the effectiveness with which such anchimeric assistance can accelerate and control the ultimate outcome of cationic rearrangements.


Interest in hypostrophene (tetracyclo[5.3.0.0. ${ }^{2,6} .0^{3,10}$ ]-deca-4,8-diene (1) $)^{1-3}$ derives chiefly from its structural features, including its $C_{2 v}$ symmetry, the overriding by through-bond coupling of direct through-space $\pi-\pi$ interaction, ${ }^{4}$ and its obvious strain energy. The primary determinants of the observed level ordering in 1 are its exceptionally high-

$\underset{\sim}{\sim}$

lying lateral $\sigma$ orbitals and their geometric relationship to the $\pi$ bonds. Such symmetry-enforced indirect interaction between the double bonds should have significant consequences on chemical reactivity. This conclusion has received qualitative support from the response of 1 to attack by electrophilic reagents. ${ }^{1,5}$

Hoffmann, Mollère, and Heilbronner have previously presented arguments supporting the notion that the exceptional unreactivity of 7 -norbornyl cation precursors (2) is due not to the change in angle strain accompanying their ionization, ${ }^{6}$ but to destabilization brought on by the inability of proper ribbon orbitals to interact suitably with the carbonium ion center. ${ }^{7}$ This lack of interaction causes 2 to be less stable and more difficult to generate than it should otherwise be. At issue is whether similar phenomena would be observed in carbonium ions derived from 1 and allied structures.

The recent availability of efficient routes to 1 and the knowledge that carbocations are particularly sensitive to prevailing orbital interactions prompted a detailed kinetic study of the solvolytic behavior of a number of hypostrophene derivatives. In particular, a series of exo- and endo-p-toluenesulfonate esters have been prepared in which the transannular units positioned in close proximity to the leaving group vary from saturated ethano through etheno to edge cyclopropano. Their acetolysis forms the subject of this report.

## Results

Synthesis. Oxidation of exo-alcohol 3a, the monohydroboration product of hypostrophene, ${ }^{1}$ gave ketone 4 which was reduced stereospecifically to 5 a with lithium aluminum hydride (Scheme I). Careful catalytic hydrogenation of 3a led

Scheme I


5~~․ $R=H$
b, $R=T s$
$\downarrow \mathrm{HN}=\mathrm{NH}$

$\underset{\sim}{2}$
8q, $R=H$
$\underset{\sim}{D}, R=T s$
to $\mathbf{6 a}$ and subsequently to 8 a without complication. Diimide reduction of 5a likewise provided $8 \mathbf{a}$.

Although the available $9^{1}$ could be cleanly converted to 10 a with $9-\mathrm{BBN}$, the somewhat limited accessibility of this hydrocarbon led us to develop a preferred route beginning with acetate 11 . Dichlorocarbene addition to 11 was conveniently achieved under phase-transfer conditions. The resulting adduct 12 was reduced sequentially with lithium aluminum hydride and sodium in liquid ammonia in good overall yield (Scheme II). Inversion of hydroxyl stereochemistry to provide 15a was again achieved via an oxidation-reduction sequence.

Solvolysis Kinetics. Acetolyses of the endo-tosylates 5b, $\mathbf{8 b}$, and 15 b were examined kinetically in buffered acetic acid ( 0.03 M in NaOAc ) through use of the standard ampule technique and classical titrimetry. The method previously described by Wiberg and $\mathrm{Hess}^{8}$ was utilized with exc-tosylates $\mathbf{6 b}$ and 10 b . We highly recommend this technique in those situations where solvolysis is quite rapid or when the ionization process is complicated by substantial levels of early internal return. Its chief disadvantage, however, is the rather larger amounts of tosylate ( $\sim 200 \mathrm{mg}$ ) required for a single run. As described in the Experimental Section, a procedural modification has been developed in the course of sur study of $3 \mathbf{b}$ which has proven reliable at the $20-\mathrm{mg}$ level.

Due to formation of extensive amounts of less reactive isomeric tosylates arising from internal recapture of $p$-toluenesulfonate anion, reliable instantaneous rate constants

Table I. Rates of Tosylate Solvolysis in Buffered Acetic Acid

| Compd | Registry no. | T, ${ }^{\circ} \mathrm{C}$ | $k, \mathrm{~s}^{-1}$ | $\begin{gathered} \Delta H^{\ddagger} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$ | $\begin{gathered} \Delta S^{\ddagger} \\ \text { eu } \end{gathered}$ | $k_{\text {rel }}\left(25.9{ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3b | 65071-87-6 | 25.9 | $4.19 \times 10^{-4}$ |  |  | 1000 |
| 5b | 65137-10-2 | 55.2 | $2.12 \times 10^{-4}$ | $21.2 \pm 1.0$ | $-11 \pm 3$ | 20 |
|  |  | 51.1 | $1.46 \times 10^{-4}$ |  |  |  |
|  |  | 44.6 | $7.02 \times 10^{-5}$ |  |  |  |
|  |  | $25.9{ }^{\text {a }}$ | $8.2 \times 10^{-6}$ |  |  |  |
| 6b | 65071-88-7 | 25.9 | $1.06 \times 10^{-5}$ |  |  | 25 |
| 8b | 6513?-11-3 | 83.6 | $1.42 \times 10^{-4}$ | $20.7 \pm 0.9$ | $-8.5 \pm 2.5$ | 1 |
|  |  | 77.1 | $8.47 \times 10^{-5}$ |  |  |  |
|  |  | 71.0 | $4.62 \times 10^{-5}$ |  |  |  |
|  |  | $25.9{ }^{\text {a }}$ | $4.3 \times 10^{-7}$ |  |  |  |
| 10b | 65071-89-8 | 25.9 | $1.71 \times 10^{-5}$ |  |  | 41 |
| 15b | 65137-12-4 | 83.6 | $2.33 \times 10^{-4}$ | $23.8 \pm 0.5$ | $-8.7 \pm 1.3$ | 0.6 |
|  |  | 77.1 | $1.19 \times 10^{-4}$ |  |  |  |
|  |  | 71.0 | $6.52 \times 10^{-5}$ |  |  |  |
|  |  | $25.9{ }^{\text {a }}$ | $2.7 \times 10^{-7}$ |  |  |  |

${ }^{a}$ Extrapolated values based on the activation parameters.
for $\mathbf{6 b}$ and 10 b could be obtained only through the first 5- of reaction. For $\mathbf{3 b}$, the usable range was extendable to $20 \%$ conversion to products. Under the concitions employed, the internal return products were determined to be relatively inert. The rate constants given in Table I for these tosylates are therefore the $k$ 's for acetate formation only. In particular, they are believed to exclude any significant contributions from secondary acetolysis. The remaining three substrates underwent solvolysis according to simple first-order kinetics.

The kinetic data, together with relative rate factors and derived activation parameters (where assessable), are summarized in Table I.

Product Analysis. Upon preparative scale acetolysis at 71 ${ }^{\circ} \mathrm{C}$, end $)$-tetracyclo [5.3.0.0 ${ }^{2,6} .0^{3,10}$ ]decan-4-yl tosylate ( $8 \mathbf{b}$ ) was converted to a mixture of $\mathbf{1 6 b}(98 \%)$ and $\mathbf{6 c}(2 \%)$. Comparable treatment of the correspondirg exo isomer (6b) led exclusively to $\mathbf{1 6 b}$. Upon lowering the reaction temperature for $\mathbf{6 b}$ to $25.9^{\circ} \mathrm{C}$, the liberation of $p$-toluenesulfonate anion stopped afzer $15 \%$ acetolysis. The product mixture consisted of rearranged tosylate $16 \mathrm{c}(85 \%)$ and the structurally related
acetate 16 b . The structural assignment to 16 b and 16 c is based upon their rather characteristic ${ }^{1} \mathrm{H}$ NMR spectra (e.g., $J_{1,10}$ $=J_{7,10}=1.5 \mathrm{~Hz}$ ), lithium aluminum hydride reduction of 16 b to alcohol 16a, and $\mathrm{Eu}(\mathrm{fod})_{3}$ induced shifting of the latter. As expected of the anti-hydroxyl stereochemistry, the $\mathrm{H}_{1}, \mathrm{H}_{7}$, exo- $\mathrm{H}_{8}, \mathrm{H}_{9}$, and $\mathrm{H}_{10}$ protons in 16 experienced the greatest

downfield shifting. Also clearly revealed was the geminal coupling of exo $-\mathrm{H}_{\varepsilon}$ with endo- $\mathrm{H}_{8}$, as well as its vicina coupling to $\mathrm{H}_{7}$ and $\mathrm{H}_{9}$ in accordance with dihedral angle estimates gained from molecular models. Additionally, Collins oxidation of 16 a gave ketone 17 whose intense paired carbonyl absorptions at 1780 and $1765 \mathrm{~cm}^{-1}$ compare closely to those of 7norbornanone ( 1778 and $1740 \mathrm{~cm}^{-1}$ )..$^{9}$

The acetolysis of $\mathbf{5 b}$ at $44.5^{\circ} \mathrm{C}$ gave $\mathbf{1 8 b}$ along with $30 \%$ polymer. The solvolytic reaction of unsaturated exo isomer $\mathbf{3 b}$ (conducted at $25.9^{\circ} \mathrm{C}$ ) also led to $\mathbf{1 8 b}(50 \%)$, but produced significant amounts of $19 a(5 \%)$ and $19 b(45 \%)$ as well. That

$18 \underset{\sim}{a}, R=H$
b , $R=A c$

$19 \underset{\sim}{\underset{b}{a}}, R=R=T s$

$20 \mathrm{a}, \mathrm{R}=\mathrm{Ac}$ $\underset{\sim}{\underset{\sim}{b}}, R=T s$

18b has the designated doubly unsaturated tricyclic structure is based upon its spectral parameters and independent synthesis by acetylation of the known alcohol 18a. ${ }^{10}$ One key feature of the ${ }^{1} \mathrm{H}$ NMR spectra of 19 a and 19 b is the clean narrow triplet ( $J=1.5 \mathrm{~Hz}$ ) which arises from the proton on carbon bonded to oxygen. That this multiplicity is again characteristic of a 7 -norbornyl type proton was established by catalytic hydrogenation of 19 b to $\mathbf{1 6 c}$. Also, heating of 19b in buffered acetic acid at $70^{\circ} \mathrm{C}$ for 41 h returned exclusively 19a.

Whereas the acetolysis $\left(71^{\circ} \mathrm{C}\right)$ of 10 b occurred with clean conversion to 20a, its endo counterpart 15b gave a more complex distribution of products under identical conditions. Thus, $10 \mathrm{c}(8 \%)$ and three unsaturated acetates of still unes-
tablished structure ( 27,20 , and $5 \%$ ) weee isolated in addition to $20 \mathrm{a}(40 \%)$. The great similarity of the downfield sector of the ${ }^{1} \mathrm{H}$ NMR spectrum of 20 a to those of 16 b and 19a was taken as evidence that a comparable skeletal rearrangement had taken place.

## Discussion

Evidence has been accumulated in the foregoing experiments that the various exo-substituted hypostrophene derivatives are characterized by enhanced solvolytic reactivity. Direct comparison of the apparent acetolysis rate constants given in Table I provides the following exo/endo rate ratios: unsaturated $\mathbf{3 b} / \mathbf{5 b}=51$; saturated $\mathbf{6 b} / 8 \mathbf{b}=25$; and cyclopropanated $\mathbf{1 0 b} / \mathbf{1 5 b}=63$ (all at $25.9^{\circ} \mathrm{C}$ ). Suitable control experiments conducted on $\mathbf{6 b}$ and 10 b revealed internal return to be an important feature of their solvolytic chemistry. In contrast, their endo counterparts were not seen to rearrange to isomeric tosylates. In view of the typ:cal product distributions which show 16c and 20b to be formed at least six times faster than the acetate products, the true rates of ionization for $\mathbf{6 b}$ and $10 \mathrm{~b}\left(k_{\text {ion }}=k_{\text {solv }}+k_{\text {int ret }}\right)$ must in reality be some seven times larger than determined experimentally or $74 \times$ $10^{-6}$ and $120 \times 10^{-6}$, respectively. If internal return to the starting tosylates is neglected, as it must be under the present circumstances, these exo-sulfonate esters are seen to exhbibit substantial kinetic enhancement to ionization (170 and 440) relative to the endo-saturated and cyclopropanated derivatives.

The behavior of $\mathbf{3 b}$ in buffered acetic acid is such that internal return with skeletal rearrangement was again prominent, as reflected in the isolation of $19 \mathrm{~b}(45 \%)$ at $25.9^{\circ} \mathrm{C}$. But this tosylate is also the most reactive of the entire series and the true magnitude of $k_{\text {ion }}$ was more difficult to establish conclusively in this instance. Notwithstanding, it is clear that acetolysis of the exo isomers is greatly accelerated by neigh-boring-group participation, or the endo isomers are unexpectedly slow. The former explanation seems the more reasonable to us, and the ensuing discussion makes clearer our reasons for this choice.

Observations made in earlier work ${ }^{1}$ sliggest that should $\mathbf{3 b}$ or $5 \mathbf{b}$ experience simple $\mathrm{S}_{\mathrm{N}} 1$ ionization to cation 21 , there can

be expected to follow a rapid energy-releasing cascade to the substantially less strained endo-dicyclcpentadienyl framework 22 and eventual nucleophilic capture of the latter to give 18. Convincing evidence that the endo substitution plan in $\mathbf{5 b}$ is conducive to transient generation of 21 , as expected, is found in its isomerization to $\mathbf{1 8 b}$. Although the very reactive $\mathbf{3 b}$ experiences partial conversion to $\mathbf{1 8 b}$ as well. there is also formed significant amounts of $19 \mathrm{a}(5 \%)$ and $19 \mathrm{~b}(45 \%)$ at $25.9^{\circ} \mathrm{C}$. Consequently, the customarily overwhelming capability of the proximate double bond in $\mathbf{3 b}$ to enter into transannular bonding ${ }^{1}$ has been overridden by an alternative electronic realignment involving apparent 1,2 -shiït of a lateral edge bond. The competitive isomerization to 23 is considered to be



24


25


26
the combined result of an ideal antiplanar stereoelectronic arrangement and the effectiveness with which the electronrich lateral cyclobutane bond can dissipate positive charge. It is particularly remarkable that the proximate double bond in $\mathbf{3 b}$ does not find it possible to control the ionization in its entirety since one $\mathrm{p} \pi$ orbital is tightly compressed to the anterior of the departing group. However, the isolation of 19a and 19 b argues against such domination and provides indication that electronic factors within this hypostrophene derivative differ from that customarily found in such unsaturated molecules as the anti-7-norbornenyl (24), ${ }^{11} 7$-norbornadienyl (25), ${ }^{12}$ and octahydrodimethanonaphthyl brosylates $(26)^{13}$ where through-space interaction is fully operative.

One may now question why the lateral $\sigma$ bond in $\mathbf{3 b}$ does not enter into electronic reorganization as illustrated in 27 to provide access to the assumedly more thermodynamically stable allylic cation 28 (Scheme III). The reader will undoubtedly be aware of the fact that demonstration of a rate enhancement in solvolysis is good evidence for participation in the transition state, but tells nothing about the structure of the intermediate cation formed. In the present instance, the available data does allow for the possibility that $\mathbf{3 b}$ ionizes with total $\sigma$ anchimeric assistance to produce the nonclassical or rapidly equilibrating ion $\mathbf{2 9}$ much in the manner characteristic of 2 -norbornyl and related systems. Although bot-tom-side nucleophilic capture of 29 will lead to 19 , it is not inconceivable that allylic cation 28 can be formed from 29 after the rate determining step and experience subsequent electronic reorganization via 30 and 22 to give products of type 18 (Scheme III). Unfortunately, no labeling scheme will distinguish whether 18 arises from 21 or 29 . The results make it clear, however, that if 29 is the exclusive intermediate of kinetic control its partitioning between direct conversion to 19 and further rearrangement in the $28 \rightarrow \mathbf{3 0} \rightarrow \mathbf{2 2} \rightarrow 18$ manifold is approximately equal.

With the exception of $2 \%$ inversion of configuration in $8 \mathbf{b}$, the epimeric saturated tosylates $\mathbf{6 b}$ and 8 b are converted to the same product ( $\mathbf{1 6 b}$ ), although at widely differing rates. The formation of 16 further reveals the proclivity of hypo-
Scheme III


27

strophene derivatives for 1,2-migration of an edge cyclobutane bond. If, on the one hand, the position is taken that exo derivative $\mathbf{6 b}$ undergoes acetolysis with anchimeric assistance and conversion to 31, the rate difference can be attributed in large part to $\sigma$-electron delocalization. Alternatively, if it is accepted that the behavior of $\mathbf{6 b}$ is normal and characterized by initial conversion to 33 , the slower rate of ionization ex-

hibited by $\mathbf{8 b}$ must be attributed to steric inhibition of ionization. This analysis would require $\mathbf{6 b}$ to differ phenomenologically from its unsaturated and cyclopropanated analogues (vide infra), a seemingly unwarranted distinction. More importantly, steric factors cannot be chiefly responsible for the slow rate of ionization of $\mathbf{8 b}$. Molecular models reveal that the pair of endo transannular hydrogens present in $\mathbf{8 b}$ and $\mathbf{1 5 b}$ and the attendant congestion in the inner sphere of the hypostrophene framework are not greatly different from that found in the endo unsaturated derivative $\mathbf{5 b}$, due principally to a reduction in conformational flexibility in the latter. Yet, the individual rates exhibited by this trio of endo-tosylates differ by only 33 -fold, despite the presence of a $\pi$ bond and cyclopropane ring in close proximity to the ionizing centers in $\mathbf{5 b}$ and 15 b and the well-established capabilities of such groups to inhibit through induction the generation of nearby positive charge. ${ }^{14}$ Consideration of the following ratios of acetolysis rate constants ( $k_{\mathbf{3 b}} / k_{\mathbf{6 b}}=40 ; k_{\mathbf{3 b}} / k_{10 \mathbf{b}}=25 ; k_{\mathbf{5 b}} / k_{8 \mathbf{b}}$ $=20 ; k_{5 \mathrm{~b}} / k_{15 \mathbf{b}}=33 ; k_{8 \mathrm{~b}} / k_{15 \mathrm{~b}}=1.7 ; k_{6 \mathrm{~b}} / k_{10 \mathrm{~b}}=0.6$ ) reveals that both the exo-unsaturated and endo-unsaturated tosylates experience ionization some 20-40 times more rapidly than their saturated or cyclopropanated councerparts. In contrast, comparison of the saturated and cyclopropanated compounds lacking unsaturation generates ratios close to unity. Internal return aside, it therefore appears that the cations derived from $\mathbf{3 b}$ and $\mathbf{5 b}$ are stabilized. For the endo example, we attribute this to through-bond stabilization of classical cation 21. The behavior of the exo system is adequately understood in terms of 29 .
With the exo-cyclopropyl derivative 10b, efficient conversion to 20 a was noted. This behavior necessarily implicates 34 (or its rapidly equilibrating equivalent) since endo isomer $\mathbf{1 5 b}$ gives a rather different product profile. The formation of several unsaturated acetates, for example, appears to be related to lateral bond cleavage within classical cation 35 to deliver 36 and/or 37 (this point remains to be unequivocally established'. Evidently, the anchimeric assistance in 34 succeeds in repressing this rearrangement with its attendant greater release of strain energy.

34

~
37

The incursion of extensive $\sigma$-bond participation during ionization of the exo-hypostrophenyl derivatives affords the simplest explanation for both the high reactivities and stereospecific rearrangements described above. Rate-determining involvement of a lateral cyclobutane bond is appropriately in accord with highly effective through-bond coupling known to prevail in this ring system ${ }^{4,16}$ and with partial strain relief. Before generalizations can be drawn concerning the extent to which through-bond interaction can be effective in the stabilization of cationic centers, there is a need to consider a variety of other structural types whose electronic structures are reasonably well characterized. The ensuing paper ${ }^{17}$ constitutes a step in this direction.

## Experimental Section

Melting points are uncorrected. Proton magnetic resonance spectra were obtained on Varian T-60, A-60A, and HA-100 spectrometers; apparent splittings are given in all cases. Infrared spectra were obtained with Perkin-Elmer Model 137 and 467 spectrometers, while mass spectra were measured with an AEI-MS9 spectrometer at an ionization potential $o^{2}: 70 \mathrm{eV}$. Elemental analyses were performed by the Scandinavian Microanalytical Laboratory, Herlev, Denmark.
exo-Tetracyclo[5.3.0.0 $0^{2,6} \cdot 0^{3,10}$ ]dec-4-en-8-ol Tosylate (3b). General Procedure for Tosylate Formation. A mixture of the al cohol ( 3.4 mmol ) and $p$-toluenesulfonyl chloride ( $0.7 \mathrm{~g}, 3.6 \mathrm{mmol}$ ) in 7 mL of dry pyridine was stored in a refrigerator for 24 (exo derivatives) or 72 h (endo derivatives). Ice water ( 50 mL ) was added and after 10 min (certain of the tosylates crystallized within this time) the product was extracted into ether ( $3 \times 50 \mathrm{~mL}$ ). The combined organic layers were washed with cold $10 \%$ hydrochloric acid ( $3 \times 75 \mathrm{~mL}$ ), saturated sodium bicarbonate solution, and brine prior to drying and solvent evaporation at $0^{\circ} \mathrm{C}$. The residue (oil or crystals) was dissolved in a minimum amount of hexane and stirred with charcoal for 30 min at $20^{\circ} \mathrm{C}$. After filtration and cooling to $0^{\circ} \mathrm{C}$, the tosylates were obtained crystalline and recrystallized to purity from hexane. In the case of 3 b , the white crystalline solid melted at $54-55^{\circ} \mathrm{C}$ with decomposition. The individual ${ }^{1} \mathrm{H}$ NMR spectra showed all tosylates to be unrearranged relative to their alcohol precursors.
endo-Tetracyclo[5.3.0.0 $0^{2,6} .0^{3,10}$ ]dec-4-en-8-ol (5a). Dry chromium trioxide ( $600 \mathrm{mg}, 6 \mathrm{mmol}$ ) was added to a magnetically stirred solution containing 949 mg ( 12 mmol ) of anhydrous pyridine in 15 mL of freshly distilled methylene chloride. The flask was capped with a Drierite drying tube and the deep burgundy solution was stirred at room temperature for 15 min . A solution of $149 \mathrm{mg}(1 \mathrm{mmol})$ of 3 a in a few milliliters of dry methylene chloride was added in one portion and a tarry black residue immediately formed. After 30 min , the solution was decanted into 10 mL of $5 \%$ sodium hydroxide solution and the residue was rins $\epsilon$ d with ether. The combined organic layers were washed with two $10-\mathrm{mL}$ portions of $5 \%$ sodium hydroxide solution, two $10-\mathrm{mL}$ portions of $5 \%$ aqueous hydrochloric acid, 10 mL of saturated sodium bicarbonate. and 10 mL of brine. Drying of the solution, followed by filtration and evaporation of solvent, left $144 \mathrm{mg}(97 \%)$ of ketone 4 as a pale yellow oil: IR $\nu_{\text {max }}$ (neat) $1730,1392,1343,1259$, $1075,878,803$, and $7.39 \mathrm{~cm}^{-1} ; m / e$ calcd 146.0732, found 146.0734.

The ketone was directly dissolved in 10 mL of anhydrous ether and treated with 38 mg ( 1 mmol ) of lithium aluminum hydride followed by gentle refluxing ander nitrogen for 1 h . The usual workup ${ }^{1}$ provided 160 mg of white crystals which were purified by sublimation [45 ${ }^{\circ} \mathrm{C}$ ( 0.03 mm 门] to give $77 \mathrm{mg}(51 \%)$ of pure 5 a : $\mathrm{IR} \nu_{\max }(\mathrm{KBr}) 3370$, $1345,1260,1110,1054,1010,815,790,755$, and $733 \mathrm{~cm}^{-1}$; NMR $\delta_{\mathrm{Me}} \mathrm{Si}^{\mathrm{S}}$ $\left(\mathrm{CDCl}_{3}\right) 6.65$ (dd, 1), 6.23 (dd, 1), 4.34 (m, 1), 3.60-2.80 (br m, 6), 2.52-2.00 (br m, 1), 2.02 (br s, 1), and 1.56 (dd, 1); m/e calcd 148.0888, found 148.0891 .

The 3,5-dinitrobenzoate was prepared by the customary procedure and isolated as off-white crystals, $\mathrm{mp} 155-156^{\circ} \mathrm{C}$ (from ether), in quantitative yield

Anal. Calcd for $\mathrm{C}_{: 7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}$ : C, 59.65; H, 4.12; N, 8.18 Found: C, 59.68: H, 4.33; N, 8.12.

Tosylate 5b was isolated as a colorless crystalline solid, mp 77-77.5 ${ }^{\circ} \mathrm{C}$.
exo-Tetracyclo[5.3.0.0 ${ }^{2.6} \cdot 0^{3.10}$ ]decan-4-ol (6a). A solution of 3a $(1.40 \mathrm{~g})$ in 75 mL of purified hexane containing 100 mg of $5 \%$ palladium on charcoal was hydrogenated at atmospheric pressure (vigorous magnetic stirring) for 40 min . The catalyst was removed by filtration, the solvent was evaporated, and the residue was directly sublimed [55 ${ }^{\circ} \mathrm{C}(10 \mathrm{~mm})$ ] to give $1.25 \mathrm{~g}(89 \%)$ of $\mathbf{6 a}$ as a waxy colorless solid; NMR
$\left.\delta_{\mathrm{Mes}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 4.50(\mathrm{dd}, 1), 3.29-2.68 \mathrm{lbr} \mathrm{m}, 6\right), 2.47$ (dd, 1), and 2.00-1.20 (br m, 6); m/e calcd 150.1045, found 150.1047.

The 3,5-dinitrobenzoate was obtained in quantitative yield as off-white crystals, $\mathrm{mp} 135.5-136{ }^{\circ} \mathrm{C}$ (from ether).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$ : $\mathrm{C}, 59.30: \mathrm{H}, 4.68 ; \mathrm{N}, 8.14$. Found: C , 59.11; H, 4.80; N, 7.98 .

Tosylate 6b was isolated as a colorless crystalline solid, mp 72.5-73 ${ }^{\circ} \mathrm{C}$.
endo-Tetracyclo[5.3.0.0 ${ }^{2,6} \cdot 0^{3,10}$ ]decan-4-ol (8a). A. Diimide Reduction of 5 a . A solution of $5 \mathrm{a}(1.8 \mathrm{~g}, 12.2 \mathrm{mmol})$ in 150 mL of methanol containing 23.6 g ( 122 mmol ) of potassium azodicarboxylate was cooled to $0^{\circ} \mathrm{C}$ and treated dropwise with 20.6 ml of acetic acid during 1 h . Stirring was maintained at $0^{\circ} \mathrm{C}$ until the yellow color faded. Then 100 mL of water was added, most of the metianol was evaporated, to give $1.7 \mathrm{~g}(94 \%)$ of 8 a : $\mathrm{IR} \mathrm{r}^{\prime} \mathbf{m a x}(\mathrm{KBr}) 3320,1110,1062$, $1020,927,908$, and $890 \mathrm{~cm}^{-1}$; NMR $\varepsilon_{M_{\text {es }} S_{i}}\left(\mathrm{CDCl}_{3}\right) 4.3 \hat{2}(\mathrm{~m}, 1)$, 3.20-2.48 (br m, 7), and 2.28-1.48 (br m, 6); m/e calcd 150.1045, found, 150.1047.

The 3,5-dinitrobenzoate was obtained as off-white plates, mp 148-149 ${ }^{\circ} \mathrm{C}$ (from ether).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$ : $\mathrm{C}, 59.30 ; \mathrm{H}, 4.68 ; \mathrm{N}, 8.14$. Found: C, 59.17; H, 4.79; N. 8.27.

The tosylate $\mathbf{8 b}$ was obtained as a colorless crystalline solid, mp $44.5-45^{\circ} \mathrm{C}$.
B. Oxidation-Reduction of $\mathbf{6 a}$. An $800-\mathrm{mg}(5.3 \mathrm{mmol})$ sample of 6a was oxidized with $3.2 \mathrm{~g}(32 \mathrm{mmol})$ of anhydrous chromium trioxide and 4.96 g of pyridine in 80 mL of methylene chloride as described above. The resulting ketone $(0.71 \mathrm{~g})$ was reduced with 0.18 g of lithium aluminum hydride in 15 mL of anhydrous ether and the semicrystalline product was sublimed to give 420 mg of a waxy colorless solid, the spectral features of which proved identical with those of 8a as detailed above.
exo-Pentacyclo[5.4.0.0 $0^{2,6} .0^{3.11} .0^{8,10}$ ]undecan-4-ol (10a). A solution of 100 mg of $9^{1}$ in 10 mL of anhydrous tetrahydrofuran was cooled to $0{ }^{\circ} \mathrm{C}$ under nitrogen and excess 9 -borabicyclononane in tetrahydrofuran solution ( 10 mL of 0.5 M was added dropwise during 30 min . Oxidative hydrolvsis of this reaction mixture as before ${ }^{1}$ gave 10 a in $60 \%$ yield. The alcohol was purified by preparative VPC on a $30 \%$ SE- 30 column at $105^{\circ} \mathrm{C}$ : IR $\nu_{\text {max }}$ (neat) $3380,1055,1009$, and 900 $\mathrm{cm}^{-1} ; \mathrm{NMR}^{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 4.69$ (dd. 1), 3.24-2.36 (br m. 7), 1.72-1.20 (br m, 4), $0.30(\mathrm{dt}, 1)$, and $-0.25(\mathrm{dt}, 1)$.

The 3,5-dinitrobenzoate was obtained as off-white clusters, mp $148-149{ }^{\circ} \mathrm{C}$ (from ether).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$ : C, 60.67: H. 4.53; N. 7.86. Found: C, 60.43; H, 4.64; N, 7.79.

Tosylate 10 b was isolated as colorless crystals, $\mathrm{mp} 90-92^{\circ} \mathrm{C}$.
9,9-Dichloro-exo-pentacyclo[5.4.0.0 $0^{2,6} \cdot 0^{3,11} .0^{8.10}$ ]undecan-4-yl Acetate (12). A solution of $3 \mathrm{a}(0.50 \mathrm{~g}$ ) and acetic anhydride 10.65 mL ) in 6 mL of pyridine wes stirred at room temperature in a stoppered flask for 24 h , poured onto ice, and extracted with pentane ( $3 \times 25$ mL ). The combined organic layers were washed with cold dilute hydrochloric acid, saturated sodium bicarbonate solution, and brine prior to drying. Removal of solvent left 0.6 g of 11 whose key ${ }^{1} \mathrm{H}$ NMR signals were seen $[\delta 6.25(\mathrm{~m}, 2), 4.96$ (dd, $J=7$ and $2 \mathrm{~Hz}, 1)$, and 1.96 ( $\mathrm{s}, 3$ )] in $\mathrm{CDCl}_{3}$ solution.

To a solution of $11(0.6 \mathrm{~g})$ in chloroform was added 50 mg of benzyltriethylammonium bromide and 1.5 mL of $50 \%$ sodium hydroxide and the mixture was stirred at room temperature for 60 h . Dilution with water was followed by extraction with chloroform ( $3 \times 15 \mathrm{~mL}$ ). The combined organic layers were washed with hrine, dried, and evaporated to give 750 mg ( $81.5 \%$ overall) of $12: \mathrm{mp} \mathrm{98-99}{ }^{\circ} \mathrm{C}$ (from cyclohexane); NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 5.50$ (dd, 1), 3.45-2.5 (br m, 6), 2.4-2.02 (m, 2), $1.92(\mathrm{~s}, 3)$, and 1.84-1.4 (m, 2).

This material was used directly without purification.
9,9-Dichloro-exo-pentacyclo[5.4.0.0 $\left.{ }^{2.6} \cdot 0^{3.11} \cdot 0^{8,10}\right]$ undecan-4-ol (13). To a stirred suspension of lithium aluminum hydride 120 mg ) in 10 mL of anhydrous ether was added dropwise a solution of 12 ( 700 mg ) in 10 mL of the same solvent. Stirring was maintained at room temperature for 1 h before sequential introduction of water ( C .12 mL ), $15 \%$ sodium hydroxide solution $(0.12 \mathrm{~mL})$. and water $(0.36 \mathrm{~mL})$. The precipitated solids were filtered and rirsed well with ether. The combined filtrates were washed twice with brine, dried, and evaporated. There was isolated $560 \mathrm{mg}(94 \%)$ of $13 ; \mathrm{NMR} \delta_{\mathrm{Me}_{4} \mathrm{Si}\left(\mathrm{CDCl}_{3}\right)}$ ) 4.65 (dd, 1), 3.12-2.4 (br m, 6), 2.16-1.95 (m, 2), 1.85 (br s. 1), and 1.78-1.35 (m, 4).

This material was likewise utilized without further purification.
Reductive Dehalogenation of 13. To a solution of sodium metal $(0.45 \mathrm{~g})$ in 40 mL of liquid ammonia cooled to $-75^{\circ} \mathrm{C}$ under nitrogen was added 0.60 g of 13 dissolved in 5 mL of ether. Stirring was maintained for 30 min at this temperature beere addition of solid am-
monium chloride to discharge the blue color. The ammonia was allowed to evaporate, the residue was partitioned between water and ether, and the aqueous phase was twice reextracted with ether. The combined organic layers were dried and evaporated to afford 0.30 g ( $\mathbf{7 4 \%}$ ) of alcohol 10 a , which proved identical with the material prepared earlier.
endo-Pentacyclo [5.4.0.0 $0^{2.6} \cdot 0^{3.11} .0^{8.10}$ ] undecan-4-ol (15a). Alcohol 10a ( 322 mg ) was oxidized with chromium trioxide-pyridine in the predescribed manner to give 78 mg of ketone 14 ; IR $1^{\prime}$ max (neat) $1730 \mathrm{~cm}^{-1}$. Its direct reduction with sodiam borohydride ( 100 mg ) was carried out in 3 mL of absolute methanol at $0^{\circ} \mathrm{C}$ for 10 min . After stirring at room temperature for 1 h , the mxture was processed in the customary fashion to give 57 mg of oil which crystallized on standing. Preparative gas chromatography on a $6 \mathrm{ft} 5 \%$ SE- 30 column at $110^{\circ} \mathrm{C}$ gave $31 \mathrm{mg}(39 \%)$ of $15 a$ as colorless crystals; IR $\nu_{\text {max }}$ (neat) 3340,1447 , $1347,1330,1312,1298,1110,1062,1035,1010,910.827$. and $804 \mathrm{~cm}^{-1}$ : NMR $\delta_{\mathrm{Mes} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 4.40(\mathrm{~m}, 1) .2 .90(\mathrm{~m}, ~ \mathfrak{~}), 2.52(\mathrm{~m} .2) .2 .20(\mathrm{~m} .1)$. $1.81(\mathrm{~m}, 1), 1.29(\mathrm{~m}, 1), 0.42(\mathrm{dt}, 1)$, and $-0.18(\mathrm{dt}, 1)$.

The dinitrobenzoate was prepared in the usual manner and obtained in $93 \%$ yield as off-white blades, mp $184.5-185.5^{\circ} \mathrm{C}$ (from ether).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$ : $\mathrm{C}, 60.67 ; \mathrm{H}, 4.53 ; \mathrm{N}, 7.86$. Found: C, 60.46; H, 4.50; N, 7.85 .

Tosylate 15b did not crystallize and was utilized in the form of a colorless viscous oil.

Kinetic Measurements for endo-Tosylates. In the case of 5b, 8 b , and 15 b , the usual ampule technique was used. Approximately 40 mg of tosylate was dissolved in 10 mL of buffered acetic acid $(0.03$ M in NaOAc ) and transferred in $1.25-\mathrm{mL}$ portions into eight ampules. These were sealed and placed simultaneously into a constant temperature bath. After 15 min , the first ampule was removed and inserted immediately into an ice bath. After 2 min , the ampule was transferred to a room temperature water bath where it was maintained for 3 min . Exactly 1.0 mL of this solution was titrated with 0.0075 M perchloric acid in acetic acid to give $V_{0} ; V_{\infty}$ was taken after 10 halflives. Additional ampules were removed at appropriate time intervals and handled comparably. The rate constants were obtained by least-squares analysis of $\ln \left(V_{\infty}-V_{0} / V_{\infty}-V\right)$ vs. time with the aid of a Wang computer program.

Kinetic Measurements for exo-Tosylates. The method described by Wiberg ${ }^{8}$ was utilized to obtain the solvolysis rates of $\mathbf{6 b}$ and 10 b . The tosylate ( $\sim 200 \mathrm{mg}$ ) was dissolved in 1 mL of dry carbon tetrachloride. Independently, increasing amounts of accurately weighed anhydrous sodium acetate were placed into ten test tubes. The final volume in each was adjusted to 8 mL through addition of anhydrous acetic acid. After 2 drops of a $1 \%$ bromophenol blue solution in acetic acid was introduced to each tube, they were stoppered and placed in a constant temperature bath for 15 min . Then a $0.095-\mathrm{mL}$ portion of the tosylate solution was added to the first test tube via syringe and the time for complete indicator change was noted (zero time was taken subsequent to addition). The process was repeated for each test tube, covering a range of $5 \%$ reaction. The rate constants were then obtained from a least-squares analysis of $\ln$ $[\mathrm{ROTs}]_{0} /[\mathrm{ROT}]_{\ell}$ vs. $t$.

The following modification was employed for $3 \mathbf{b}$. Approximately 20 mg of the tosylate was weighed into a vial and 0.1 mL of carbon tetrachloride was added. The vial was placed in a constant temperature together with a second vial containing 8 mL of acetic acid and 2 drops of $1 \%$ bromophenol blue in acetic acid. After 15 min , the acetic acid was rapidly transferred to the tosylate solution. A timer was started, 0.100 mL of a standard $\mathrm{NaOAc} / \mathrm{HOAc}$ solution (viz., 0.9812 $\times 10^{-3} \mathrm{mmol}$ of NaOAc ) was added and the time necessary for complete decolorization was noted. A second 0.100 mL of the NaOAc solution was added and the procecure was repeated. This cycle was extended to cover $20 \%$ of reaction and data analysis was achieved as above.

Acetolysis of $8 \mathbf{b}$. A solution containing 0.40 g of $8 \mathbf{b}$ ard 0.10 g of sodium carbonate in 10 mL of glacial acetic acid was heated at $71^{\circ} \mathrm{C}$ for 40 h . After cooling, neutralization was effected with saturated sodium bicarbonate solution. The products were extractec into ether $(3 \times 50 \mathrm{~mL})$ and the combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}$ solution and brine before drying and evaporation. Analysis of the residue ( 0.20 g ) on a $6 \mathrm{ft} \times 0.25 \mathrm{in} .10 \%$ SE- 30 column $\left(150^{\circ} \mathrm{C}\right.$ ) showed the oil to consist of 16 b ( $98 \%$ ) and 6 c ( $2 \%$ ). Preparative scale isolation gave the pure components.

For 16b: NMR $\delta_{\mathrm{Mes}_{\mathrm{Si}}}\left(\mathrm{CDCl}_{3}\right) 4.82$ (br s, 1), 2.8-2.05 (br m, 5), 2.00 ( $\mathrm{s}, 3$ ), and 1.9-1.2 (m, 7 ); m/e calcd 192.1154, found 192.1150 .

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ : C, 74.96; H, 8.39. Found: C. $74.95 ; \mathrm{H}$, 8.48.

For 6c: NMR ines $\mathrm{Si}_{\mathrm{i}}\left(\mathrm{CDCl}_{3}\right) 4.83(\mathrm{~m}, 1), 3.0-2.05(\mathrm{br} \mathrm{m}, 8), 2.00(\mathrm{~s}$,
$3)$, and 1.95-1.4 (m, 4). This oil proved identical with that obtained from direct acetylation of $\mathbf{6 a}$.

Acetolysis of $\mathbf{6 b}$. A solution of $\mathbf{6 b}(0.10 \mathrm{~g})$ in 6 mL of glacial acetic acid was kept at $71^{\circ} \mathrm{C}$ for 25 min . The solvent was removed at $25^{\circ} \mathrm{C}$ and 0.1 mm to leave a dark residue ( 0.085 g ) which was dissolved in warm hexane, filtered to remove $p$-toluenes alfonic acid, and cooled to $-20^{\circ} \mathrm{C}$. The precipitated solid was recrystallized twice more from hexane to give 0.04 g of pure 16 c : $\mathrm{mp} 80-80.5^{\circ} \mathrm{C}$; NMR $\delta_{\mathrm{Me}} \mathrm{Sif}^{( }\left(\mathrm{CDCl}_{3}\right)$ $7.78(\mathrm{~d}, J=5 \mathrm{~Hz}, 2), 7.31(\mathrm{~d}, J=5 \mathrm{~Hz}, 2), 4.59(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1)$, 2.75-2.5 (m, 2), $2.45(\mathrm{~s}, 3), 2.38(\mathrm{br} \mathrm{m}, 3)$, and $1.8-1.4$ (m, 7); m/e calcd 304.1133, found 304.1139.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 67.07$; $\mathrm{H}, 6.62$. Found: $\mathrm{C}, 67.16 ; \mathrm{H}$, 6.68.

In a second experiment, a mixture of $\mathbf{6 b}(0.10 \mathrm{~g})$, anhydrous sodium carbonate ( 0.05 g ), and glacial acetic acid was maintained at $71^{\circ} \mathrm{C}$ for 96 h . After the usual workup, there was isolated 0.06 g of 16 b as the only product.

Sequential Reduction-Oxidation of 16b. A solution of 16 b (0.14 g) in 5 mL of anhydrous ether was added dropwise to a stirred slurry of lithiurs aluminum hydride $(0.055 \mathrm{~g})$ in the same solvent ( 10 mL ). After 2 h at room temperature, there followed the usual workup and isolation of 0.08 g of 16 a . The ${ }^{1} \mathrm{H}$ NMR spectrum of this alcohol was extensively decoupled prior and subsequent to incremental amounts of $\mathrm{Eu}(\mathrm{fod})_{3}$.

Alcohol $16 \mathrm{a}(0.03 \mathrm{~g})$ was added to a solution of chromium trioxide $(0.12 \mathrm{~g})$ and pyridine $(0.19 \mathrm{~mL})$ in 4 mL of methylene chloride and stirred at room temperature for 30 min . The solution was decanted, the residue was rinsed twice with ether, and the combined organic phases were washed with $5 \%$ sodium hydrox:de solution $(3 \times 20 \mathrm{~mL})$, $5 \%$ hydrochloric acid ( $3 \times 20 \mathrm{~mL}$ ), and brine Drying and evaporation afforded 0.025 g of 17: IR $\nu_{\max }$ (Nujol) 1780 and $1765 \mathrm{~cm}^{-1}$.

Acetolysis of 5 b . A mixture comprised of $5 \mathrm{~b}(0.40 \mathrm{~g})$, anhydrous sodium carbonate ( 0.20 g ), and glacial acetic acid $(10 \mathrm{~mL})$ was kept at $36^{\circ} \mathrm{C}$ for 96 h . After the usual workup, 0.2 .3 g of an oil was obtained, VPC analysis of which indicated it to consist of $18 \mathrm{~b}(70 \%)$ and polymeric material ( $30 \%$ ). For 18 b : NMR ${ }_{\mathrm{o}}^{\mathrm{Me}} 4 \mathrm{Si}\left(\mathrm{CDCl}_{3}\right) 6.1-5.8(\mathrm{~m}, 2)$, $5.6-5.45 \mathrm{~m}, 2), 4.96(\mathrm{~m}, 1), 3.4-2.5(\mathrm{~m}, 5), 2.17(\mathrm{~s}, 3)$, and $1.7-1.2(\mathrm{~m}$, 1).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ : $\mathrm{C}, 75.76 ; \mathrm{H}, 7.42$. Found: $\mathrm{C}, 75.70 ; \mathrm{H}$, 7.36.

Acetolysis of $\mathbf{3 b}$. A solution comprised of $\mathbf{3 b}(0.20 \mathrm{~g})$, anhydrous sodium carbonate $(0.06 \mathrm{~g})$, and glacial acetic acid $(10 \mathrm{~mL})$ was kept at $25.9^{\circ} \mathrm{C}$ for 1.5 h . After neutralization with sodium bicarbonate solution, the products were extracted into ether $(3 \times 40 \mathrm{~mL})$. The combined organic layers were processed in the usual manner to leave a mixture of $18 \mathrm{~b}(50 \%)$, $19 \mathrm{a}(5 \%)$, and $19 \mathrm{~b}(\leq 5 \%)$ (combined ${ }^{1} \mathrm{H}$ NMR and VPC analysis). The volatile acetates were removed under vacuum $\left[25{ }^{\circ} \mathrm{C}(\mathrm{C} .1 \mathrm{~mm})\right]$ overnight.

One half of the residue ( 0.06 g ) consisting of 19 b was hydrogenated over $10 \%$ palladium on charcoal in hexane during 3 h . Filtration and evaporation of solvent left 0.025 g of crystalline 16 c .

The other half of the residue was dissolved in 5 mL of acetic acid containing 0.03 g of sodium carbonate and heated at $70^{\circ} \mathrm{C}$ for 41 h . After the usual workup, 0.035 g of an oil was obtained whose only volatile component was 19 a ; $\mathrm{NMR} \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.11$ (dd, 1$), 5.76$ (dd, 1), 4.83 (br s, 1), 2.95-2.80 (m, 4), 2.7-2.0 (br m, 1), 2.02 (s, 3), and 1.95-1.3 (m, 2).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ : C, 75.76; $\mathrm{H}, 7.42$. Found: $\mathrm{C}, 75.68 ; \mathrm{H}$, 7.69 .

Acetolysis of 10 b . Subsequent to heating 0.2 g of $10 \mathrm{~b}, 0.1 \mathrm{~g}$ of sodium ca:bonate, and 7 mL of acetic acid at $71^{\circ} \mathrm{C}$ for 72 h and processing the reaction mixture in the usual manner, there was isolated 0.1 g of 20a: NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 4.73$ (br s, 11, 2.7-1.95 (m, 8), 2.00 (s. 3), 1.90-0.85 (m, 4), and 0.35 to -0.14 (m, 2); m/e calcd 134.1095, found 134.1097.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ : C, 74.19; $\mathrm{H}, 9.34$. Found: $\mathrm{C}, 73.94$; H , 9.18.

In a second exper:ment, a $0.05-\mathrm{g}$ sample of 10 b was dissolved in 5 mL of acetic acid and kept at $71^{\circ} \mathrm{C}$ for 30 min . After cooling and evaporation of solvent at $20^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$, there was obtained 0.035 g of a dark oil which was dissolved in warm hexane and filtered to remove $p$-toluenesulfonic acid. On cooling at $-20^{\circ} \mathrm{C}$, there was precipitated 0.03 g of 20 b : mp $76.5-77{ }^{\circ} \mathrm{C}$ (from hexane); NMR $\delta_{\mathrm{Me}} \mathrm{Si}$ $\left(\mathrm{CDCl}_{3}\right) 8.1(\mathrm{~d}, 2), 7.5(\mathrm{~d}, 2), 4.50(\mathrm{~s}, 1), 2.65-1.5(\mathrm{~m}, 6), 2.46(\mathrm{~s}, 3)$, $1.3-0.90(\mathrm{~m}, 4)$, and 0.3 to $-0.15(\mathrm{~m}, 2)$; m/e calcd 316.1133 , found 316.1137.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 68.32 ; \mathrm{H}, 6.37$. Found $\mathrm{C}, 68.04 ; \mathrm{H}$, 6.45 .

Acetolysis of 15 b . A solution of $15 \mathrm{~b}(0.25 \mathrm{~g})$ and anhydrous sodium carbonate ( 0.1 g ) in acetic acid ( 8 mL ) was heated at $71^{\circ} \mathrm{C}$ for 30 h . After the usual workup, 0.15 g of an oil was isolated which contained five components in the ratio of 8:40:27:20:5 ( $6 \mathrm{ft} \times 0.25 \mathrm{in} .10 \% \mathrm{SE}-30$, $160^{\circ} \mathrm{C}$ ). The individual components were isolated anc the most rapidly eluted acetate was shown to be 10 c by spectral comparison. The major constituent was 20a. The more slowly eluted trio of acetates were unsaturated compounds, the structures of which remain to be ascertained.

Acknowledgment. The authors acknowledge with gratitude the financial support of the National Science Foundation and the early syntretic achievements of Dr. D. R. James which led to this investigation.

Registry No.-3a, 65071-67-2; 4, 65071-90-1; 5a, 65137-13-5; 5b 3,5-DNP derivative, 65137-14-6; 6a, 65071-91-2; 6b 3,5-DNP derivative, 65071-92-3; 6c, 65071-86-5; 8a, 65137-15-7; 8b 3,5-DNP derivative, 65137-16-8; 9, 65071-71-8; 10a, 65071-74-1; 10b 3,5-DNP derivative, 65071-75-2; 11, 65085-84-9; 12, 65071-76-3; 13, 55071-77-4; 14, 65071-78-5; 15a, 65137-08-8; 15b 3,5-DNP derivative, 65137-09-9; 16a, 65071-79-6; 16b, 65071-80-9; 16c, 65071-81-0; 17, 65071-82-1; 18b, 65071-83-2; 19a, 65371-84-3; 19b, 65071-85-4; 20a, 6510¿-59-2; 20b, 65102-60-5; p-toluenesulfonyl chloride, 98-59-9.

## References and Notes

(1) Part 1. L. A. Paquette, D. R. James, and G. Klein, J. Org. Chem., preceding paper in this issue.
(2) J. S. McKennis, L. Brener, J. S. Ward, and R. Pettit, J. Am. Chem. Soc., 93, 4957 (1971).
(3) L. A. Paquette, R. F. Davis, and D. R. James, Tetrahedron Lett., 1615 (1974).
(4) W. Schmidt and B. T. Wilkins, Tetrahedron, 28, 5469 (1972).
(5) G. Klein and L. A. Paquette, Tetrahedron Lett., 2419 (1976).
(6) P. v. R. Schleyer and R. C. Nicholas, J. Am. Chem. Soc., 83, 182 (1961); P. v. R. Schleyer, ibid., 86, 1854 (1964); C. S. Foote. ibid., 86, 1853 (1964).
(7) R. Hoffmann, P. D. Mollère, and E. Heilbronner, J. Am. Chem. Soc., 95, 4860 (1973)
(8) K. B. Wibert and B. A. Hess. Jr.. J. Am. Chem. Soc., 89, 3015 (1967).
(9) P. G. Pape, M. S. Thesis, The Ohio State University, 1962, p 36.
(10) (a) R. B. Woodward and T. J. Katz, Tetrahedron, 5, 70 (1959); (b) L. A. Paquette and J. S. Ward, J. Org. Chem., 37, 3569 (1972).
(11) S. Winstein and M. Shatavsky, J. Am. Chem. Soc., 78, 592 (1956); S. Winstein, A. K. Lewin, and K. C. Pande, ibid., 85, 2324 (1963); H. Tanida and T. Tsushima, ibid., 92, 3397 (1970).
(12) S. Winstein and C. Ordronneau, J. Am. Chem. Soc., 82, 2084 (1960); P. R. Story and M. Saunders, ibid., 84, 4876 (1962).
(13) S. Winstein and R. L. Hansen, Tetrahedron Lett., No. 25, 4 (1960)
(14) J. C. Martin and 3. R. Ree, J. Am. Chem. Soc., 92, 1660 (1970); V. Buss, R. Gleiter and P. v. R. Schleyer, ibid., 93, 3927 (1971).
(15) See, for example: A. Streitwieser, "'Solvolytic Displacement Reactions". McGraw-Hill, New York, N.Y., 1962, p 92; P. D. Bartlett and M. Stiles, J. Am. Chem. Soc., 77, 2806 (1955); P. D. Bartlett and T. T. Tidwell, ibid., 90, 4421 (1968); J. Slutsky, R. C. Bingham, P. v. R. Schleyer. W. C. Dickson, and H. C. Brown, ibid.. 96, 1969 (1974); W. G. Dauben and L. N. Reitman. J. Org. Chem., 40, 835 (1975).
(16) Collaborative research with Professor R. Gleiter.
(17) L. A. Paquette and M. J. Carmody. J. Org. Chem., following paper in this issue.

# Impact of High-Lying $\sigma$ Orbitals and Extensive Through-Bond Interaction on Chemical Reactivity. 3. Solvolysis of syn- and anti-Tricyclo[4.2.0.0 ${ }^{2,5}$ ]octa-3,5-diene Derivatives ${ }^{1}$ 

Leo A. Paquette* and Michael J. Carmody<br>Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210

Received September 15, 1977


#### Abstract

syn- and anti-Tricyclo[ $\left.4.2 .0 .0^{2.5}\right]$ oct-7-en-exo-3-ol (5a and 9a) were synthesized by selective hydroboration (9BBN) of the appropriate cyclobutadiene dimer and converted through diimide reduction to their dihydro derivatives 6 a and 10 a . Kinetic analysis and product determinations for the acetolyses of the respective $p$-toluenesulfonates were carried out. All four compounds ionize some 50 times more slowly than cyclobutyl tosylate and at closely comparajle rates. In $\mathbf{5 b}$, no through-space interaction between the $\pi$ bond and the developing cationic center is seen to develop, as predictable from photoelectron spectroscopy data which reveal through-bond coupling to dominate. Somewhat unexpectedly, long range eiectronic transmission through the various $\sigma$ frameworks, if present, does not demonstrate itself in enhanced solvolytic behavior. The possible product-determining steps are discussed. Finally, comparison of the present data with that available from other cyclobutane-containing sulforate esters allows conclusions to be made concerning the geometric requirements for effective bicyclobutonium ion intervention.


The transmission of electronic effects within molecules can take place "through bonds" or "through space". The level of these interactions is dictated chiefly by structure, geometry, and the types of orbitals involved. The extent and consequences of through-space interaction have received considerable attention and are now reasonably well understood in certain cases, but not others. ${ }^{2}$ One classic example is the neutral norbornadiene molecule where the exceptionally favorable interaction of two degenerate $\pi$ orbitals ${ }^{3}$ leads to lowering of the ionization potential relative to norbornene ${ }^{4}$ and facilitation of the photocyclization to quadricyclane. ${ }^{5} \mathrm{~A}$ similar through-space orbital mixing can occur in certain carbocations such as the two-electron 7 -norbornenyl system ${ }^{3}$ where the net stabilization is reflected in an extremely large solvolytic rate enhancement relative to the comparable 7 norbornyl derivative. ${ }^{6}$ That the interacting filled orbital need only be rich in $p$ character is evidenced by the solvolytic reactivity of the endo-cyclopropyl congener. ${ }^{7}$

$\underline{k}_{r}$
1

$10^{11}$


In contrast, through-bond coupling is operational in 1,4diazabicyclo[2.2.2]octane (Dabco). ${ }^{8,9}$ Its relationship to 4 bromoquinuclidine has provided a useful basis for analysis of the accelerated solvolytic behavior of the bromide relative to a bicyclo[2.2.2]octyl model and its conversion to products via a $\sigma$-bond (Grob) fragmentation. ${ }^{10}$


Unlike norbornadiene, the double bonds in hypostrophene ${ }^{11,12}$ do not interact through space, but are instead effectively coupled through high-lying orbitals within the lateral $\sigma$ bonds. ${ }^{13}$ As a consequence, photoclosure to pentaprismane does not operate ${ }^{11}$ and electrophilic additions to this diene proceed with extensive skeletal rearrangement. ${ }^{14}$ Also, structurally derived exo-tosylates undergo acetolysis at significantly enhanced rates. ${ }^{1}$


There are also molecules such as Dewar benzene where through-bond and through-space interactions are closely competitive. ${ }^{15}$ Thus, extrusion of the $\mathrm{CH}_{2}$ bridge in norbornadiene results in widening of the dihedral angle on the molecular underside and attenuation of direct $\pi-\pi$ interaction such that transmission through the $\sigma$ framework now gains considerable importance.

Of particular interest at the present time are the syn- and anti-tricyclo[4.2.0.0 $0^{2,5}$ ]octa-3,7-dienes ( 1 and 2) ${ }^{16}$ which

$\stackrel{1}{\sim}$

$\underset{\sim}{2}$
combine fascinating orbital topologies with widely divergent geometries. The electronic structures of these cyclobutadiene dimers have been of substantial theoretical interest and continue to be the subject of controversy. ${ }^{17-19}$ Current interpretations of their photoelectron spectral features do not at all agree on precise orbital assignments. The analysis given by Gleiter, Heilbronner, and co-workers assumes a throughspace interaction of 0.4 eV for the syn isomer. ${ }^{17}$ But this conclusion has been challenged by Bodor et al. ${ }^{19}$ Seemingly, conventional photoelectron spectroscopy may not be capable of resolving this dilemma and a different attack on this problem must be awaited.

Development of the chemistry of 1 and 2 has not kept pace with their theoretical scrutiny. The inability to convert a derivative of 1 photochemically to cubane was cited jy Criegee in $1962 .{ }^{20}$ At a later date, Nenitzescu and co-workers demonstrated that bromination of 2 proceeded without skeletal rearrangement to give a mixture of 3 and $4 .{ }^{21}$ Only by heating

$\underset{\sim}{3}$

$\stackrel{4}{\sim}$


Scheme I

these tetrabromides with hydrogen bromide in dioxane or acetic acid could isomerization be induced. ${ }^{21}$ Finally, when 1 and 2 are thermolyzed, both experience cleavage of the pair of central $\sigma$ bonds to provide cyclooctatetraene. ${ }^{22-24}$

In the following, we present a detailed investigation into the solvolytic reactivity of four exo-tosylates derived from 1,2, and their dihydro derivatives and the course of the ensuing cationic rearrangements. It was anticipated that these derivatives might serve as chemical probes into the nature of those interactions operational in the vicinity of a cationic center ard possibly their magnitude.

## Results

The stereschemically pure alcohols 5 a and 9 a were prepared by selective hydroboration of 1 and 2 with $9-\mathrm{BBN}$ in tetrahydrofuran ${ }^{25}$ (Scheme I). Expectedly, ${ }^{26}$ lithium aluminum hydride reduction of the derived exo-monoepoxides ${ }^{23 b}$ did not result in simple $\mathrm{C}-\mathrm{O}$ bond cleavage. The assignment of exo stereochemistry follows from steric ccnsiderations and ${ }^{1} \mathrm{H}$ NMR data. Thus, the $>\mathrm{CHOH}$ protons appear as broadened triplets due to coupling to the adjacent methylene hydrogens and minimal interaction with the bridgenead proton $\left(\theta \approx 90^{\circ}\right)$. For verification purposes, 5 a was converted to labile ketone 7 by oxidation with $N$-chlorosuccinimide and dimethyl sulfide. ${ }^{27}$ Its direct hydride reduction afforded endo-alcohol 8 whose $\alpha$-hydroxyl proton was seen as a broadened multiplet because of added coupling to the bridgehead hydrogen. Additionally, that olefinic proton in 5 a which constitutes the finely spaced triplet at $\delta 6.50$ is now downfield shifted ( $\delta 6.62$ ) as the result of deshielding by the nonbonded electrons on oxygen.

Saturated alcohols 6a and 9a could by obtained from their monounsaturated precursors by reduction with excess diimide generated in situ from dipotassium azodicarboxylate. ${ }^{28}$ The corresponcing tosylates ${ }^{29}$ and 3,5 -dinitrobenzoates ${ }^{30}$ were prepared in classical fashion.

The solvolytic rate constants for these tosylates, as determined in sodium acetate buffered acetic acid, are given in Table I. The values are seen to fall within an exceptionally narrow range. In each case, slightly less than the theoretical amount of acid was liberated. The rate constants were determined using the "infinity titer" observed after 10 half-lives and represent the average of two independent runs. The solvolyses were followed through $1.5-2$ half-lives and good first-order plots were obtained in each instance.

The ace-olysis of $\mathbf{5 b}$ proceeded efficiently ( $95 \%$ yield) to give acetates 11 ( $85 \%$ ) and $12(6 \%)$ and two unknown compounds ( 3 and $6 \%$ i which could not be adequately separated from 11

Table I. Rates of Acetolysis in Acetic Acid 0.0510 M in Sodium Acetate

| Registry no. | Compd | T, ${ }^{\circ} \mathrm{C}$ | $k\left(\times 10^{5}\right), \mathrm{s}^{-1}$ | $\begin{gathered} \Delta H^{\ddagger} \\ \mathrm{kcal} / \\ \mathrm{mol} \\ \hline \end{gathered}$ | $\begin{gathered} 1 S^{\ddagger} \\ \text { eu } \end{gathered}$ | $\begin{gathered} k_{\text {rel }} \\ (85.2 \\ \left.{ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 65085-72-5 | 5b | 68.2 | $0.91 \pm 0.02$ | 27.2 | -2 | $3.6{ }^{\text {a }}$ |
|  |  | 79.0 | $3.75 \pm 0.10$ |  |  |  |
|  |  | 90.0 | $10.75 \pm 0.27$ |  |  |  |
| 65085-73-6 | 6b | 79.0 | $0.95 \pm 0.04$ | 26.1 | $-7$ | $1^{a}$ |
|  |  | 90.0 | $3.05 \pm 0.14$ |  |  |  |
|  |  | 100.6 | $8.97 \pm 0.23$ |  |  |  |
| 65137-66-8 | 9b | 68.2 | $0.47 \pm 0.02$ | 26.2 | -6 | 1.6 |
|  |  | 85.2 | $3.04 \pm 0.09$ |  |  |  |
|  |  | 100.6 | $14.82 \pm 0.47$ |  |  |  |
| 65137-67-9 | 10b | 85.2 | $3.23 \pm 0.30$ |  |  | 1.7 |

${ }^{a}$ Interpolated values.
to permit identification. The major component has previously been obtained as the product of acid-catalyzed HOAc addition to semibullvalene and shown to be stable to the solvolysis conditions employed. ${ }^{31}$ The ${ }^{1} \mathrm{H}$ NMR spectra of the two samples were identical. The structural assignment to 12 is based solely upon its proton magnetic resonance spectrum and particularly direct comparison with that of 14 formed by sequential sodium borohydride reduction and acetylation of bicyclo[4.2.0]octa-4,7-dien-2-one (13). ${ }^{32}$ The endo-acetate

exhibits a spectrum very similar to that of 12 except for the signal attributatle to $>$ CHOAc. The dihedral angle relationships in 14 provides for a high level of spin interaction with proximate hydrogens such that a doublet of triplets ( $J=10$ and 7 Hz ) is cleary visible. In 12 , this signal occurs as a narrow multiplet.

Comparable buffered acetolysis of $\mathbf{6 b}$ gave rise to a fivecomponent mixture consisting of $15(21 \%), 16(11 \%), 17(11 \%)$, $18(5 \%)$, and $19(52 \%)$ (Scheme II). Subsequent reexposure of each acetate to the reaction conditions resulted in no further structural change. The four less dominant components had been previously prepared in these laboratories ${ }^{33}$ and were individually identified by their VPC retention times and ${ }^{1} \mathrm{H}$


NMR spectra. The spectral features obtained for major product 19 corresponded closely to those reported by Hay-wood-Farmer and Pincock for the indicated structure. ${ }^{34}$ Additional confirmatory evidence of its identity was obtained by reduction to the alcohol followed by oxidation to ketone 20 , which displayed the appropriate carbonyl frequency ( 1740 $\mathrm{cm}^{-1)}$ as well. ${ }^{34}$

Product studies carried out on unsatu=ated anti isomer 9b showed it to be converted chiefly to the acetate of retained structure (21, $33 \%$ ) and 7 -acetoxy-1,3,5-cyclooctatriene (22,

$52 \%$ ). Two more rapidly eluted components were also detected ( 3 and $12 \%$ ) but were not characterized due to limited accessibility and serious peak overlap on attempted preparative VPC separation. Both Kröner ${ }^{35}$ and Huisgen ${ }^{36}$ have previously established that 22 is in equilibrium with bicyclic tautomer $22^{\prime}\left(53 \%\right.$ at $60^{\circ} \mathrm{C}$ ). As with the authentic material, our sample of this acetate likewise exhibited two methyl singlets ( $\sim 1: 1$ ) in the ${ }^{1} \mathrm{H}$ NMR spectrum. The reduction of cyclooctatrienone with $9-\mathrm{BBN}$ and subsequent acetylation proved to be a serviceable route to 22 , although the vield was quite low (5\%). Resubmission of 21 to the original reaction conditions also gave 22 . At the same temperature $\left(90^{\circ} \mathrm{C}\right)$, syn-acetate 5 c was converted somewhat more sluggishly to 22 as well. These ring openings may be simple thermal rearrangements, since the temperature invclved is sufficiently elevated to promote such transformations. The saturated acetates $\mathbf{6 c}$ and 10 c were inert to such treatment.

The product mixture formed upon acetolysis of 10 b consisted of 17 ( $66 \%$ ) and 18 (34\%), both of which had been previously identified.

## Discussion

It is seen (Table I) that all four tosylates undergo acetolysis at closely comparable rates, the difference between the fastest and slowest at $85^{\circ} \mathrm{C}$ being merely a factcr of 3.6. One might advance the argument that the similarities in the kinetic behavior of the saturated and unsaturated compounds within a given stereoisomeric subset may arise because of compensatory inductive factors operative principally in the latter. However, such rationalization appears unsatisfactory for several reasons. In unsaturated norbornyl systems such as $23^{37}$ and $24,{ }^{38}$ where through-space interaction between the olefinic center and reaction site appears to be unimportant, the adverse inductive contribution of the $\pi$ system leads to rate retardations on the order of 5-20. The introduction of another intervening carbon atom expectedly ameliorates this effect still more. Thus, Bly found that the acetolysis rates of brosylates $25-27$ also fall within a very narrow range, the major product in each case being the acetate of retained structure. ${ }^{39}$

If a destabilizing mechanism of comparable magnitude were operative in the 7 -tricyclo[4.2.0.0 $0^{2,5}$ octenyl ring systems, then the through-bond and/or through-space contributions to enhancement of the rate constants do not exceed a maximum of 2 to 3.5 -fold. Clearly, such effects are too small to gain significance.



$\stackrel{2}{\sim}$




25
$\underline{k}_{\text {rel }} 1.1$

2.4

Furthermore, the product studies reveal that no obvious interaction occurs between the proximate $\pi$ bond in $5 b$ or the peripheral cyclobutane bonds in 9 b and 10 b with the developing electron-deficient reaction center. Formation of the bicyclo[4.2.0]octyl acetates 12, 17, and 18 in three of the examples can be attributed to disrotatory opening of the adjoining internal bond ${ }^{44}$ after ionization to attain maximum overlap with the vacant $p$ orbital just produced. The resulting homoallylic cation (29) is trapped by acetate principally from

the exo direction as a consequence of prevailing steric conditions, solvent-separated ion pairing, and the like.

The origin of the bicyclo[3.3.0]octane ring system raises an interesting mechanistic question. Since this process occurs only when syn geometry is present, it is tempting to relate this product-forming step to the suitable orientation of the cyclobutane Walsh orbitals in the second distal internal bond such that its rupture occurs concomitantly with the first (cf. 30). Subsequent transannular cyclization within 31 would give rise to 32.


The acetolysis of 6 b leads principally to acetate 19. As with exo-bicyclo[2.2.0]hex-2-yl tosylate, ${ }^{41}$ ionization appears to be accompanied by lateral carbon-carbon bond migration to give initially 33 (Scheme III). In accord with the established solvolytic behavior of $38,{ }^{45}$ delocalization of the proximal cyclobutane $\sigma$ electrons can now be anticipated. Cation 34 is not a likely minimum on this potential surface and can be expected to experience "bridge flipping" ${ }^{46}$ to arrive at trishomocyclopropenyl cation 35 or conversion to squarepyramidal ion 37. The latter species has been generated by ionization of $36-\mathrm{Cl}$ and 39 and directly observed by NMR

spectroscopy. ${ }^{47}$ In any event, ions 35 and 37 are known to trap acetic acid to give 19 as the exclusive product.

The ionization of $\mathbf{9 b}$ leads to appreciable amounts of unrearranged acetate 21 , an observation which could be construed as a reflection of through-bond stabilization. If one were to consider the first-formed secondary carbocation as adequately stabilized by such an electronic mechanism, then capture of solvent with retention of configuration and without structural rearrangement might be expected. But this is not the only interpretation demanded by the experimental findings. Thermal ring opening of 21 , a process shown independently to occur under the reaction conditions, could account for the formation of 22 . While this is certainly a source of the triene, our sbservation that the ratio of 21 to 22 does not change sign: ficantly with time during the initial phases of the acetolysis of 9 b (VPC analysis) suggests that some 22 probably also comes directly from the tosylate.

The rela-ively low solvolytic reactivity of $\mathbf{6 b}, \mathbf{1 0 b}$, and exo-bicyclo[2.2.0]hex-2-yl tosylate compared to cyclobutyl tosylate (Table II) very likely has its origins in conformational factors. In the simple cyclobutyl example, ionization proceeds from the puckered conformation with anchimeric assistance provided by the $\beta, \gamma \sigma$ bond, the orbital of which attains maximum overlap with the developing empty $p$ orbital and gives rise to a stabilized bicyclobutonium intermediate. ${ }^{48}$ In the bi- and tricyclic homologues, conformational flexibility is greatly reduced and disrotatory opening of the central bond concurrent with ionization is prohibited for steric and geometric reasons. However, when the leaving group is endo oriented, these restraints are not in force, bicyclobutonium ions can ncw intervene, and much of the added steric strain should be reflected in the rate constant. The large rate difference separating the endo- and exo-bicyclo[2.2.0]hex-2-yl derivatives (Table II) conforms nicely to this interpretation. The somewhat enhanced solvolytic behavior of the secocubyl mesylate has been attributed to steric strain release which develops upon ionization. ${ }^{48}$

The rather unreactive nature of the tosylates examined in the present study would appear to exclude the likelihood that through-bond interactions can be kinetically demonstrated as in the case of hypostrophene deriva-ives. ${ }^{1}$ Neither can the absence of through-space interaction in $5 \mathbf{b}$ be attributed to dissymmetric orientation of the $\pi$ bond with the developing cationic center. Winstein earlier found that trifluoroacetate 40 is ten times more reactive than the anti- 7 -norbornenyl derivative in spite of such dissymmetry ${ }^{49}$ In addition, the resulting product (41) arises from $\pi$ participation. The miti-

Table II. Relative Solvolysis Rates

| Compd | $k_{\text {rel }}$ | Ref |
| :---: | :---: | :---: |
|  | 50 | 40 |
|  | 5.5 | 41 |
|  | $4.4 \times 10^{8}$ | 42 |
| yoмя | 13 | 43 |
|  | 1 | This work |
|  | 1.7 | This work |
|  |  |  |
| 40 |  | 41 |

gating factor in the cation derived from $5 \mathbf{b}$ is more likely the distance between the $\pi$ bond and the empty $p$ orbital MINDO calculations for $h_{i j}$ drocarbon 1 denote the transannular distance between the two closest nonbonded olefinic carbons to be $2.93 \AA .{ }^{18}$ Bly has previously considered $2.8 \AA$ to be beyond the range for possible $\pi$ anchimeric assistance. ${ }^{39}$

The inefficiency of through-bond coupling in a structural framework within which photoelectron spectroscopy suggests facile $\sigma$-bond relay of electronic effects has been observed on one previous occasion. Thus, Haselbach ${ }^{50}$ and Martin ${ }^{51}$ have determined that anti-tricyclo[4.2.1.0 $\left.0^{2,5}\right]$ nona-3,7-diene (42) exhibits through-bond coupling in a manner somewhat comparable to 1 . A chemical consequence of this effect is the ready photolytic cleavage of the $C_{1}-C_{2}$ bond to give the bisallyl



radical 43.50 Notwithstanding, the 9 -tosyloxy derivative 44 solvolyses eight times more slowly than syn-7-norbornenyl tosylate, indicating no accelerating effect due to coupling of the reaction center to the cyclobutenyl double bond via $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{5}-\mathrm{C}_{6} .{ }^{32}$

The present results indicate that through-bond effects which are clearly evident upon photoelectron spectral analysis of a hydrocarbon system need not necessarily become apparent during solvolysis of a suitably functionalized derivative. Primary detractants from our more lucid understanding of bond assistance effects are steric factors and strain relief, which operate along a given reaction pathway. Understandably, these can sometimes mask those orbital interaction effects being sought and seriously cloud the mechanistic picture. However, a second, more serious complication is inherent to the present treatment. In all circumstances, neutral molecules have been employed as electronic models for the siructurally related cations. But the former do not possess the added vacant $p$ orbital which characterizes the latter. Since this $p$ orbital is truly the focus of our interest, the parent systems do
not qualify as true models. This conclusion implies that each individual cation should be analyzed by computational methods in its oun right, without necessary regard for the electronic properties of its hydrocarbon congener. Under these circumstances, a more direct correlation with solvolytic behavicr might be seen.

## Experimental Section

The ${ }^{1} \mathrm{H}$ NMR spectra were obtained with Varian T-60, Varian A-60A, and Bruker 90 (FT) spectrometers and apparent splittings are given in all cases. The Bruker 90 spectrometer was also employed for the recording of ${ }^{13} \mathrm{C}$ spectra. Mass spectral measurements were made on an AEI-MS9 spectrometer at an ionizing potential of 70 eV . Preparative VPC work was done on a Varian Aerograph A90-P3 instrument equippped with a thermal conductivity detector. A $6 \mathrm{ft} \times$ $1 / 4$ in. column packed with $10 \%$ OV-11 on $60 / 80$ mesh Chromosorb G at $115^{\circ} \mathrm{C}$ was used unless otherwise stated. Microanalyses were performed by the Scandinavian Microanalytical Laboratory, Herlev, Denmark.
syn-Tricyclo[4.2.0.0 ${ }^{2,5}$ ]oct-7-en-exo-3-ol (5a). To a magnetically stirred solution of $1(2.08 \mathrm{~g}, 20 \mathrm{mmol})$ in 50 mL of tetrahydrofuran under nitrogen at $0^{\circ} \mathrm{C}$ was added dropwise 45 mL of $0.5 \Lambda^{\prime} 9$-borabicyclononane in tetrahydrofuran. Stirring was continued for 2 h , wherectpon 15 mL of $15 \%$ aqueous sodium hydroxide solution followed by 15 mL of $30 \%$ aqueous hydrogen peroxide were added dropwise and the solution was allowed to warm to room temperature. The tetrahydrofuran was evaporated and the aqueous residue was extracted with ether $(3 \times 50 \mathrm{~mL})$. The combined ether layers were washed with water ( 75 mL ) and brine ( 75 mL ), dried, and concentrated to leave a yellow oil. Chromatography on silica gel (elution with $15 \%$ etherpentan 2 ) yielded a solid which was recrystallized from pentane to give $0.67 \mathrm{~g}(27 \%)$ of 5 a as white needles: $\mathrm{mp} 52-55^{\circ} \mathrm{C}$; NMR $\delta_{\text {Me4Si }}\left(\mathrm{CDCl}_{3}\right)$ $6.50(\mathrm{~m}, 2), 4.18(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1), 3.40(\mathrm{~m}, 2), 2.75(\mathrm{~m}, 2), 2.39(\mathrm{brs}$, $1)$, and 2.40-2.00 (m, 2); calcd for $m / e 122.0732$, found 122.0733 .

Tosylate 5 b was prepared in the usual way, $\mathrm{mp} 61-62^{\circ} \mathrm{C}$, as was the 3,5-dinitrobenzoate derivative, $\mathrm{mp} 127.5-128.5^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}$ : C, 56.96: H, 3.83; $\mathrm{N}, 8.86$. Found: C, 57.10; H, 4.07; N, 8.64.
anti-Tricyclo[4.2.0.0 ${ }^{2,5}$ ]oct-7-en-exo-3-ol (9a). To a magnetically strred solution of $2(2.08 \mathrm{~g}, 20 \mathrm{mmol})$ in 40 mL of dry tetrahydrofuran at $0^{\circ} \mathrm{C}$ under nitrogen was added dropwise 40 mL 20 mmol ) of 0.5 N 9 -borabicyclononane in tetrahydrofuran over 1 h . Workup in the predescribed manner yielded 500 mg ( $25 \%$ ) of 9 a as a clear oil: NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.32(\mathrm{~nm}, 2), 4.21(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1), 3.13(\mathrm{~nm}, 2)$, $2.40(\mathrm{~s}, 1)$, and $2.36(\mathrm{~m}, 4)$; calcd for $m / e$ 122.0732, found 122.0733 .

Tosy ate 9 b was prepared in the usual way, $\mathrm{mp} 62-63^{\circ} \mathrm{C}$, as was the 3,5-dinitrobenzoate derivative, $\mathrm{mp} 151.5-153^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}$ : C, $56.96 ; \mathrm{H}, 3.2 ; \mathrm{N}, 8.86$. Found: C, 57.00; H, 3.90; N, 8.88.
syn-Tricyclo[4.2.0.0 ${ }^{2,5}$ ]octan-exo-3-ol (6a). To a magnetically stirred solution of $1.8 \mathrm{~g}(14.8 \mathrm{mmol})$ of 5 a in 150 mL of methanol under nitrogen at $0^{\circ} \mathrm{C}$ was added $19 \mathrm{~g}(100 \mathrm{mmol})$ of dipotassium azodicarboxylate in one portion. To the stirred slurry was added 15 mL of acetic acid via syringe and stirring was continued until the yellow color of the potassium salt was discharged. The methanol was evaporated, the product was taken up in ether ( $3 \times .50 \mathrm{~mL}$ ), and the combined organic layers were washed with saturated sodium bicarbonate solution ( $2 \times 100 \mathrm{~mL}$ ), water ( 100 mL ), and brine $(100 \mathrm{~mL})$ before drying and evaporation. There was obtained $1.35 \mathrm{~g}(85 \%)$ of $\mathbf{6 a}$ as a clear oil: NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 4.98(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1), 2.93(\mathrm{~m}, 4), 2.66(\mathrm{~s}, 1)$, and $2.36(\mathrm{~m}, 6)$; calcd for $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{O}$, m/e 124.0888, found 124.0890 .

Tosylate 6 b was prepared in the usual way, $\mathrm{mp} 44-45^{\circ} \mathrm{C}$, as was the 3,5-dinitrobenzoate derivative, $\mathrm{mp} 144.0-144.5^{\circ} \mathrm{C}$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}$ : $\mathrm{C}, 56.60 ; \mathrm{H}, 4.43 ; \mathrm{N}, 8.86$. Found: C , 56.57; H. 4.50; N, 8.71.
anti-Tricyclo[4.2.0.0 $0^{\mathbf{2 , 5}}$ ]octan-exo-3-ol (10a). To a magnetically stirred solution of $1.1 \mathrm{~g}(9.0 \mathrm{mmol})$ of 9 a in 100 mL of methanol at 0 ${ }^{\circ} \mathrm{C}$ under nitrogen was added 13.9 g ( 72 mmol ) of dipotassium azidocarboxylate in one portion. Subsequently, 9.7 mL of acetic acid was added slowly over 1 h and stirring was continued until the yellow color was discharged. Through workup as described above, there was isolated $590 \mathrm{mg}(53 \%)$ of 10 a as a clear oil: NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 4.26$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1), 2.88-1.83(\mathrm{~m}, 4), 2.65(\mathrm{~m}, 6)$, and $2.01(\mathrm{~s}, 1)$; calcd for $m / e ~ 124.1988$, found 124.0890 .

The tosylate ( 10 b ) was prepared in the usual way and used directly as a clear oil.
syn-Tricyclo[4.2.0.0 ${ }^{2,5}$ ]oct-7-en-endo-3-ol (8). To a magnetically stirred sclution containing $218 \mathrm{mg}(1.64 \mathrm{mmol})$ of $N$-chlorosuccini-
mide in 10 mL of methylene chloride cooled to $0^{\circ} \mathrm{C}$ under nitrogen was added 102 mg ( 1.68 mmol ) of dimethyl sulfide via syringe. A white precipitate formed and the mixture was cooled to $-23^{\circ} \mathrm{C}$. Alcohol 5a ( $100 \mathrm{mg}, 0.82 \mathrm{mmol}$ ) in 3 mL of methylene chloride was added in one portion and stirring was continued for 2 h , whereupon 84 mg ( 0.84 mmol ) of triethylamine was introduced. The mixture was allowed to warm to room temperature and poured into ether ( 15 mL ) and water $(50 \mathrm{~mL})$. The aqueous phase was separated and the org anic layer was washed with water $(2 \times 25 \mathrm{~mL})$, dried, concentrated, ar.d transferred to a $25-\mathrm{mL}$ round-bottom flask. Lithium aluminum hydride $(50 \mathrm{mg}$, 1.3 mmol ) was added and the mixture was stirred at room temperature for 1 h . Saturated sodium sulfate solution was added dropwise until the supernatant liquid became clear and the precipitated aluminum salts were filtered and washed amply with ether. The filt-ate was dried and concentrated to leave $30 \mathrm{mg}(30 \%)$ of 8 as a clear oil: NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.62(\mathrm{~nm}, 1), 6.40(\mathrm{~nm}, 1), 4.16(\mathrm{~m}, 1), 3.52(\mathrm{br} \mathrm{d}, 2), 2.56$ ( $\mathrm{m}, 2$ ), and 2.17 (m, 2).

Kinetics Procedure. A $\sim 0.02 \mathrm{M}$ solution of tosylate (accurately weighed) in 0.0510 N sodium acetate in acetic acid was prepared in a $20-\mathrm{mL}$ volumetric flask. Aliquots of this solution were removed and sealed in glass ampules which had been washed sequentially with $10 \%$ hydrochloric acid, $10 \%$ ammonium hydroxide, and water, and dried at $70^{\circ} \mathrm{C}$ overnight. The ampules were simultaneously placed in a constant temperature bath and after 10 min the first ampule was removed and quenched in ice water. At this point an accurate timer was started. The ampule then was allowed to warm to room temperature for $\sim 5 \mathrm{~min}$ and exactly 1.985 mL of solution was removed via an automatic pipet and titrated with standard perchloric acid $n$ acetic acid. Three drops of bromphenol blue was used as indicator and the end point was considered to be reacied when the yellow solution turned clear. The remaining ampules were removed at approp-iately timed intervals and treated as above. Points were taken through 1-2 halflives and an infinity titer was taken after 10 half-lives.

Preparative Scale Solvolysis of 5b. A magnetically stirred solution of 1.0 g ( 3.63 mmol ) of $5 \mathbf{b}$ and $530 \mathrm{mg}(5.0 \mathrm{mmol})$ of sodium carbonate in 25 mL of acetic acid was heated at $90^{\circ} \mathrm{C}$ for 18 h ( 10 halflives). The solution was cooled, poured into 100 mL of water, and extracted with ether $(3 \times 30 \mathrm{~mL})$. The combined ether layers were washed with $50-\mathrm{mL}$ portions of $10 \%$ aqueous sodium hydroxide solution ( $2 \times$ ), water, and saturated aqueous sodium chloride solution before decolorization with charcoal, filtration through Cəlite, drying, and evaporation. There remained $560 \mathrm{mg}(95 \%)$ of a clear oil, analysis of which by VPC showed four components to be present, two of which could be preparatively separated.

The first compound to be eluted was identified as 12 ( $3.5 \%$ ): NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.34(\mathrm{~nm}, 1), 6.14(\mathrm{~nm}, 1) .6 .03(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2), 5.55$ $(\mathrm{nm}, 1), 3.00\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2\right), 2.38$ ( t with fine splitting, $\left.J=8.\right) \mathrm{Hz}, 1$ ), and 2.06 (s, 3).

The third component was $11(85 \%)$ as shown by comparison of its ${ }^{1} \mathrm{H}$ NMR features to those published: ${ }^{31} \mathrm{NMR} \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.05$ (dd, $J=2.0$ and $5.5 \mathrm{~Hz}, 1), 5.80-5.50(\mathrm{~m}, 3), 5.40(\mathrm{~m}, \mathrm{l}), 3.65(\mathrm{~m}, 1), 3.30$ (m, 1), and $2.00(\mathrm{~s}, 3)$; calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$, m/e 164.0837, found 164.0839.

Two other components ( 3 and $6 \%$ ) could not be separated in a pure state due to coincidental elution with 11.

Preparative Scale Acetolysis of 6b. A solution of $1.25 \mathrm{~g}(4.5$ $\mathrm{mmol})$ of 6 b and $500 \mathrm{mg}(4.7 \mathrm{mmol})$ of sodium carbonate in 25 mL of acetic acid under argon was heated at $90^{\circ} \mathrm{C}$ for 63 h ( 10 half-lives). The usual workup yielded $500 \mathrm{mg}(68 \%)$ of a clear oil which exhibited five peaks upon VPC analysis. These were preparatively separated. The first two compounds to elute were collected together and shown to be $15(21 \%)$ and $16(11 \%)$. The third and fourth components were likewise collected together and identified as 17 (11\%) and 18 (5\%).

The final acetate proved to be 19 (52\%): NMR $\delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 4.97$ ( d of $\mathrm{t}, J=6.46$ and $9.00 \mathrm{~Hz}, 1$ ), 2.67-1.12 (series of $\mathrm{m}, 10$ ), and 2.00 (s, 3); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 170.36, 79.82. 44.23. 31.29, 27.07, 26.69, 26.17, 23.71, 21.06, and 19.31 ppm.

Preparative-Scale Acetolysis of $\mathbf{9 b}$. A magnetically stirred solution of $600 \mathrm{mg}(2.18 \mathrm{mmol})$ of 9 b and $500 \mathrm{mg}(4.73 \mathrm{mmol})$ of sodium carbonate in 25 mL of acetic acid was stirred at $90^{\circ} \mathrm{C}$ under argon for 26 h ( 10 half-lives). The usual workup yielded 250 mg ( $69 \%$ ) of a clear oil containing four components (VPC analysis). The two major compounds could be separated. The first was identified as 21 ( $23 \%$ ) by comparison of ${ }^{1} \mathrm{H}$ NMR and VPC retention times with those of an authentic sample. The second component was shown to be 22 ( $65 \%$ ) by comparison of its ${ }^{1} \mathrm{H}$ NMR data with those of an authentic sample: ${ }^{36}{ }^{\mathrm{NMR}} \delta_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 5.95(\mathrm{~m}, 2), 5.80(\mathrm{~m}, 3), 5.15(\mathrm{~m}, 1), 3.15-$ $3.00(\mathrm{~m}, 1)$, and $2.50(\mathrm{~m}, 2)$; calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}, \mathrm{~m} / \mathrm{e} 164.0837$, found 164.0839 .

The two remaining components (5 and 7\%) eluted alrost simul-
taneously and could not be obtained in a state pure enough for identification.

Preparative-Scale Acetolysis of 10 b . Tr a solution of $1.1 \mathrm{~g}(4.0$ mmol ) of 10 b in 10 mL of acetic acid under argon was added 424 mg ( 4.0 mmol ) of sodium carbonate and the solut.on was stirred at $90^{\circ} \mathrm{C}$ for 30 h ( 10 half-lives). The reaction mixture was processed as before to leave $500 \mathrm{mg}(58 \%)$ of a clear oil which was jurified by preparative VPC. There was isolated a mixture of $17(66 \%)$ and $18(34 \%)$.
endo-2-Acetoxybicyclo[4.2.0]octa-4,7-diene (14). To a solution of 200 mg ( 1.64 mmol ) of bicyclo[4.2.0] octa-4.7-dien-2-one (13) in 25 mL of methanol at $-20^{\circ} \mathrm{C}$ under argon was added $248 \mathrm{mg}(6.5 \mathrm{mmol})$ of sodium borohydride in two $124-\mathrm{mg}$ portions at a $10-\mathrm{min}$ interval. The solution was allowed to warm to room temperature, stirred for 5 h , and poured into 150 mL of water. The aqueous solution was extracted with ether $(3 \times 50 \mathrm{~mL})$ and the combined ether layers were washed with water ( $2 \times 75 \mathrm{~mL}$ ) and saturated sodium chloride solution $(75 \mathrm{~mL})$ before drying and evaporation. The resulting yellow oil was dissolved in 5 mL of pyridine, $1.4 \mathrm{~g}(13.8 \mathrm{mmol})$ of acetic anhydride was introduced, and stirring at room temperature was maintained for 24 h . The solution was poured into 50 mL of water and the water layer was extracted with ether ( $3 \times 30 \mathrm{~mL}$ ). The combined organic layers were washed with $50-\mathrm{mL}$ portions of water, $10 \%$ aqueous hydrochlozic acid ( $2 \times$ ), saturated aqueous sodium bicarbonate solution, and saturated aqueous sodium chloride solution prior to decolorization with charcoal, filtration through Celite, drying, and concentration. There remained $238 \mathrm{mg}(85 \%)$ of the acetate as a clear oil: NMR $\hat{o}_{\mathrm{Me}_{4} \mathrm{Si}}\left(\mathrm{CDCl}_{3}\right) 6.23(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1) 5.70(\mathrm{~m}, 2), 4.86$ (d of $\mathrm{t}, J=7.0$ and $10.0 \mathrm{~Hz}, 1), 3.58(\mathrm{~m}, 2), 2.82(\mathrm{~m}, 2)$, and $2.07(\mathrm{~s}, 3)$; calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}, m / e$ 164.0837, found 164.0839
Control Experiments Concerned with the Stability of Acetates $15-18$. A $50-\mathrm{mg}$ ( 0.09 mmol ) sample containing $66 \%$ of 15 and $34 \%$ of 16 was dissolved in 2 mL of acetic acid and heated at $90^{\circ} \mathrm{C}$ under nitrogen for 48 h . The solution was poured intc 25 mL of water and extracted with ether $(3 \times 10 \mathrm{~mL})$. The combined ether layers were washed with $15-\mathrm{mL}$ portions of $15 \%$ aqueous sodium hydroxide solution (2X), water, and brine. Drying and evaporation left 30 mg (66\%) of a mixture of 5 and 16 , the ${ }^{1} \mathrm{H}$ NMR spectrum of which was identical with that of the starting sample.
The identical treatment of $30 \mathrm{mg}(0.18 \mathrm{mmol})$ of a mixture of 17 and 18 ( $66: 34$ ) yielded after workup $25 \mathrm{mg}(83 \%)$ of the unchanged starting mixture.

Control Experiments Concerned with the Stability of Acetates 5 c and 21 . To a solution of $82 \mathrm{mg}(0.2 \mathrm{mmol})$ of 5 c in 2 mL of acetic acid under argon was added 2.2 mg ( 0.2 mmol ) of sodium carbonate. This solution was stirred at $90^{\circ} \mathrm{C}$ for 18 h ( -0 half-lives). The usual workup afforded $80 \mathrm{mg}(98 \%)$ of a mixture of starting acetate (55\%) and 22 (45\%) by integration of the olefinic signals in the ${ }^{1} \mathrm{H}$ NMR.

Identical treatment of 21 ( $100 \mathrm{mg}, 0.55 \mathrm{mmol}$ ) yielded 70 mg ( $70 \%$ ) of 22.

Control Experiments Concerned with the Stability of Acetates 6 c and 10 c . To $100 \mathrm{mg}(0.6 \mathrm{mmol})$ of $\mathbf{6 c}$ in 5 mL of acetic acid was added $63.6 \mathrm{mg}(0.6 \mathrm{mmol})$ of sodium carbonate and this solution was heated for 48 h at $90^{\circ} \mathrm{C}$ under argon. Upon workup, 35 mg ( $85 \%$ ) of starting acetate was obtained. Identical treatment of $10 \mathrm{c}(200 \mathrm{mg}, 1.2$ mmol ) yielded $160 \mathrm{mg}(80 \%)$ of unchanged acetate.
Reductive Cleavage and Oxidation of 19. A solution of 19 (30 mg ) in anhydrous ether ( 2 mL ) cooled to $0^{\circ} \mathrm{C}$ was treated with 19 mg of lithium aluminum hydride and stirred at room temperature for 20 h. Saturated scdium sulfate solution was added dropwise, the precipitate was separated by filtration, and washed thoroughly with ether. The combined filtrates were evaporated to leave the alcohol, which was taken up in dichloromethane ( 2 mL ) and added to a mixture of chromium trioxide ( 100 mg ) and pyridine ( 158 mg ) at $0^{\circ} \mathrm{C}$. After 45 min , the reaction mixture was poured into $10 \%$ sodium hydroxide solution and the salts were washed with ether. After further ether extraction, the combined organic phases were washed with $10 \%$ hydrochloric acid, water, and sodium bicarbonate solution before drying and evaporation. The resulting pale yellow ketone 20 exhibited a carbonyl stretching frequency at $1740 \mathrm{~cm}^{-1} .^{34}$

Acknowledgment. This research was supported by a grant from the National Science Foundation.

Registry No.-1, 20380-30-7; 2, 20380-31-8; 5a, 65085-74-7; 5b 3,5-DNP derivative, 65085-75-8; 6a, 65085-76-9; 6b 3,5-DNP derivative, 65085-77-0; 8, 65137-68-0; 9a, 65137-69-1; 9b 3.5-DNP derivative, 65137-70-4; 10a, 65137-71-5; 11, 36257-89-3; 12, 65085-78-1; 13, 65085-79-2; 14, 65165-51-7; 19, 24221-98-5; 22, 16326-82-2.

## References and Notes

(1) Part 2. G. Klein anc L. A. Paquette, J. Org. Chem., previous paper in this issue.
(2) L. A. Paquette and I. R. Dunkin, J. Am. Chem. Chem. Soc., 96, 1220 (1974); 97, 2243 (1975).
(3) R. Hoffmann, Acc. Chem. Res., 4, 1 (1971).
(4) P. Bischof, J. A. Hashmall. E. Heilbronner, and V. Hornung, Helv. Shim. Acta, 52, 1745 (1969).
(5) S. J. Cristol and R. L. Snell, J. Am. Chem. Soc., 76, 5000 (1954).
(6) S. Winstein, Q. Rev., Chem. Soc., 23, 141 (1969).
(7) H. Tanida, T. Tsuji, and T. Irie, J. Am. Chem. Soc., 89, 1953 (1967); M. A Battiste, C. L. Deyrup. R. E. Pincock, and J. Haywood-Farmer, ibid., 89, 1954 (1967).
(8) R. Hoffmann, A. Imamura, and W. J. Hehre, J. Am. Chem. Soc. 90, 1499 (1968).
(9) P. Bischof, J. A. Hashmall, E. Heilbronner. and V. Hornung, Tetrahedron Lett., 4025 (1969).
(10) P. Brenneisen, C. L. Grob, R. A. Jackson, and M. Ohta, Helv Chim. Acta, 48, 146 (1965).
(11) J. S. McKennis, L. Erener, J. S. Ward, and R. Pettit, J. Am. Chem. Soc., 93, 4957 (1971).
(12) L. A. Paquette, R. F. Davis, and D. R. James, Tetrahedron _ett., 1615 (1974).
(13) W. Schmidt and B. T. Wilkins, Tetrahedron, 28, 5649 (1972).
(14) G. Klein and L. A. Paquette, Tetrahedron Lett., 2419 (1976); L. R. Paquette, D. R. James, and G. Klein, J. Org. Chem., companion papers in this issue.
(15) G. Bieri, E. Heilbronner, T. Kobayashi, A. Schmelzer, M. J. Goldstein, R. S. Leight, and M. S. Lipton, Helv. Chim. Acta, 59, 2657 (1976).
(16) M. Avram, I. G. Dinulescu, E. Marica, G. D. Mateescu, E. Sliam, and C. D. Nenitzescu, Chem. Ber.. 97, 382 (1964).
(17) R. Gleiter, E. Heilbronner, M. Hekman, and H.-D. Martin, Chem. Ber., 106, 28 (1973)
(18) H. Iwamura, H. Kihara, K. Morio, and T. L. Kunii, Bull. Chem. Scc. Jpn., 46, 3248 (1973).
(19) N. Bodor, B. H. Cרen, and S. D. Worley, J. Electron Spectrosc. Relat. Phenom., 4, 65 (1974).
(20) R. Criegee, Angew. Chem., 74, 703 (1962).
(21) M. Avram, G. D. Mateescu, I. G. Dinulescu, and C. D. Nenitzescu, Chem. Ber., 102, 4008 (1969).
(22) M. Avram, G. D. Mateescu, I. G. Dinulescu, E. Marcia, and C. D. Nenitzescu. Tetrahedron Lett., 21 (1961).
(23) (a) J. M. Frey, H.-D Martin, and M. Hekman, J. Chem. Soc.. Chem. Commun., 204 (1975); (b) see also L. A. Paquette and M. J. Carmody. J. Am. Chem. Soc., 98, 175 (1976).
(24) R. S. Case, M. J. S. Dewar, S. Kirschner, R. Pettit, and W. Slegir, J. Am. Chem. Soc., 96, 581 (1974).
(25) E. F. Knights and H. C. Brown, J. Am. Chem. Soc., 90, 5280 (1968).
(26) L. A. Paquette, A. A. Youssef, and M. L. Wise, J. Am. Chem. Soc., 89, 5246 (1967).
(27) E. J. Corey and C. U. Kim, J. Org. Chem., 38, 1233 (1973).
(28) E. E. van Tamelen, R. S. Dewey. and R. J. Timmons, J. Am. Chem. Soc., 83, 3725 (1961).
(29) L. F. Fieser and M. Fieser. "Reagents for Organic Synthesis". \'ol. 1, Wiley. New York, N.Y., 1967, p 118.
(30) D. J. Pasto and C. R. Johnson, '"Organic Structure Determination". PrenticeHall. Englewood Cliffs, N.J.. 1969. p 361.
(31) R. M. Moriarty and C.-L. Yeh, Tetrahedron Lett., 385 (1972).
(32) G. Buchi and E. M. Burgess, J. Am. Chem. Soc., 84, 3104 (1962).
(33) L. A. Paquette, O.Cox, M. Oku, and R. P. Henzel, J. Am. Chen. Soc., 96, 4892 (1974).
(34) J. S. Haywood-Farmer and R. E. Pincock, J. Am. Chem. Soz., 91, 3020 (1969).
(35) M. Kroner, Chem Ber., 100, 3172 (1967).
(36) R. Huisgen, G. Boche, A. Dahmen, and W. Hechtle, Tetrahedran Lett., 5215 (1968). We thank Professor Huisgen for kindly supplying a copy of the ${ }^{1} \mathrm{H}$ NMR spectrum of authentic 22.
(37) C. F. Wilcox, Jr., and H. D. Banks, J. Am. Chem. Soc., 94, 8231 (1972).
(38) E. N. Peters and H. C. Brown, J. Am. Chem. Soc., 94, 5899 (1972).
(39) R. K. Bly and R. S Bly, J. Org. Chem., 31, 1577 (1966).
(40) H. C. Brown and G. Ham, J. Am. Chem. Soc., 78, 2735 (1956).
(41) R. N. McDonald and C. E. Reinecke. J. Org. Chem., 32, 1878 (1967).
(42) R. N. McDonald and G. E. Davis, J. Am. Chem. Soc., 94, 5078 (1972) ).
(43) W. G. Dauben anJ L. N. Reitman, J. Org. Chem., 40, 835 (1975).
(44) Only a disrotatory opening is electronically allowed; see K. 3. Wiberg an G. Szeimies. J. Am. Chem. Soc.. 92, 571 (1970). Geometric and steric factors preclude its operation concomitant with departure of tosylate anion.
(45) M. Sakai, A. Diaz, and S. Winstein, J. Am. Chem. Soc., 92, 52 (1970). Tosylate 38 solvolyzes $10^{43}$ times more rapidly than 7 -norbornyl tosylate.
(46) S. Masamune, M. Sakai, A. V. KempJones, H. Ona, A. Venot, and T. Nakashima, Angew. Chem., Int. Ed. Engl., 12, 769 (1973).
(47) S. Masamune, M. Sakai, and A. V. Kemp-Jones, Can. J. Chem., 52, 858 (1974).
(48) K. B. Wiberg and J. G. Pfeiffer. J. Am. Chem. Soc., 92, 553 (1970); I. Lillien and L. Handloser. ibid, 93, 1682 (1971); and earlier references cited in these papers.
(49) P. Bruck, D. Trompson, and S. Winstein, Chem. Ind. (London), 590 (1960).
(50) E. Haselbach and W. Eberbach, Helv. Chim. Acta, 56, 1944 (1973).
(51) H.-D. Martin, S. Kagabu and R. Schweisinger, Chem. Ber.. 107, 3130 (1975).
(52) R. M. Coates and K. Yano, J. Am. Chem. Soc., 95, 2203 (1973).

# Substituent Effects on the Preparations and Thermal Decarboxylations 

 of $\beta$-Lactones Derived from the Cycloaddition of Dichloroketene with Monosubstituted Benzaldehydes ${ }^{1}$Herman O. Krabbenhoft<br>Organic \& Polymer Chemistry Branch, General Electric Corporate Research and Development Center, Schenectady, New York 12301

Received September 1, 1977


#### Abstract

Cycloaddition reactions oz dichloroketene and monosubstituted benzaldehydes gave 3,3-dichloro-4-aryloxetan2 -ones in isolated yields of approximately $20-80 \%$. Benzaldehydes substituted with electron-withdrawing groups led to higher yields than benzaldehydes bearing electron-donating substituents. Thermolysis of these $\beta$-lactones gave the corresponding $\beta, \beta$-dichlorostyrenes in good yields. Electron-donating groups enhance the rate of decarboxylation. The kinetics of the process were determined for the parent phenyl system and its three monochloro derivatives; the elimination of zarbon dioxide is a first-order reaction, probably proceeds in a concerted fashion, and involves a highly polarized transition state.


## Part A

There is ample documentation that the reactions of diphenylketene with alkenes to produce cyclobutanone derivatives take place in a concerted fashion.? Furthermore, it has been demonstrated that diphenylketene behaves in an electrophilic manner [i.e., that it reacts from its lowest unoccupied molecular orbital (LUMO)]. ${ }^{2 \mathrm{~b}}$ Similar conclusions have been invoked for cycloadditions involvirg dichloroktene and olefins. ${ }^{2 c, 3}$ Another cycloaddition process characteristic of ketenes is the formation of 2 -oxetanones ( $\beta$-lactones) from reaction with aldehydes or ketones. ${ }^{4,5}$ In connection with other investigations it was necessary to exarrine what effects, if any, substituents attached to the phenyl ring of benzaldehydes would have on the yields of the $\beta$-lactones produced in reactions with dichloroketene. In this report the interesting results of a study on the cycloadditions of dichloroketene with monosubstituted benzaldehydes (eq 1) are discussed.


1a-16a
A priori, the substituent on the pheny' ring could influence the cycloaddition process in two ways, as illustrated in Schemes I and II. ${ }^{6}$ In the former case (Scheme I), dichloroketene is electrophilic, and electron-donating groups (such as $\mathrm{X}=\mathrm{OCH}_{3}$ ) would be expected to lead to increased rates of cycloaddition compared to electron-with drawing substituents (such as $\mathrm{X}=\mathrm{NO}_{2}$ ). In the latter case (Scheme II), dichloroketene is nucleophilic and electron-withd-awing groups should enhance the reactivity of cycloaddition. Of course, it is also possible that both types of effects could be operative, depending on the nature of the substituent or even that the substituents could have virtually no effect on the cycloaddi-

## Scheme I



$\longrightarrow$


Scheme II




tion process. Interestingly, it has been reported that dichloroketene cycloadds readily to electron-poor aldehydes (such as chloral); ${ }^{5 a, b}$ yet, it does not react with electron-deficient alkenes (such as acrylonitrile) even though it undergoes cycloaddition very efficiently with electron-rich olefins (such as ethyl vinyl ether). ${ }^{3 a, d}$

In Table I are assembled the identities and locations of the substituents attached to the phenyl ring, the important experimental parameters, and the yields of the $\beta$-lactones produced. The yields listed in Table I are isolated yields of crude materials. Because of the thermal lability of many of the $\beta$ lactones, some of the products were contaminated with small amounts of the corresponding $\beta, \beta$-dichlorostyrenes. Similarly, in some cases it was not possible to remove all of the unreacted starting aldehyde by the standard procedure of extraction with aqueous sodium bisulfite solution (probably because of unfavorable electronic effects impeding the formation of the aldehyde/bisulfite addition compound ${ }^{7}$ ). Fortunately, by integrating the peak areas associated with the NMR signals for the aldehyde formyl proton, the $\beta, \beta$-dichlorostyrene vinyl proton, and the $\beta$-lactone ring proton, the relative amounts of these components could be estimated and appropriate adjustments could be made to correct the yields of cycloaddition products. The $\beta$-lactones (all of which are oils at room temperature except for the nitrophenyl derivatives 8a-10a, nitrile 11a, and acetate 16a) thus obtained were usually light yellow to golden orange in color (even after treatment with activated carbon). Attempts to purify the liquid cycloadducts by column chromatography using silica gel or by distillation at reduced pressure led to substantial amounts of contamination of the $\beta$-lactone by the corresponding $\beta, \beta$-dichlorostyrene as a result of concomitant decarboxylation. Therefore, the $\beta$-lactones were characterized by their spectral properties. ${ }^{8}$ The infrared spectra showed strong signals at approximately $1860 \mathrm{~cm}^{-1}$, which reflect a $25-\mathrm{cm}^{-1}$ shift to higher frequency (because of the field effects of the adjacent

Table I. Experimental Conditions and Results for the Preparation of $\beta$-Lactones from Monosubstituted Benzaldehydes and Dichloroketene ${ }^{a}$

| Entry | Compd | $\begin{gathered} \text { Registry } \\ \text { no. } \\ \hline \end{gathered}$ | X | Solvent ${ }^{\text {b }}$ | Temp, ${ }^{\circ} \mathrm{C}$ | $\mathrm{B} / \mathrm{A}^{\text {c }}$ | $\mathrm{ZnCl}_{2}$, equiv | $\begin{aligned} & \text { Yield, } d \\ & \% \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 a | 22391-10-2 | H | E | 3 | 1 | 0 | 32 |
| 2 | 1 a |  | H | E | 3 | 1 | 0.5 | 30 |
| 3 | 12 |  | H | E | 3 | 1 | 1 | 29 |
| 4 | 1 a |  | H | E | 3 | 1 | 1 | 35 |
| 5 | 1 a |  | H | E | $-78{ }^{\text {e }}$ | 1 | 0 | 35 |
| 6 | 1 a |  | H | E | 24 | 2 | 0 | 47 |
| 7 | 1 a |  | H | E | 24 | 2 | 1 | 45 |
| 8 | 12 |  | H | E | 24 | 2 | 1 | 55 |
| 9 | 2a | 65086-06-8 | $2^{\prime}-\mathrm{CH}_{3}$ | E | 3 | 1 | 1 | 19 |
| 10 | 2a |  | $2^{\prime}-\mathrm{CH}_{3}$ | E | 3 | 1 | 1 | 22 |
| 11 | 2a |  | $2^{\prime}-\mathrm{CH}_{3}$ | E | 24 | 2 | 0.25 | 37 |
| 12 | 2a |  | $2^{\prime}$ - $\mathrm{CH}_{3}$ | M | 24 | 2 | 0.25 | 15 |
| 13 | 3 a | 65086-07-9 | $3^{\prime}-\mathrm{CH}_{3}$ | E | 3 | 1 | 1 | 24 |
| 14 | 3a |  | $3^{\prime}-\mathrm{CH}_{3}$ | E | 3 | 1 | 1 | 25 |
| 15 | 3a |  | $3^{\prime}-\mathrm{CH}_{3}$ | E | 24 | 2 | 0.25 | 53 |
| 16 | 3a |  | $3^{\prime}-\mathrm{CH}_{3}$ | P | 24 | 2 | 0.25 | 34 |
| 17 | 4 a | 65086-08-0 | $4^{\prime}-\mathrm{CH}_{3}$ | E | 3 | 1 | 1 | 26 |
| 18 | 4 a |  | $4^{\prime}-\mathrm{CH}_{3}$ | E | 24 | 2 | 0.25 | 44 |
| 19 | 4 a |  | $4^{\prime}-\mathrm{CH}_{3}$ | B | 24 | 2 | 0.25 | 33 |
| 20 | 5 a | 65086-09-1 | $2^{\prime}$-Cl | E | 24 | 1 | 1 | 53 |
| 21 | 5 a |  | $2^{\prime}$ - Cl | E | 3 | 1 | 1 | 51 |
| 22 | 6a | 65103-21-1 | $3^{\prime}-\mathrm{Cl}$ | E | 24 | 1 | 1 | 59 |
| 23 | 6 a |  | $3^{\prime}-\mathrm{Cl}$ | E | 3 | 1 | 1 | 59 |
| 24 | 7 a | 22391-11-3 | $4^{\prime}-\mathrm{Cl}$ | E | 24 | 1 | 1 | 52 |
| 25 | 7 a |  | $4^{\prime}-\mathrm{Cl}$ | E | 24 | 1 | 1 | 59 |
| 26 | 8 a | 65086-00-2 | $2^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 | 0 | 68 |
| 27 | 8 a |  | $2^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 | 0 | ¢5 |
| 28 | 8 a |  | $2^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 | 0.5 | 73 |
| 29 | 8 8 |  | $2^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 |  | 73 |
| 30 | 8 a |  | $2^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 | 2 | 46 |
| 31 | 9 a | 65086-01-3 | $3^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 | 0 | ¢7 |
| 32 | 9 a |  | $3^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 | 0.5 | 65 |
| 33 | 9a |  | $3^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 | 1 | 64 |
| 34 | 9 a |  | $3^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 | 1 | 71 |
| 35 | 9 a |  | $3^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 | 2 | 52 |
| 36 | 10a | 65086-02-4 | $4^{\prime}-\mathrm{NO}_{2}$ | E/M | 3 | 1 | 0.5 | 65 |
| 37 | 11a | 65086-03-5 | $4^{\prime}-\mathrm{CN}$ | E/M | 24 | 1 | 0.5 | 82 |
| 38 | 12a | 65086-04-6 | $2{ }^{\prime}-\mathrm{OCH}_{3}$ | E | 3 | 1 | 0 | 0 |
| 39 | 12a |  | $2^{\prime}-\mathrm{OCH}_{3}$ | E | 3 | 1 | 1 | 0 |
| 40 | 13a |  | $3^{\prime}$ - $\mathrm{OCH}_{3}$ | E | 3 | 1 | 0 | 38 |
| 41 | 13a | 65086-05-7 | $3^{\prime}-\mathrm{OCH}_{3}$ | E | 3 | 1 | 0.5 | 32 |
| 42 | $14 b^{i}$ |  | $4^{\prime}-\mathrm{OCH}_{3}$ | E | 24 |  | 1 | 23 |
| 43 | $14 b^{i}$ |  | $4^{\prime}-\mathrm{OCH}_{3}$ | E | 24 | $1^{18}$ | $1^{8}$ | 17 |
| 44 | 15a | 65085-87-2 | $3^{\prime}-\mathrm{OCOCH}_{3}$ | E | 3 | , | 0 | 36 |
| 45 | 15a |  | $3^{\prime}-\mathrm{OCOCH}_{3}$ | E | 3 | 1 | 0.5 | 44 |
| 46 | 16a | 65085-88-3 | $4^{\prime}-\mathrm{OCOCH}_{3}$ | E | 3 | 1 | 0 | 29 |

${ }^{a}$ See eq 1 for reaction. ${ }^{b}$ E, ether; M, methylene chloride; P, pentane; B, benzene. ${ }^{c}$ Molar ratio of dichloroketene precursor (dichloroacetyl ch.oride) to monosubstitutec benzaldehyde. ${ }^{d}$ Isolated yields of crude materials; adjusted to correct for the presence of small amounts of $\beta, \beta$-dichlorostyrenes and unreacted aldehydes; see text. ${ }^{e}$ In this experiment the dichloroketene was generated at $-78^{\circ} \mathrm{C}$ in the absence of benzaldehyde, then filtered into a solution of benzaldehyde at $-78^{\circ} \mathrm{C}$, and allowed to gradually warm to room temperature. $f$ Only the $\beta, \beta$-dichorostyrene was isolated; see eq $2 .{ }^{g}$ In this experiment the dichloroketene was generated by the dechlorination of trichloroacetyl chloride with activated Zn .
dichloromethylene unit ${ }^{9}$ ) of the characteristic $\beta$-lactone carbonyl absorption frequency of about $1835 \mathrm{~cm}^{-1}$. 4 b The ${ }^{1} \mathrm{H}$ NMR spectra displayed singlet absorption signals for the 2-oxetanone ring hydrogen attached to carbon 4 at 5.68-6.53 ppm , reflecting its benzylic nature and the effects of the adjacent oxy and dichloromethylene groups. The ${ }^{13} \mathrm{C}$ NMR spectra were also in accord with the $\beta$-lactone structures. The mass spectra showed relatively small signals for the molecular ions; the base peaks generally occurred at the isotopic cluster $m / e 110,112,114$ corresponding to the molecular ion of dichloroketene. ${ }^{10}$ In addition to their spectral properties, $\beta$ lactones $8 \mathbf{a}-11 \mathrm{a}$ and 16 a could be purified by recrystallization and, accordingly, were further characierized by consistent elemental analyses. Finally, each of the $\beta$-lactones was de-
carboxylated to provide the corresponding $\beta, \beta$-dichlorostyrenes (see eq 2 ) which were fully characterized.

Inspection of the data in Table I clearly reveals that substituent effects are important. For the cycloadditions involving benzaldehyde it is seen that the yields of 3 -lactone ranged from 29 to $35 \%$ and that the presence of freshly fused zinc chloride had virtually no effect on the yield of the product (entries $1-5$ ); the yield was increased somewhat by employing 2 equiv of the dichloroketene precursor (entries 6-8). Introduction of an electron-donating methyl group on the aromatic ring led to slightly reduced yields ( $19-26 \%$ ) of the corresponding $\beta$-lactones relative to those obtained from benzaldehyde under comparable reaction conditions (entries 9,10 , 13, 14, and 17); again doubling the amount dichloloketene
resulted in higher yields of cycloadduct. Also, in the case of the tolualdehydes, it was found that ether is a better solvent than methylene chloride, pentane, or benzene (ccmpare entires 11,15 , and 18 with 12,16 , and 19 , respectively). With the electron-rich $p$-anisaldehyde the yield of the cycloaddition product (only the decarboxylated $\beta, \beta$-dichlorostyrene could be isolated; see Part B) was about $20 \%$ (entries 42 and 43 ). On the other hand, with $m$-anisaldehyde (which according to Hammett $\sigma$ substituent constants should be slightly electron deficient relative to benzaldehyde ${ }^{11}$ ) the yield of $\beta$-lactone formation was $32-38 \%$ (entries 40 and 41). Results analogous to those obtained for the methoxybenzaldehydes were realized with the acetoxybenzaldehydes (entries 44-46). For the moderately electron-withdrawing chlorine substituents (entries $20-25$ ) the yields of the corresponding isomeric $\beta$ lactones were significantly higher ( $51-59 \%$ ) than those obtained with benzaldehyde. Yields of $\beta$-lactone products were further increased ( $64-85 \%$ ) by the use of the strongly elec-tron-withdrawing nitro or cyano functionalities (entries 26-37). In these cases it was necessary to utilize a mixed solvent system (ether/methylene chloride) in order to circumvent solubility problems encountered with ether alone. Again, it was observed that the presence of zinc chloride had little effect on the yields of $\beta$-lactones (except when 2 equiv were employed).

Clearly, the most striking feature of the data collected in Table I is the unmistakable trend that the more electron withdrawing the substituent on the benzaldehyde is, the higher the yield is for $\beta$-lactone formation. The observed reactivity trend is s:milar to that es:ablished for nucleophilic additions to carbonyl groups, ${ }^{12}$ and sugjests that the dichloroketene is behaving in a nucleophilic manner [i.e., the reaction takes place via the highest occupied molecular orbital (HOMO) of the dichloroketene and the lowest unoccupied molecular orbital (LUMO) of the monosubstituted benzaldehyde ${ }^{13}$ ]. Accordingly, the effects of the aryl substituents on the cycloaddition process are represented better by Scheme II than by Scheme I. ${ }^{6}$

A possible explanation for the interesting results obtained for the cycloaddition reactions tabulated in Table I is that dichloroketene is not the reactive species but rather that the chloroacetyldichloro carbanion initiates the cycloaddition process by nucleophilically attacking the aldehyde carbonyl group; subsequent or perhaps simultaneous displacement of the acyl chloride by the aldehyde oxygen would provide the $\beta$-lactone structure (Scheme III). ${ }^{14}$ In order to test this interpretation, dichloroketene was generated at $-78^{\circ} \mathrm{C}$ in the absence of benzaldehyde by the addition of an ether solution of triethylamine to an ether solution of dichloroacetyl chloride, which resulted in the immediate precipitation of triethylamine hydrochloride; the dichloroketene solution was then filtered into a solution of benzaldehyde at $-78^{\circ} \mathrm{C}$ and the reaction mixture allowed to warm to room temperature. The $35 \%$ yield

Scheme III


Scheme IV

of $\beta$-lactone 1 a from this experiment (Table I, entry 5) was essentially the same as the $32 \%$ yield (Table I, entry 1) of 1a obtained when the reaction was carried out according to the general procedure (see the Experimental Section). Significantly, a nearly quantitative yield of the triethylamine hydrochloride by-product was isolated as the filtration residue. Therefore, it appears that dichloroketene is, in fact, the reactive intermediate in the cycloaddition process.

From the information presently available, it is not possible to ascertain whether the cycloadditions involving monosubstituted benzaldehydes and dichloroketene proceed in concerted or stepwise fashions. There is, of course, compelling evidence which indicates that the reactions between ketenes and double-bond-containing compounds to give four-membered cycloadducts take place in a concerted manner. ${ }^{2,3,15}$ Of the two orbital symmetry-allowed processes (the ${ }_{\pi} 2_{s}+{ }_{x} 2_{a}$ process ${ }^{15}$ and the $\pi_{\pi}+{ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}$ process ${ }^{2 b}$ ) currently relied upon to rationalize the results of ketene cycloadditions, the six-electron ${ }_{\pi} 2_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}$ mechanism is particularly well suited to rationalize the remarkably sensitive substituent effects discovered in the present investigation. In this pictorial representation of the transition state (Scheme IV), an orbital containing a pair of nonbonding electrons from the ketene carbonyl oxygen overlaps with the $p_{y}$ orbital of the central carbon of the ketene and imparts enhanced electron density to the terminal (chlorine-bearing) carbon of the ketene (thus providing the resonance hybrid C ); overlap of the electron-rich

$p_{y}$ orbital of the terminal carbon of the ketene with the $p_{y}$ orbital of the carbonyl carbon of the substituted benzaldehyde, followed immediately (or simultaneously if the process is absolutely concerted) by overlap of the $p_{y}$ orbital of the carbonyl oxygen of the aldehyde with the $p_{z}$ orbital of the central carbon of the ketene, leads to the $\beta$-lactone cycloadduct. The alternative ${ }_{\pi} 2_{s}+{ }_{\pi} 2_{\mathrm{a}}$ concerted mechanism ${ }^{15}$ cannot be ruled out; however, it would not appear to be able to account for the observed substituent effects in as satisfying a manner as the ${ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}$ mechanism does.

## Part B

The thermally induced decarboxylation of a $\beta$-lactone is a very convenient and efficient synthetic method for the stereospecific introduction of a double bond in an organic molecule. ${ }^{16}$ Previous studies have shown for 2-oxetanone itself that the thermal decomposition in the gas phase is a first-order reaction and produces only ethylene and carbon dioxide; in addition, the presence of nitric oxide has no effect on the reaction, implicating a nonradical pathway from reactant to

Table II. Experimental Conditions and Results for the Preparation of $\beta, \beta$-Dichlorostyrenes by the Decarboxylation of $\beta$-Lactones ${ }^{a}$

| Compd | Registry no. | X | Temp, ${ }^{\circ} \mathrm{C}$ | Yield, ${ }^{b}$ \% | $\begin{gathered} \mathrm{Bp}, \\ { }^{\circ} \mathrm{C} \text { (Torr) } \\ \hline \end{gathered}$ | Mp, ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 b | 698-88-4 | H | 117 | 71 | 53-54 (0.25) ${ }^{\text {c }}$ |  |
| 2 b | 65085-89-4 | 2'- $\mathrm{CH}_{3}$ | 110 | 73 | 103-105 (2) |  |
| 3b | 65085-90-7 | $3^{\prime}-\mathrm{CH}_{3}$ | 95 | 78 | 117-125 (2) |  |
| 4 b | 4714-37-8 | $4^{\prime}-\mathrm{CH}_{3}$ | 110 | 70 | 110-127 (2) ${ }^{\text {d }}$ | $35-37{ }^{\circ}$ |
| 5 b | 56772-79-3 | $2^{\prime}-\mathrm{Cl}$ | 165 | 69 | 63-64 (0.29) |  |
| 6b | 65085-92-9 | $3^{\prime}-\mathrm{Cl}$ | 168 | 66 | 69-70 (0.32) |  |
| 7b | 5263-17-2 | $4^{\prime}$ - Cl | 165 | 78 | 71-72 (0.38) ${ }^{\prime}$ |  |
| 8b | 51991-50-5 | $2^{\prime}-\mathrm{NO}_{2}$ | $120^{\text {g }}$ | 21 |  | 4E-46 |
| 9b | 65085-93-0 | $3^{\prime}-\mathrm{NO}_{2}$ | $175^{h}$ | 73 |  | $5 \mathrm{E}-55$ |
| 10 b | 5281-22-1 | $4^{\prime}-\mathrm{NO}_{2}$ | $175^{h}$ | 70 |  | $9{ }^{1}-92^{\text {i }}$ |
| 11 b | 65085-94-1 | $4^{\prime}-\mathrm{CN}$ | $175^{h}$ | 86 |  | 7E-76 |
| 13b | 65085-95-2 | $\left.3^{\prime}-1\right)^{\prime} \mathrm{CH}_{3}$ | 87 | 74 | 156-158 (3) |  |
| 14b | 41448-64-0 | $4^{\prime}$ - $)^{\prime} \mathrm{OCH}_{3}$ | $24^{j}$ | 23 | $85-86(0.50)^{k}$ | 2?-29 |
| 15b | 65085-97-4 | $3^{\prime}-\mathrm{OCOCH}_{3}$ | 87 | 57 |  |  |
| 16b | 65085-91-8 | $4^{\prime}$ - $\mathrm{JCOCH}_{3}$ | 95 | 63 |  | 33-35 |

${ }^{a}$ See ec 2 for reaction. ${ }^{b}$ Isolated yield 'not optimized) of purified material. ${ }^{c}$ Lit. ("Dictionary of Organic Compounds", 4th ed, Vol. 2, Oxford University Press, New York, N.Y., 1965, p 1000) 103-104 ${ }^{\circ} \mathrm{C}$ ( 15 Torr). ${ }^{d}$ Lit. ${ }^{20 \mathrm{~g}} 110{ }^{\circ} \mathrm{C}$ ( 15 Torr). ${ }^{e}$ Lit. ${ }^{20 \mathrm{a}} 40-41^{\circ} \mathrm{C}$. $f$ Lit. ${ }^{20 \mathrm{~d}} 138{ }^{\circ} \mathrm{C}$ ( 5 Torr). ${ }^{g}$ In refluxing tetrachloroethylene. ${ }^{h}$ In perchlorobuta-1,3-diene. ${ }^{i}$ Lit. $.^{20 i} 93-94{ }^{\circ} \mathrm{C} .{ }^{j}$ Product isolated directly from the cycloaddition reaction (eq 1); see text. ${ }^{k}$ Lit. ${ }^{201} 100^{\circ} \mathrm{C}$ ( 12 Torr).
products. ${ }^{17}$ Furthermore, for substrates wherein the stereochemistry of the reaction could be examined, it was found that the decarboxylations are stereospecific cis eliminations. ${ }^{18}$ Finally, a few years ago, it was reported that halogenated 2 oxetanones are less susceptible toward decarboxylation than other 2 -oxetanones. ${ }^{19}$ In the present investigation it has been found that the nature and position of a substituent on the aromatic ring of a 3,3-dichloro-4-phenyloxetan-2-one exert substantial influence on the rate of decarboxylation (eq 2).


As indicated in Part A, for the reaction involving $p$-methoxybenzaldehyde and dichloroketene, only the $\beta, \beta$-dichlorostyrene 14 b was isolated, demonstrating that the intermediate $\beta$-lactone 14 a is extremely susceptible toward decarboxylation, even at room temperature. On the other hand, it was found that for the $p$-nitrophenyl-substituted $\beta$-lactone 10 a , prolonged heating at $175-180^{\circ} \mathrm{C}$ was necessary to carry out to completion the decarboxylative conversion to the desired $\beta, \beta$-dichlorostyrene 10b. Clearly, substituent effects are very important for the reactions of eq 2 . The other aryl-substituted $\beta$-lactones available in this study responded to thermal activation with decarboxylation performances within the limits mentioned above for 10a and 14a (Table II). In all cases (except for the o-nitropheryl $\beta$-lactone 8a) the decarboxylations proceeded smoothly and provided the $\beta, \beta$-dichlorostyrenes in good yields. The $\beta, \beta$-dichlorostyrenes were easily purified by distillation and/or chromatography, and their structures were established by a combination of spectral properties. ${ }^{8.20}$

Qualitat:vely, the following relative crders of susceptibility toward decarboxylation for the various families of isomeric substituents were found: $p-\mathrm{OCH}_{3} \gg m-\mathrm{OCH}_{3}: p-\mathrm{CH}_{3}>m$ $\mathrm{CH}_{3}, o-\mathrm{CH}_{3} ; p-\mathrm{Cl}>m-\mathrm{Cl}, o-\mathrm{Cl} ; p-\mathrm{NO}_{2}<m-\mathrm{NO}_{2}<o-\mathrm{NO}_{2}$. Furthermore, it was qualitatively observed that $p-\mathrm{OCH}_{3} \gg$ $p-\mathrm{CH}_{3}>p-\mathrm{H}>p-\mathrm{Cl}>p-\mathrm{NO}_{2}$.

In order to gain some quantitative insight on the nature of the substituent effects, the kinetics of the decarboxylation of the parent phenyl-substituted $\beta$-lactone la and its three monochlorophenyl derivatives, $5 \mathbf{a}-7 \mathrm{a}$, were examined in detail. The rates of decarboxylation of these materials are of such magnitudes that they can be determined conveniently with NMR spectroscopy by measuring the disappearance of the singlet associated with the proton attached to carbon 4 of the $\beta$-lactone ring and the appearance of the singlet for the vinyl proton of the $\beta, \beta$-dichlorostyrene product. Fortunately, for $\mathbf{1 a}, \mathbf{b}$ and $\mathbf{5 a}, \mathbf{b}-\mathbf{7 a} \cdot \mathbf{b}$ the critical ${ }^{1} \mathrm{H}$ NMR signals were each easily recognizable and well separated from one another as well as from the signals for the aromatic protons. By employing this technique it was not necessary to enploy an internal standard; furthermore, the small amounts of impurities present in the $\beta$-lactone starting materials did not interfere with the kinetic analyses. The experimental procedure utilized for the rate studies was adapted from the literature. ${ }^{2 b}$ The neat $\beta$-lactone, in an NMR tube, was placed in a constant temperature bath, heated for a definite period of time, placed in an ice water bath to quench the decarboxylation reaction, analyzed by recording the NMR spectrum and obtaining multiple integrations of the signals for the critical protons, and then returned to the constant temperature bath for further reaction.

The results of the kinetics experiments are presented in Table III. The first-order rate constants were obtained from least-squares plots of the data. The thermodynamic properties (Table IV) of the decarboxylation reactions were calculated from the Arrhenius equation plots. A plot of the logarithms of the rate constants vs. $\sigma^{+}$substituent constants ${ }^{21}$ gave a least-squares line ( $r=0.998$ ) with a slope ( $\rho$ value) of $-3.07 .{ }^{22}$ The sign and magnitude of $\rho$ indicate the accumulation of considerable positive character at the benzylic carbon in the transition state of the decarboxylation reaction; the fact that a linear correlation of the rate was obtained with $\sigma^{+}$constants indicates that substituents can interact via resonance with the reactive site. These considerations are suggestive of a mechanistic interpretation like that shown in Scheme $V$ (illustrated with the $p$-methoxyphenyl system). That the dipolar species 14 c is the transition state for the decarboxylation reaction is indicated by $\Delta S^{=}$values (Table IV) which are virtually zero, consistent with a concerted unimolecular elimination process. ${ }^{23}$ Furthermore, attempts to intercept the dipolar species 7 c with either electron-rich or electron-deficient olefins ( $n$ -

Table III. Rate Constants for the Decarboxylation of 3,3-Dichloro-4-phenyloxetan-2-one and Its Three Monochlorophenyl Derivatives at Various

Temperatures ${ }^{a, b}$

| Compd | $\mathbf{X}$ | Temp, <br> ${ }^{\circ} \mathrm{C}$ | $10^{5} k$, <br> $\mathbf{s}^{-1}$ | $r^{c}$ |
| :---: | :---: | ---: | :--- | :--- |
| $\mathbf{1 a}$ | $\mathbf{H}$ | 76 | 1.92 | 0.998 |
| $\mathbf{1 a}$ | H | 82 | 3.06 | 0.998 |
| $\mathbf{1 a}$ | H | 85 | 3.69 | 0.998 |
| $\mathbf{5 a}$ | $2^{\prime}-\mathrm{Cl}$ | 104 | $0.294^{d}$ | 0.997 |
| $\mathbf{5 a}$ | $2^{\prime}-\mathrm{Cl}$ | 130 | 2.81 | 0.997 |
| $\mathbf{5 a}$ | $2^{\prime}-\mathrm{Cl}$ | 144 | $7.61^{\boldsymbol{e}}$ | 0.994 |
| $\mathbf{6 a}$ | $3^{\prime}-\mathrm{Cl}$ | 86 | $0.222^{f}$ | 0.991 |
| $\mathbf{6 a}$ | $3^{\prime}-\mathrm{Cl}$ | 104 | 1.03 | 0.997 |
| $\mathbf{6 a}$ | $3^{\prime}-\mathrm{Cl}$ | 130 | 7.61 | 1.000 |
| 7a | $4^{\prime}-\mathrm{Cl}$ | 72 | 1.29 | 0.999 |
| 7a | $4^{\prime}-\mathrm{Cl}$ | 86 | 2.52 | 0.997 |
| 7a | $4^{\prime}-\mathrm{Cl}$ | 88 | 2.74 | 1.000 |
| 7a | $4^{\prime}-\mathrm{Cl}$ | 98 | $6.00^{g}$ | 0.989 |

${ }^{a}$ See eq 2 for reaction. ${ }^{b}$ The estimated precision for the rate constants is $\pm 4 \%$ or better except as noted. ${ }^{c}$ Correlation coefficient for least-squares plots of rate data. ${ }^{d}$ The estimated precision is $\pm 11 \%$. ${ }^{e}$ The estimated precision is $\pm 6 \%$. I The estimated precision is $\pm 14 \%$. ${ }^{6}$ The estimated precision is $\pm 9 \%$.

butyl vinyl ether or methyl acrylate, respectively) and produce the substituted valerolactones 17 were unsuccessful; only the

$17 \mathrm{a}, \mathrm{X}=\mathrm{H} ; \mathrm{Y}=\mathrm{CO}_{2} \mathrm{CH}_{3}$
b, $\mathrm{X}=\mathrm{OC}_{4} \mathrm{H}_{9} ; \mathrm{Y}=\mathrm{H}$
$\beta, \beta$-dichlorostyrene 7b was produced in each experiment. ${ }^{24,25}$
In line with the facile decarboxylation of the $p$-methoxyphenyl $\beta$-lactone 14 a are the results for the cycloaddition reactions of dichloroketene with furfural or thiophene 2-carb-
oxaldehyde. In each case only the decarboxylated materials 18b and 19b were isolated from the reaction mixtures, re-


18b, $X=O$
19b, X = S
flecting the electron-donating abilities via resonance of the heteroatoms. The low yields ( $9 \%$ for 18 b and $17 \%$ for $19 b$ ) are also in accord with the electronic effects discussed previously in Part A.

The low relative rate of decarboxylation found for the ochlorophenyl $\beta$-lactone is interesting. In order for the aromatic system to interact via resonance with the electron-deficient benzylic carbon and thus to facilitate the decarboxylation, the conformation of the $\beta$-lactone must approach that shown in Newman projection I (or its rotational isomer II). For the

meta- and para-substituted substrates, X in formulas I and II is hydrogen; but for the ortho-substituted derivative, X is the substituent, and accordingly additional steric strain is imparted to the system. Apparently, this enhanced steric hindrance [between the substituent and either the dichloromethylene unit (I) or the $\beta$-lactone hydrogen (II)] is sufficiently great so as to drastically diminish any resonance stabilization of the transition state; only the electron-withdrawing inductive effect of the chlorine remains operative, and therefore the rates of decarboxylation of the $o$ - and $m$-chlo-rophenyl-substituted $\beta$-lactones are quite similar. In contrast to the isomeric chlorophenyl-substituted $\beta$-lactones are the decarboxylations of the isomeric nitrophenyl derivatives. Both the $m$ - and $p$-nitro systems 9 a and 10 a were totally unreactive when heated for several hours in refluxing tetrachloroethylene (bp $120^{\circ} \mathrm{C}$ ); on the other hand, the $o$-nitrophenyl compound 8a underwent decarboxylation under these conditions. However, the decarboxylation of $8 \mathbf{a}$ was not very clean and only a $21 \%$ yield of the $\beta, \beta$-dichlorostyrene $\mathbf{8 b}$ was obtained; this result may be compared to the decarboxylations of $9 a$ and 10a which took place smoothly in hexachlorobutadiene at $175-180^{\circ} \mathrm{C}$ to give the $\beta, \beta$-dichlorostyrenes 9 b and $\mathbf{1 0 b}$ in yields of 73 and $70 \%$, respectively. It should also be noted that $\beta$-lactone 8a decomposes to an intractable material merely upon standing (even in a freezer), while 9a and 10a are indefinitely stable at room temperature. Perhaps the proximity of the $o$-nitro group to the $\beta$-lactone is responsible for both its relatively facile decarboxylation to the $\beta, \beta$-dichlorostyrene

Table IV. Absolute and Relative Rates and Thermodynamic Values for the Decarboxylation of
3,3-Dichloro-4-phenyloxetan-2-one and Its Three Monochlorophenyl Derivatives at $100{ }^{\circ} \mathrm{C}^{a, b}$

| Compd | X | $10^{5} k$, <br> $\mathrm{s}^{-1}$ | $k_{\text {rel }}$ | $\Delta H, \neq \neq$ <br> $\mathrm{kcal} / \mathrm{mol}$ | $\Delta S, \neq$ <br> $\mathrm{cal} /(\mathrm{mol} \mathrm{K})$ | $r^{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 a}$ | H | 10.4 | 50 | 17.4 | $5.07 \times 10^{-4}$ | 0.999 |
| 5a | $2^{\prime}-\mathrm{Cl}$ | 0.208 | 1 | 24.7 | $1.91 \times 10^{-1}$ | 0.999 |
| $\mathbf{6 a}$ | $3^{\prime}-\mathrm{Cl}$ | 0.647 | 3 | 17.1 | $3.0 \mathrm{C} \times 10^{-2}$ | 1.000 |
| 7a | $4^{\prime}-\mathrm{Cl}$ | 5.92 | 28 | 13.9 | $2.59 \times 10^{-6}$ | 0.982 |

[^0]
(Scheme VI) and its spontaneous decomposition to uncharacterized materials.

## Experimental Section

Materials. Benzaldehyde, $o-, m$-, and $p$-chlorobenzaldehyde, $o-$, $m$-, and $p$-tolualdehyde, and $0-, m$-, and $p$-anisaldehyde were commercially available and were distilled before use; o-, $m-$, and $p-$ nitrobenzaldehyde and $p$-cyanobenzaldehyce were commercially available and were used without prior treatment; $m$ - and $p$-acetoxybenzaldehyde were prepared and purified according to literature methods. ${ }^{26}$ Dichloroacetyl chloride was commercially available and used as received.
General Comments. Melting points, obtained with a ThomasHoover capillary melting point apparatus, and boiling points are uncorrected. 'H NMR spectra were obtained with a Varian Associates T-60 instrument employing deuteriochloroform solutions with internal tetramethylsilane ( $\mathrm{Me}_{4} \mathrm{Si}$ ) as reference. ${ }^{13} \mathrm{C}$ NMR spectra were obtained with a Varian CFT- 20 spectrometer utilizing ${ }^{1} \mathrm{H}$ decoupling at 80 MHz and simultaneous ${ }^{13} \mathrm{C}$ observation at 20 MHz ; in all cases the solvert was deuteriochloroform with irternal Mes ${ }_{4} \mathrm{Si}$. Infrared spectra were recorded with a Perkin-Elmer 457 spectrophotometer; liquid samples were measured as neat films, while solid materials were measured as approxi nately $10 \%$ solutions in chloroform. Mass spectra were obtained with a Du Pont CEC 21104 mass spectrometer operated at 70 eV and ambient source temperatures. Ultraviolet spectra were recorded on a Cary 14 spectrophotometer. High-pressure liquid chromatography was performed with (1) a Waters Associates ALC-201 HPLC fit-ed with a $4 \mathrm{ft} \times 3 / 8$ in. stainless steel column packed with Porasil-A using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent or (2) a Waters Associates Prep 500 system equipped with a PrepPak- $500 /$ silica column with $2: 1$ hexane/methylene chloride as the solvent system. Gas chromatographic analyses and collections were carried out with a Varian Aerograph 1520 instrument equipped with a $5 \mathrm{ft} \times 0.25 \mathrm{in}$. aluminum column packed with $20 \%$ SE-30 on Chromosorb W.

General Procedure for $\beta$-Lactone Preparation. To a $500-\mathrm{mL}$ three-necked round-bottomed flask equippec with an addition funnel charged with $15.0 \mathrm{~mL}(10.89 \mathrm{~g}, 0.108 \mathrm{~mol})$ of anhydrous triethylamine diluted to 50 mL with anhydrous diethyl ether, a mechanical stirrer, and a Claisen adapter fitted with a thermometer and an Allihn condenser whose efflux end was connected to a nitrogen bubbler was added 0.100 mol of aldehyde, 100 mL of anhydrous ether, a specified amount of fused $\mathrm{ZnCl}_{2}{ }^{27} 100 \mathrm{~mL}$ of anhydrous diethyl ether, 10.0 mL ( $15.32 \mathrm{~g}, 0.104 \mathrm{~mol}$ ) of dichloroacetyl chloride, and 20 mL of anhydrous diethyl ether. The temperature of the reaction mixture was maintained at $22-24^{\circ} \mathrm{C}$ with a room temperature water bath or at $3-5{ }^{\circ} \mathrm{C}$ with an ice water bath. With vigorous stirr:ng under a nitrogen atmosphere the triethylamine solution was discharged dropwise over an approximately 1-h period of time. When addition was complete, the mixture was stirred for an additional 1 h , after which time the reaction was processed by vacuum filtration, the residue was washed with diethyl ether, and the combined filt:ate and washings were washed with water ( $1 \times 50 \mathrm{~mL}$ ), dried with anhydrous magnesium sulfate, and concentrated on a rotary evaporator to provide the crude product contaminated with dichloroketene polymeric materials, unreacted aldehyde, and other minor unidentifed impurities) which was treated with a total of 200 mL of pentane to remove polymeric materials. The resulting pentane solution was then washed with $\mathrm{H}_{2} \mathrm{O}$ ( $1 \times 50 \mathrm{~mL}$ ), sa:urated aqueous sodium bisulfite solution ( $4 \times 50 \mathrm{~mL}$ ), $\mathrm{H}_{2} \mathrm{O}(1 \times 50 \mathrm{~mL})$. and saturated aqueous sodium bicarbonate solution $(2 \times 50 \mathrm{~mL})$, dried over anhydrous magnesium sulfate, stirred with activated carben, and concentrated on a rotary evaporator to provide the desired $\beta$-lactone.

For the nitrcphenyl and cyanophenyl systems the reaction solvent was 100 mL of methylene chloride and 175 mL of ether in order to circumvent the insolubility of the starting aldehyde in ether alone. In addition, in the processing of the $\beta$-lactones 8a-11a, 15a, and 16a, ether rather than pentane was used because of solubility considerations.

General Procedure for Decarboxylation of $\beta$-Lactones. In a round-bottomed flask equipped with a condenser and a magnetic stirring bar was placed an amount of a $\beta$-lactone. The flask was placed in a heated oil bath until NMR/IR spectra revealed that the reaction was complete. The $\beta, \alpha$-dichlorostyrene was then isolated ar.d purified by distillation or chromatography.
For the nitrophenyl and cyanophenyl systems the decarboxylations were carried out in cilorocarbon solvents (tetrachloroethy ene for $8 \mathbf{a}$ and perchlorcbutad:ene for $9 \mathrm{a}-11 \mathrm{a}$ ) since attempts to effect the reaction with the pure materials led only to intractable products.

Registry No.-18b, 65085-98-5; 19b, 65085-96-3; benz̃aldehyde, 100-52-7; $o$-chlorobenzaldehyde, 89-98-5; $m$-chlorobenzaldehyde, 587-04-2; $p$-chlorobenzaldehyde, 104-88-1; o-tolualdehyde, 529-20-4; $m$-tolualdehyde, 620-23-5; $p$-tolualdehyde, 104-87-0; 0 -anisaldehyde. 135-02-4; $m$-anisaldehyde, 591-31-1; $p$-anisaldehyde, $1 \approx 3-11-5 ; 0$ nitrobenzaldehyde, 552-89-6; $m$-nitrobenzaldehyde, 99-61-6; $p$-nitrobenzaldehyde, $555-16-8 ; p$-cyanobenzaldehyde, $105-07-7 ; m$-acetoxybenzaldehyde, 34231-78-2; p-acetoxybenzaldehyde, 878-00-2; dichloroketene, 4591-28-0.
Supplementary Material Available: Spectral and analytical data for the $\beta$-lactones $1 \mathbf{a}-16 \mathbf{a}$ and $\beta, \beta$-dichlorostyrenes $1 \mathbf{b}-16 \mathbf{b}$ ( 12 pages). Ordering information is given on any current masthead prage.

## References and Notes

(1) The results described in this report were presented at the International Symposium on the Chemistry of Strained Rings, Binghamton, N.Y., May 27-29, 1977.
(2) (a) W. T. Brady and H. R. O'Neal. J. Org. Chem., 32, 612, 2704 (1967); (b) J. E. Baldwin and J. A. Kapecki, J. Am. Chem. Soc., 92, 4868, 4874 (1970); (c) A. Hassner, R. M. Cory, and N. Sartoris, ibid., 98, 7698 ('976).
(3) (a) W. T. Brady and O. H. Waters, J. Org. Chem., 32, 3703 (1967); (b) W. T. Brady and R. Rכe. Jr., J. Am. Chem. Soc., 92, 4618 (1970); (c) W. T. Brady and E. F. Hoff. Jr., J. Org. Chem., 35, 3733 (1970); (dı L. Ghosez, R. Montaigne, A. Zoussel, H. Vanlierde, and P. Mollet, Tetrahedron, 27, 615 (1971).
(4) (a) H. E. Zaugg, Org. React., 8, 314 (1954); (b) Y. Etienne and N. Fischer. "Heterocyclic Compounds with Three- and Four-membered Rings", A. Weissberger. Ed., Wiley, New York, N.Y., 1964, Chapter 6; (c) H. Ulrich. "'Cycloaddition Reactions of Heterocumulenes'", Academic Press, New York, N. Y., 1967, pp 64-74; (d) L. L. Muller and J. Hamer, " ${ }^{\text {. }, 2-C y c l o a d-~}$ dition Reactions': Wiley. New York, N.Y., 1967, pp 139-168.
(5) For reports dealing with $\beta$-lactones prepared from haloketenes, see (a) D. Borrmann and R. Wegler, Chem. Ber., 99, 1245 (1966) 100, 1575 (1967); 102, 64 (1969); (b) W. T. Brady and L. Smith, Tetrahearcn Left., 2963 (1970); J. Org. Chem., 36, 1637 (1971); (c) W. T. Brady and A. D. Patel, J. Heterocycl. Chem., 8, 739 (1971): Synthesis, 565 (1972).
(6) The intent of Schemes I and II is not to suggest that the cyclyaddition reactions proceed in the stepwise manner shown but rather to nerely point out the two contrasting directions of substituent effects.
(7) T. H. Lowry and <. S. Richardson, "Mechanism and Theory in Organic Chemistr;'' ${ }^{\prime}$, Harper and Row, New York, N.Y., 1976, pp 41i-419.
(8) Complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance, infrared. ultraviolet. and mass spectral data appear in the Supplementary Material section. For a comple:e discussion of the interesting ${ }^{13} \mathrm{C}$ NMR data, see H. O. Krabbenhoft, J. Org. Chem., in press.
(9) R. M. Silverstein and G. C. Bassler, "Spectrometric Identification of Organic Compounds'", 2nj ed, Wiley, New York, N.Y., 1967, pp 88, 90, 92.
(10) O. L. Chapman and W. R. Adams. J. Am. Chem. Soc., 90, 2333 (1968).
(11) E. S. Gould, "Mezhanism and Structure in Organic Chemistry". Holt, Rinehart, and Winston, New York, N.Y., 1959, p 221.
(12) C. K. Ingold, 'Structure and Mechanism in Organic Chemistry', 2nd ed, Cornell University Press, Ithaca, N.Y., 1969, pp 994-1015; W. S. Ide and J. S. Buck, Org. React., 4, 269 (1948).
(13) I. Fleming. "Frortier Orbitals and Organic Chemical Reactions" , Wiley, New York, N.Y.. 1976, pp 141-143.
(14) (a) R. Giger, M. Rey, and A. S. Dreiding, Helv. Chim. Acta, 51, 1466 (1968); (b) J. M. Lavanish. Tetrahedron Lett., 6003 (1968); (c) W. T. Brady and R. Roe, Jr., ibid., $1 \subseteq 77$ (1968); (d) W. T. Brady, R. Roe, Jr., E. F. Hoff, and F. H. Parry III, J. Amn Chem. Soc., 92, 146 (1970); (e) W. T. Brady, F. H. Parry III, R. Roe, Jr., E. F. Hoff, and L. Smith, J. Org. Chem., 35, 1515 (1970); (f) W. T. Brady and G. A. Scherubel, J. Am. Chem. Soc., 95, 7447 (1973); (g) J. Org. Chem., 39, 3790 (1974).
(15) R. B. Wocdward and R. Hoffmann, "The Conservation of Orbital Symmetry". Verlag Chemie, GmbH. Weinheim/Bergstr, 1970. p 68.
(16) W. Adam, J. Baeza. and J.-C. Liu, J. Am. Chem. Soc., 94, 2000 (1972).
(17) T. L. James and S. A. Wellington, J. Am. Chem. Soc., 91, 743 (1969).
(i8i D. S. Noyce and E. H. Banitt, J. Org. Chem., 31, 4043 (1966).
(19) W. T. Brady and A. D Pet3I, J. Org. Chem., 37, 3536 (1972).
(20) Alternative mett ods for the preparation of $B, \beta$-dichlorostyrenes include those reported by (a) T. Zincke and F. Schwabe, Chem. Ber., 41, 897 (1908); (b) W. Ried and H. Appel, Justus Liebigs Ann. Chem., 679, 51 (1964); (c) L. A. Errede and J. P. Cassidy, J. Org. Chem., 28, 1059 (1963); (d) V. M. Naiden and A. V. Dombrovskii, J. Gen. Chem. USSR, 32, 1256 (1962); J. Org. Chem. USSR, 1, 2037 (1965); (e) E. Kielhmann, R. J. Bianchi, and W. Reeve. Can. J. Chem., 47, 1521 (1969); (f) D. Seyterth, H. D. Simmons, Jr., and G. Singh, J. Organomet. Chem., 3, 337 (1965); (g) I. Moritani, Y. Fujiwara, and S. Danno, ibid., 27, 279 (1971); (h) J. Villieras, C. Bacquet, and J. F. Normant, ibid., 97, 355 (1975); (i) A. J. Speziale and
K. W. Ratts, J. Am. Chem. Soc., 84, 854 (1962); (j) R. Rabincwitz and R. Marcus, ibid., 84, 1312 (1962); (k) R. Brown, Ph.D. Thesis. University of Maryland, 1968 [Diss. Abstr. B, 29, 3670 (1969)]; (I) A. Merz, Angew Crem., Int. Ed. Engl., 16, 57 (1977).
(21) C. D. Ritchie and W. F. Sager. "Progress in Physical Organic Chemistry". Vol. 2, S. G. Cohen. A. Streitwieser, Jr., and R. W. Taft, Ed., 'Niley, New York. N.Y., 1964. pp 334-337.
(22) L. P. Hammett, ''Physical Organic Chemistry"', 2nd ed, McGra w-Hill, New York, N.Y., 1970; J. Hine, "Structural Effects on Equilibria in Organic Chemistry". Wiley, New York, N.Y.. 1975.
(23) J. M. Harris and C. C. Wamser, "Fundamentals of Organic Reaction and P. D. Bartett, J. Am. Chem. Soc., 92, 6357 (1970)]; unfortunately, we were unable to procure any of the reagent.
(25) For an alternative picture of the transition state for the thermal decarboxylation of a $\boldsymbol{\beta}$-lactone, see S. Mageswaran and M U. S. Sultanbawa. J. Chem. Soc., Perkin Trans. 1, 884 (1976).
(26) F. D. Chattaway, J. Chem. Soc., 2495 (1931); A. Williams ant R. A. Naylor, J. Chem. Soc. B. 1967 (1971).
(27) H. O. House. D. S. Crumrine, A. Y. Teranishi, and H. D. Olmstead, J. Am. Chem. Soc., 95, 3310 (1973).

# Substituent Effects on Reductive Cleavage of $\boldsymbol{N}$-Methylarenesulfonanilides. 

 Cleavage by Sodium Anthracene and Electrochemically at the Vitreous Carbon ElectrodeK. Saboda Quaal, ${ }^{1 \mathrm{a}}$ Sungchul Ji, ${ }^{1 \mathrm{a}}$ Young M. Kim, ${ }^{\text {1b }}$ W. D. Closson, ${ }^{\text {la }}$ and Jon A. Zubieta ${ }^{1 \mathrm{a}}$<br>Departments of Chemistry and Physics, State University of New York at Albany, Albariy, New York 12222

Received August 25, 1977


#### Abstract

The relative rates of cleavage of ten para-substituted $N$-methylbenzenesulfonanilides by sodium anthracene in tetrahydrofuran at $25^{\circ} \mathrm{C}$ were determined. The rates of those with less electronegative substituents ( $p$-dimethylamino through $p$-fluoro) give a moderately good correlation with $\sigma$ constants, $\rho=1.91$ ( $r=0.987$ ). More strongly electron-withdrawing substituents, however, result in a cleavage rate much slower than expected due to reduction of the substituent rather than of the sulfonyl group. Electrochemical reduction in acetonitrile solution at a vitreous carbon electrode proceeds via an :rreversible two-electron process. The peak potentials of all the sulfonamides give an excellent correlation with $\sigma^{n}$ constants, $\rho=1.07 \mathrm{~V}(r=0.995)$. Whether this is an eec or ece process is discussed, as well as possible causes for the large differences between homogeneous and electrochemical reduction. A suggested value of $\sigma^{n}$ for the $p$-methanesulfinyl group is +0.54 .


Arenesulfonamides of secondary amines have been investigated in considerable detail with respec: to their reductive cleavage reactions. ${ }^{2-6}$ Manousek, Exner, દnd Zuman showed that 4-cyanobenzenesulfonamide undergces electrochemical cleavage in aqueous solution at the carben-sulfur bond (eq 1), ${ }^{5}$ while Cottrell and Mann observed only S-N cleavage in

$$
\begin{align*}
\mathrm{ArSO}_{2} \mathrm{NH}_{2}+2 \mathrm{e}+\mathrm{H}^{+} \rightarrow \mathrm{ArH}+- & \mathrm{SO}_{2} \mathrm{NH}_{2} \\
& \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{HSO}_{3}^{-}+\mathrm{NH}_{3} \tag{1}
\end{align*}
$$

electrochemical reduction of several arenesulfonamides in acetonitrile. ${ }^{4}$ They proposed an irreversible, two-electron reduction followed by rapid cleavage to two anions (eq 2).

$$
\begin{equation*}
\mathrm{ArSO}_{2} \mathrm{NR}_{2} \xrightarrow{2 \mathrm{e}} \mathrm{ArSO}_{2} \mathrm{NR}_{2}{ }^{2-} \rightarrow \mathrm{ArSO}_{2}^{-}+-\mathrm{NR}_{2} \tag{2}
\end{equation*}
$$

Asirvatham and Hawley noted that Cottrell and Mann's results could also be explained by either the ece mechanism shown in eq 3 , where the nitrogen- or oxygen-centered radical

$$
\begin{array}{r}
\mathrm{ArSO}_{2} \mathrm{NR}_{2} \xrightarrow{\mathrm{e}}\left(\mathrm{ArSO}_{2} \mathrm{NR}_{2}\right)^{-\cdot} \xrightarrow{\longrightarrow \mathrm{ArSO}_{2}^{-}+\mathrm{NR}_{2}} \\
\text { or } \mathrm{ArSO}_{2}+{ }^{-} \mathrm{NP}_{2}  \tag{3}\\
\text { e } \downarrow \\
\mathrm{ArSO}_{2}^{-}+{ }^{-} \mathrm{NR}_{2}
\end{array}
$$

would be rapidly reduced at a potential less cathodic than that of the initial reduction, or by a rate-determining disproportionation process (eq 4). ${ }^{5}$ Either of these processes would

account for the products and $n$ values reported. ${ }^{4}$ The only arenesulfonamide of a secondary amine ( $N, N$-dimethylnitrobenzenesulfonamide) examined by Asirvatham and Hawley, however, underwent reversible, stepwise reduction, yielding the corresponding d:anion. ${ }^{5}$ Cleavage to amine was not reported. ${ }^{5}$
Kovacs and Ghatak reported that sodium-liquid ammonia reduction of tosylamides leads primarily to C-S cleavage, similar to the results of Manousek et al., ${ }^{5}$ but with a minor pathway involving S-N cleavage. ${ }^{2}$ From their data it was not possible to ascertain more information on the mechanism of cleavage. One might expect that reduction of arenesulfonamides with arene anion radicals in ether solvents might proceed in a fashion similar to that in liquid ammonia, but our earlier work using sodium biphenyl, naphthalene, and anthracene in tetrahydrofuran (THF) and dimethoxyethane (DME) showed only the occurrence of S-N cleavage. ${ }^{3}$ In addition though we found that the selectivity of cleavage of arenesulfonamides in competition experiments was quite different for sodium anthracene vs. sodium naphthalene. ${ }^{3}$ This observation rules out a disproportionation mechanism similar to eq 4 and would be best explained by a mechanism similar to eq 3 , where the initial electron transfer is rate determining. Further study of the relative reactivities of different sulfonamides toward sodium anthracene, which would have been useful in refining the cleavage mechanism, was hampered by poor reproducibility.
In this work we wish to present a study of the relative rates of cleavage of a series of $N$-methylarenesulfonanilides by sodium anthracene in THF, a cyclic voltammetric study of the redox behavior of the same series of sulfonamides using the vitreous carbon electrode in acetonitrile, and a discussion of the similarities and differences of these two types of reduction.

Table I. Relative Rates of Aniline Formation in Sodium Anthracene Cleavage, and Peak Potentials for S-N Reduction of $\boldsymbol{N}$-Methylarenesulfonanilides

| Sulfonanilide ${ }^{a}$ | Registry no. | Relative rate ${ }^{b}$ | $E \text { vs. SCE }$ <br> (V) ${ }^{c}$ |
| :---: | :---: | :---: | :---: |
| 1 (H) | 90-10-8 | 1.0 | -2.45 |
| $2\left(\mathrm{CH}_{3} \mathrm{~S}\right)$ | 64999-90-2 | $1.0 \leqslant$ | -2.33 |
| $3\left(\mathrm{CH}_{3}\right)$ | 599-62-2 | $0.5 \leq$ | -2.59 |
| 4 (F) | 360-09-8 | 0.92 | -2.43 |
| 5 (Cl) | 16358-34-2 | $1.2{ }^{\text {d }}$ | -2.24 |
| 6 (Br) | 64999-91-3 | d | -2.26 |
| $7\left(\mathrm{CH}_{3} \mathrm{O}\right)$ | 16358-36-4 | 0.19 | -2.63 |
| $8\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right]$ | 53973-86-7 | 0.024 | -2.71 |
| $9\left(\mathrm{CH}_{3} \mathrm{SO}\right)$ | 64999-92-4 | 0.63 | -2.04e |
| 10 (CN) | 64999-93-5 | 0.60 | -1.76 ${ }^{\prime}$ |
| $11\left(\mathrm{NO}_{2}\right)$ | 64999-94-6 | 0.078 | $-1.68{ }^{\text {g }}$ |
| $12\left(\mathrm{CH}_{3}\right)^{8}$ |  | $0.45{ }^{\text {h }}$ |  |

${ }^{a}$ The para substituent is given in parentheses. ${ }^{b}$ Reproducibility was $\pm 5 \%$. ${ }^{c}$ Peak potential was measured in the cyclic voltammetric scans on $10^{-3}-5 \times 10^{-3} \mathrm{M}$ solutions of sulfonamide in $10^{-1} \mathrm{M} \mathrm{TBAPF}_{6}$ in acetonitrile at a scan rate of $200 \mathrm{mV} / \mathrm{s}$. ${ }^{d}$ Dehalogenation occurred in competition with S-N cleavage. ${ }^{e}$ Exhibited irreversible peak at -2.73 V as well. / Exhibited reversible peak at -2.37 V in addition. ${ }^{g}$ Also exhibited reversible peak at $-0.86 \mathrm{~V} .{ }^{h}$ Relative rate for $N$-ethyl- $p$-toluenesulfonanilide was used as a reference compound.

## Results

Cleavage with Sodium Anthracene. Originally we had tried to determine the relative rates of cleavage of different sulfonamides by straightforward competition techniques, ${ }^{7}$ which worked well in a similar study of the reductive cleavage of aryl alkanesulfonates. ${ }^{8}$ This technique, adding a small amount of anion radical solution to a solution containing an excess of two or more sulfonamides and determining the amount of reaction of each by measuring the yields of the different amines, easily showed the great differences in selectivity between sodium naphthalene, sodium pyrene, and sodium anthracene. ${ }^{3}$ Attempts to obtain reproducible relative rate data with sodium anthracene, however, were unsuccessful until it was discovered that the selectivity was very sensitive to sodium ion concentration. ${ }^{8}$ It was found that adding a quantity of sodium salt (sodium perchlorate) about equal to the total concentration of sulfonamides (ca. 0.2 M ) in the competition mixture allowed quite reproducible results to be obtained. Without this sodium ion tuffer not only was reproducibility quite poor, but selectivity between different sulfonamides also appeared to be much lower. The poor reproducibility in the absence of sodium buffer is probably a result of rapidly changing reaction rates as the sodium ion concentration changes from 0 to ca. 0.04 M during the competition experiment.
The cause of this effect is almost certainly related to the state of ion pairing of the anthracene anion radical in THF. Both ESR and conductimetry data have shown that sodium anthracene is largely ion paired in THF, ${ }^{10,11}$ and it is to be expected that ion-paired species should be less reactive (and therefore more selective) toward electron-transfer reactions than free ions. ${ }^{12}$ An attractive explanation for our results would be that free anthracene anion radical is present at very low sodium anthracene concentrations and cleaves sulfonamides in a much less discriminating fashion than do ionpaired species; buffering with sodiam perchlorate merely keeps the equilibrium shifted toward ion-paired species throughout the competition experiment. On the other hand, Bank and Bockrath, through a kinetic analysis of the effect of sodium tetraphenylboron on the rate of reaction of sodium anthracene with water in THF, ruled out the presence of sig-


Figure 1. Plot of lcg of relative rates of sulfonamide cleavage by sodium anthracene vs. $\sigma$ constants. Least-squares slope for the first portion, 1.91; correlation coefficient, 0.987 .
nificant amounts of free anthracene ions in concentrations as low as $5 \times 10^{-5} \mathrm{M} .{ }^{13}$ Obviously, further work is necessary to define the role of sodium ion in these reactions.

Arenesulfonanilides $\mathbf{1 - 1 2}$ were prepared by standard


| $\mathrm{X}=\mathrm{H} ; \mathrm{R}=\mathrm{CH}_{3}$ | 7, $\mathrm{X}=\mathrm{OCH}_{3} ; \mathrm{R}=$ |
| :---: | :---: |
| 2, $\mathrm{X}=\mathrm{SCH}_{3} ; \mathrm{R}=\mathrm{CH}_{3}$ | 8. $\mathrm{X}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}=\mathrm{CH}_{3}$ |
| 3. $\mathrm{X}=\mathrm{CH}_{3} ; \mathrm{R}=\mathrm{CH}_{3}$ | 9. $\mathrm{X}=\mathrm{S}(\mathrm{O}) \mathrm{CH}_{3} ; \mathrm{R}=\mathrm{CH}_{3}$ |
| 4. $\mathrm{X}=\mathrm{F}: \mathrm{R}=\mathrm{CH}_{3}$ | 10, $\mathrm{X}=\mathrm{CN} ; \mathrm{R}=\mathrm{C}$ |
| 5, $\mathrm{X}=\mathrm{Cl} ; \mathrm{R}=\mathrm{CH}_{3}$ | 11, $\mathrm{X}=\mathrm{NO}_{2} ; \mathrm{R}=\mathrm{C}$ |
| 6, $\mathrm{X}=\mathrm{Br} ; \mathrm{R}=\mathrm{CH}_{3}$ | 12, $\mathrm{X}=\mathrm{CH}_{3}: \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}$ |

techniques, and their relative rates of reaction with sodium anthracene at $25^{\circ} \mathrm{C}$ in THF in the presence of 0.04 M sodium perchlorate were determined by competition techniques. The relative rate data for all but 6 are presented in Table I.

From the data in Table I it can be seen that neither strong electron-donating nor electron-withdrawing substituents accelerate the rate of cleavage. Indeed, the two least reactive compounds (toward cleavage) are those with dimethylamino and nitro substituents. For the electron-donating substituents (including fluorine), a Hammett plot may be obtained using $\sigma$ constants, with a $\rho$ value of $+1.91(r=0.987)$. Use of either $\sigma^{n}$ or $\sigma^{0}$ gave definitely poorer fits ( $r=0.713$ and 0.957 , respectively). No good correlation of the rates of the sulfonamides with electron-withdrawing substituents could be obtained with any of these substituent parameters (see Figure 1).

The value of $\rho$ is lower than that observed for either of the two steps in S-O cleavage of aryl methanesulfonates (13) with sodium anthracene (ca. +6 for the initial electron-transfer step and +3.0 for the product-forming step). ${ }^{8}$ The initial elec-tron-transfer step in the cleavage of 13 is closest in nature to


13
the rate-controling step in sulfonamide cleavage, and the large difference in reaction constant is striking. In 13 the substituent is also insulated from the sulfonyl group by an additional oxygen atom, which might be expected to attenuate the substituent effect. Probably the best explanation for the large
difference in $\rho$ is that the methanesylfonyl group is inherently less easily reducible than an arenesulfonyl group (alkyl methanesulfonates are not reduced by sodium anthracene but alkyl arenesulfonates are; ${ }^{14}$ likewise, anthracene anion radical readily cleaves arenesulfonanilides, ${ }^{3}$ but methanesulfonanilides react slowly via a proton-abstraction process ${ }^{15}$ ), and thus the transition state occurs earlier on the reaction coordinate for the sulfonanilide reaction.

In the case of the $p$-chlorosulfonamide 5 it was shown that dehalogenated, uncleaved sulfonamide 1 was present in the reaction mixture after the competition experiment was performed. This competition between $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{S}-\mathrm{N}$ cleavage is similar to that observed between $\mathrm{C}-\mathrm{X}$ and S-O cleavage in the reaction of halogenated versions of 13 with arene anion radicals $^{8}$ and certainly causes the measured reactivity to be less than expected. The bromine-substituted sulfonamide 6 would be expected to be more prone to this side reaction and was not examined. Pertinent to this is the fact that titration plots (yield of amine vs. amount of anion radical added) of 5 and 6 with sodium anthracene in 1,2-dimethoxyethane (DME) solution gave slopes of 0.42 and 0.24 , respectively, rather than the value 0.5 expected for $1: 2$ stoichiometry. ${ }^{3}$ This would imply that 5 undergoes some dechlorination prior to S-N cleavage, but that the $p$-chlorobenzenesulfinate ion is fairly stable toward further reaction under these conditions. In the case of 6 the data are probably best interpreted as indicating almost equal reactivity of the $\mathrm{C}-\mathrm{Br}$ and $\mathrm{S}-\mathrm{N}$ bonds, with the reactivity of the $\mathrm{C}-\mathrm{Br}$ bond in $p$-bromotenzenesulfinate ion being considerably less reactive. (The itration plots were measured only to about $30 \%$ of the total theoretical yield of amine. At higher extents of reaction one would expect complications due to the buildup of halogenated sulfinate ion and increasing amounts of reaction of this with the electron donor.)

The other sulfonamides with electronegative substituents ( 9,10 , and 11 ) are also almost certainly undergoing reduction of the substituent in competition with the cleavage reaction at the sulfonyl center. The cleavage that is observed may be occurring by either or both of the mechanisms outlined in eq 5 and 6 . In eq 5 , amine anion is produced in competition with reduction of the substituent in the initial electron transfer; in eq 6, amine anion is generated in a second reduction of the substrate which now bears a negatively charged substituent. This latter sort of electron transfer would be expected to be rather slow since the substituent should now be electron releasing. (It has been reported that the $\sigma^{0}$ constant of a $m$-nitro group changes from +0.70 to about $-0.1 €$ upon one-electron polarographic reduction. ${ }^{16}$ ). A third possibility, use of the electron already in the substituent for a subsequent cleavage reaction at the sulfonyl center (eq 7), might also be considered. In order for this to result in a lesser yield of amine than expected, the cleavage step would either have to have a rate as slow as the time scale of the experiment (a few minutes) or be in competition with other reactions of the reduced substituent.

Some preliminary experiments carried out on sulfonamide 11 with the more potent electron donor sodium naphthalene are pertinent to the question of the cleavage step of $11 . \mathrm{Ti}-$ tration of 11 with sodium naphthalene in DME at $25^{\circ} \mathrm{C}$ required ca. 4.7 mmol of anion radical to produce 0.8 mmol of $N$-methylaniline from 1.0 mmol of sulfonamide. Further addition of sodium naphthalene did not increase the yield. A plot of yield of amine vs. amount of anion racical added gives a rather scattered set of points, but some amine is clearly formed after addition of quite small amounts of electron donor. This early production of amine would seem to favor the mechanism given in eq 5 . The continued production of amine and the abnormal stoichiometry (the slope of the plot is about 0.2 rather than the expected value of $0.5^{3}$ ) would better fit the

mechanism given in eq 6. (Much anion radical is probably also used up on a variety of other reduction processes typical of aryl nitro groups. ${ }^{17}$ ) About all that can be concluded is that the pathway of eq 6 almost certainly occurs, but some reaction may be occurring via that of eq 5 . The process shown in eq 7 appears very unlikely.

The deep red solution resulting from reaction of 11 with about 2 equiv of sodium naphthalene in DME at $25^{\circ} \mathrm{C}$ was examined by ESR and found to give a rather poorly resolved nine-line spectrum. This could be interpreted in terms of hyperfine splittings due to one nitrogen ( $a_{\mathrm{N}} \sim 9.6 \mathrm{G}$ ) and a pair of equivalent hydrogens $\left(a_{\mathrm{H}} \sim 3.2 \mathrm{G}\right.$ ). The poor resolution and broadness of some of the peaks suggest the presence of two or more structurally similar paramagnetic species. Asirvatham and Hawley reported that the hyperfine coupling constants for the ion radicals 14 and 15 were $a_{\mathrm{N}}=9.41 \mathrm{G}, a_{o-\mathrm{H}}$



16
$=3.33 \mathrm{G}$, and $a_{m-\mathrm{H}}=1.06 \mathrm{G}$, and $a_{\mathrm{N}}=10.02 \mathrm{G}, a_{c-\mathrm{H}}=3.33$ G , and $a_{m-H}=1.07 \mathrm{G}$, respectively. ${ }^{5}$ It would seem eeasonable that our ESR signal might well be the result of a mixture of 15 and 16.

Cleavage via Electrochemical Reduction. The same series of sulfonamides was examined by cyclic voltammetry, using a vitreous carbon electrode in acetonitrile and tetra-$n$-butylammonium hexafluorophosphate (TBAPF ${ }_{6}$ ) as the supporting electrolyte. Several other electrode-solvent systems were examined, but this combination seemed superior, exhibiting an electrochemical window of +1 to -3.0 V vs. SCE.

Most of the sulfonamides showed no electrochemical ac-


Figure 2. Cyclic voltammogram of $N$-methylbenzenesulfonanalide in acetonitrile with $\mathrm{BTAPF}_{6}(0.2 \mathrm{M})$ as the supporting electrolyte. Scan rate, $200 \mathrm{mV} / \mathrm{s}$; scan direction, negative: initial potential, +1.00 V ; final potential, -2.90 V ; range, 1 MA .


Figure 3. P.ot of sulfonamide peak potentials vs. $\sigma^{n}$ constants. Least-squares slope, 1.07 V; correlation coefficient. 0.995.
tivity until a single irreversible reduction wave was observed in the vicinity of -2.0 V vs. SCE. On reversal of the scan, oxidation peaks could be observed. Through comparison with known samples, these peaks could be identified as being due to $N$-methylaniline and arenesulfinate ions, the expected cleavage products. A sample scan for 1 is shown in Figure 2. Sulfonamides 5, 6, 9, and 10 exhibited somewhat different behavior. The scans of 5 and 6 were rather similar to that of 1 except that the areas and shapes of the reduction peaks were inconsistent with a two-electron process as judged by comparison with known two-electron reductions. ${ }^{18}$ Reductive dehalogenation was suspected and proved by showing that $p$-bromobenzenesulfinate ion undergoes an irreversible reduction at a potential very close to that of 6 . Therefore, this increase in peak area is probably due to overlapping of the $\mathrm{S}-\mathrm{N}$ and $\mathrm{C}-\mathrm{X}$ reduction waves. The methanesulfinyl- and cyano-substituted sulfonamides 9 and 10 also exhibited irregularities. The scan of 9 exhibited two irreversible waves at -2.04 and -2.73 V . Reversal after the first peak showed the usual oxidation waves due to methylaniline and sulfinate salt, so this one can be assigned to reductive cleavage of the sulfonamide group; the peak at the more negative potential is probably due to reduction of the methanesulfinyl moiety. The cyano compound 10 showed an irreversible peak at -1.76 V due to S-N cleavage, followed by a reversible wave at -2.37 V. This is similar to the electrochemisal behavior of several $p$-cyanobenzenesulfonamides reported by Cottrell and Mann, ${ }^{4}$ and we attribute the second wave to reversible reduction of $p$-cyanobenzenesulfinate icn as did these authors. The cyclic voltammogram of the nitro-substituted compound


Figure 4. Cyclic voltammogram of $N$-methyl- $p$-nitrobenzenesulfonamide in acetonitriie with $\mathrm{TBAPF}_{6}(0.2 \mathrm{M})$ as the supporting electrolyte; initial potential, 0.0 V ; final potential, -2.0 V ; scar rate, etc., as in Figure 2. Peak A, reduction of nitro group; peak B, reductive cleavage of $\mathrm{S}-\mathrm{N}$ bond; and peak C , oxidation of nitrobenzenesulfinate dianion radical. Dasted curve is the cyclic voltammogram in presence of 0.18 M water.

11 also showed unusual features, but this will be discussed later.

The peak potentials for S-N cleavage of the sulfcnanilides are given in Table I. In all cases except for those of 5 and 6 this peak was shown by means of dc pulse polarographic techniques ${ }^{19}$ and controlled potential electrolysis to have a current density corresponding to $n=2$. In Figure 3 the peak potentials are plotted vs. $\sigma^{n}$. This yields a "reaction constant" of " $\rho$ " $=$ 1.07 V , with an excellent correlation coefficient of 0.99 .5 . (Although plotted in Figure 3, the value for the nitro compound 11 was not used in determining " $\rho$ ", for reasons to be discussed later.) Correlation of peak potentials with $\sigma$ and $\sigma^{0}$ gave somewhat poorer fits ( $r=0.939$ and 0.973 , respectively). At the time of printing, no literature value for the $\sigma^{n}$ constant for the $p-\mathrm{CH}_{3} \mathrm{SO}$ group could be found. From our data a value of 0.54 can be postulated. This is a reasonable value considering that the methanesulfinyl group is less electronegative than is the methanesulfonyl group, ${ }^{20}$ for which a $\sigma^{n}{ }_{p}$ value of 0.686 has been established. ${ }^{21}$

The nitro-substituted compound 11 undergoes a one-electron reversible reduction at -0.86 V vs. SCE, followed by a two-electron irreversible wave at -1.68 V . The magnitude of the oxidation peaks at -1.1 and -0.45 V are dependent on the scan rate and the final potential of the scan. A typical cyclic voltammogram of 11 is shown in Figure 4. Addition of water ( 0.18 M ) to the system alters the scan by causing oxidation peak C to disappear and the position of peak B to shift to a less negative potential. When alumina is added peak C reappears and B reverts to its original position. Peak C has been attributed to oxidatior. of the anion radical of $p$-nitrobenzenesulfinate ion (15). ${ }^{5}$ In the presence of water, protonation of the reduced nitro group would seem feasible, and the resulting species (17) would not be expected to be oxidized at the same potential. Scheme I is proposed to account for the behavior of 11 in the presence of a proton donor.

If step 9 is fast and equilibrium lies far to the right, the potential necessary for cleavage of the N-S bond stoould occur at a less negative value. In the absence of a proton donor we postulate the sequence of steps shown in Scheme II. The second irreversible reduction wave was shown to involve the transfer of two electrons. Since reduction of $F$-nitrobenzenesulfinate has been reported to occur at -1.10 V (in DMF), it would probably be reduced as rapidly as formed and give rise to the observed consumption of two electror.s (step 13) and the appearance of oxidation peak C on reversal of polarity.

The above argument would indicate an eec (e) process for electrochemical cleavage of 11, and the question arises as to whether this is general for this class of sulfonanilides. It has

been argued that a distinction cannot be made between an eec and an ece mechanism for this sort of reaction, ${ }^{5}$ but the evidence seems fairly good for our interpretation of the electrochemistry of 11. Two possibilities seem to exist. One is that the other sulfonamides are reacting by ece processes, and it is fortuitous that the $\sigma^{n}{ }_{p}$ constant of $\mathrm{NO}_{2}{ }^{-\cdot}$ is very close to that of $\mathrm{NO}_{2}$. This seems rather unlikely. The other is that all are undergoing eec reactions, but in the prccess of introducing the second electron into $11^{-}$, the first electron is somehow "moved" from its low energy position in the nitro group into the vicinity of the sulfonamide group, and the full inductive effect of the nitro group comes into play. This sounds even more tortured. If nothing else, our results should serve as a warning toward making general conclusions from electrochemical data obtained from compounds in which nitro groups are present.

Comparison of Homogeneous and Electrochemical Reduction. In general, the data obtained from the sodium anthracene reactions support the originally proposed mechanism, and the correlation of reactivities with Hammett $\sigma$ constants appears to be typical of these sorts of reactions. Of practical significance, there is no benefit in ease of cleavage derived from introducing substituents more electronegative than hydrogen. Introduction of such substituents merely diverts a portion of the reaction into reduction of the substituent itself, which usually results in making $S-N$ cleavage more difficult. In contrast, the vitreous carbon electrode appears to be much more selective for reduction of the sulfonamide function. In practical terms, even its curious behavior with respect to 11 does not impair its usefulness for regenerating amine from sulfonamide.

An even more striking difference is the correlation of the electrochemical peak potentials with $\sigma^{n}$ rather than $\sigma$. Particularly noticeable are the data for the $p$-dimethylamino group, which fall extremely close to the correlation line in both Hammett plots; yet, the difference between its $\sigma$ and $\sigma^{n}$ constants is 0.66 units. We thus feel that there is an important difference in reaction mechanism between the two processes. One attractive explanation is that while sodium anthracene reacts with a normal moderately solvated sulfonamide, where the effect of a para substituent will be the usual mix of resonance and inductive interactions, the electrochemical results are probably attributable to heterogeneous surface phenom-

Table II. Properties of Para-Substituted $\boldsymbol{N}$-Methylbenzenesulfonanilides

| Substituent | $\mathrm{Mp},{ }^{\circ} \mathrm{C}$ | Lit. mp, ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :---: |
| $\mathrm{H}(\mathbf{1})$ | $79-79.5$ | $79^{a}$ |
| $\mathrm{CH}_{3} \mathrm{~S}(2)$ | $80-81$ | $b$ |
| $\mathrm{CH}_{3}(3)$ | $92.5-93.5$ | $94^{a}$ |
| $\mathrm{~F}(4)$ | $65.7-66$ | $67^{c}$ |
| $\mathrm{Cl}(5)$ | $95-95.4$ | $b$ |
| $\mathrm{Br}(\mathbf{6})$ | $93-94.5$ | $92^{d}$ |
| $\mathrm{CH}_{3} \mathrm{O}(7)$ | $109-110.3$ | $109-110^{e}$ |
| $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}(8)$ | $132-133$ | $132-133^{f}$ |
| $\mathrm{CH}_{3} \mathrm{SO}(9)$ | $101.5-102.5$ | $b$ |
| $\mathrm{CN}^{\mathrm{C}}(\mathbf{1 0 )}$ | $113-114$ | $b$ |
| $\mathrm{NO}_{2}(11)$ | $131-132$ | $b$ |
| $\mathrm{CH}_{3}(12)^{g}$ | $84.5-85$ | $87^{a}$ |

${ }^{a}$ Z. Rappoport, "Handbook of Tables for Organic Compound Identification", 3rd ed, Chemical Rubber Publishing Co., Cleveland, Ohio, 1967, Table XVIII. ${ }^{b}$ Satisfactory analytical data ( $\pm 0.4 \%$ for $\mathrm{C}, \mathrm{H}$ ) were reported for these new compounds. ${ }^{c} \mathrm{R}$. Nodzu, T. Osaka, H. Kitano, and K. Fukui, Nippon Kagaku Zasshi, 76, 775 (1955); Chem. Abstr., 51, 17793 (1957). ${ }^{d}$ C. S. Marvel and F. E. Smith, J. Am. Chem. Soc., 45, 2696 (1923). e S. Ji, L. B. Gortler, A. Waring, A. Battisti, S. Bank, W. D. Closson, and P. Wriede, ibid., 89, 5311 (1967). $/$ S. J. Shafer and W. D. Closson, J. Org. Chem., 40, 889 (1975). \& $N$-Ethyl derivative.
ena at the graphite electrode. If the main site of interaction is the aromatic ring, as might seem reasonable for a vitreous carbon electrode, this may disrupt resonance interactions between substituent and sulfonyl group, while still allowing modest inductive effects.

## Experimental Section

Materials and Equipment. Tetrahydrofuran (THF) was reagent grade and was dried by distillation from lithium aluminum hydride and stored under nitrogen. Acetonitrile was spectroscopic grade and was dried either with molecular sieves or alumina before use. Gas chromatographic (GC) analyses were performed on a HewlettPackard Model 5750 instrument equipped with flame ionization detectors, using a $6 \mathrm{ft} \times 0.125 \mathrm{in}, 10 \%$ silicone rubber (UC-W98) on Chromosorb W column. Triangular wave stationary electrode cyclic voltammetry was performed on a Princeton Applied Research Model 170 electrochemical system using a three-electrode system fitted with a grid to keep the electrodes in the same juxtaposition to maximize the reproducibility of the results. A vitreous carbon or a $2-\mathrm{mm}$ diameter platinum sphere was used as the working electrode. An aqueous saturated calomel electrode was used throughout as the reference. A scan rate of $200 \mathrm{mV} / \mathrm{s}$ was employed in obtaining the cyclic voltammograms. The ESR spectra were obtained using a Varian V-4502 PER instrument.

Arene anion radical solutions were prepared and handled as described previously. ${ }^{3}$ Their molarity was determined by quenching with water and measuring the amount of dihydroarene produced by GC. ${ }^{22}$

Sulfonamides were prepared by standard techniques from commercially available sulfonyl chlorides and amines, except in the cases noted below. Their properties are described in Table II.
$\boldsymbol{N}$-Methyl-p-methanesulfinylbenzenesulfonanilide (9) was prepared from the corresponding $p$-methylthio compound 2 as follows. To 0.60 g ( 2.04 mmol ) of 2 dissolved in 5 mL of dichloromethane under a nitrogen atmosphere was added $0.49 \mathrm{~g}(2.16 \mathrm{mmol})$ of $85 \%$ technical grade $m$-chloroperbenzoic acid dissolved in 5 mL of dichloromethane. The mixture was stirred at $22^{\circ} \mathrm{C}$ for 40 min , and then 2 mL of $10 \%$ aqueous sodium sulfite was added. The mixture was washed with $5 \%$ sodium bicarbonate solution until the aqueous extracts remained basic. The organic layer was then dried, the solvent removed under reduced pressure, and the residual solid recrystallized from ethanol, yielding $0.40 \mathrm{~g}(1.29 \mathrm{mmol}, 64 \%)$ of white crystals, mp $101.5-102.5^{\circ} \mathrm{C}$.
$\boldsymbol{N}$-Methyl-p-cyanobenzenesulfonanilide (12) was prepared from the corresponding bromo compound 6 after the manner of Friedman and Shechter. ${ }^{23}$ A mixture of 8 g of $6(0.024 \mathrm{~mol})$ and 2.45 $\mathrm{g}(0.027 \mathrm{~mol})$ of cuprous cyanide was reflexed for 5 h in 20 mL of dimethylformamide. The mixture was then poured into a solution of

## Table III. Titration of $\boldsymbol{N}$-Methyl- $\boldsymbol{p}$-chlorobenzenesulfonanilide with Sodium Anthracene in DME at $25^{\circ} \mathrm{C}$

| Sodium <br> anthracene, <br> mmol | Yield of <br> N-methylaniline, ${ }^{a}$ <br> mmol | Amine/electron- <br> donor ratio |
| :---: | :---: | :---: |
| 0.398 | 0.129 | 0.419 |
| 0.532 | 0.222 | 0.417 |
| 0.720 | 0.331 | 0.460 |
| 0.910 | 0.364 | 0.400 |
|  |  | $(0.42 \pm 0.01)^{b}$ |

${ }^{a}$ Each sample contained 1.23 mmol of sulfonamide in 10 mL of DME. ${ }^{b}$ Average value of ratio.
0.6 g of ferric chloride in 17 mL of 1.7 M hycirochloric acid. Extraction with benzene, drying, and concentration vielded a brown material which was purified by liquid chromatography on silica gel (dichloromethane eluent). Recrystallization from ethanol yielded $3.3 \mathrm{~g}(0.012$ mol, $50 \%$ ) of tan crystals, $\mathrm{mp} 113-114^{\circ} \mathrm{C}$.

Sodium $\boldsymbol{p}$-bromobenzenesulfinate was prepared from $p$-bromobenzenesulfonyl chloride after the manner of Whitmore and Hamilton. ${ }^{24}$ A $62 \%$ yield of white crystals, mp $370{ }^{\circ} \mathrm{C}$ dec, was obtained by crystallization from water.

Tetra-n-butylammonium hexafluorophosphate (TBAPF ${ }_{6}$ ) was prepared by a modification of the procedure reported by Ferguson. ${ }^{25}$ To a stirred solution of 100 g of tetra- $n$-butylammonium iodide in 700 mL of acetone was slowly added a solution of 50 g of ammonium hexafluorophosphate in 175 mL of acetone. The resulting solution was filtered to remove some of the precipitated ammonium iodide, and then ca. 1 L of water was slowly added to precipitate the TBAPF $_{6}$. The resulting salt was collected on a filter funnel and washed several times with water. It was then redissolved in 250 mL of acetone along with 5 g of ammonium hexafluorophosphate and reprecipitated by the slow addition of ca. 150 mL of water. The material was collected by filtration and then recrystallized from ethanol-water. The white solid was dried under vacuum ( 0.5 mm ) at $100^{\circ} \mathrm{C}$, affording $75 \mathrm{~g}(72 \%)$ of product, which was used without further treatment.

Competition experiments were carried out by dissolving a total of 0.4 mmol of an $N$-methylsulfonamide ar.d the reference compound 12 in 2 mL of dry THF, which also contained 0.4 mmol of dry sodium perchlorate and ca. 0.02 mmol of $n$-decane, used as an internal standard. The reaction vial was then sealed with a septum and deoxygenated by alternately evacuating and filling with nitrogen. To the stirred solution, at $25^{\circ} \mathrm{C}$, was added slowly ca. 0.44 mL of 0.18 M sodium anthracene solution. After several minutes a few drops of water were added, and the mixture was analyzed by GC. All results are the
average of two or more determinations; reproducibility was at least $\pm 5 \%$.

Titrations of sulfonamides with anion radical solutions were carried out in the manner described previously. ${ }^{3}$ The data Eor a typical titration plot are given in Table III.
Electrochemical experiments were carried out as follows. A solution of $0.2 \mathrm{M} \mathrm{TBAPF}_{6}$ in acetonitrile was prepared immediately before use. Using this solution, an amount of sulfonamide was added to give a concentration of $4 \times 10^{-3} \mathrm{M}$. All measurements were carried out under a nitrogen atmosphere and are the average of three or more determinations. A reference voltammogram of anthracene was run at the start and finish of each series of measurements to ensure against any drift in potential. A scan rate of $200 \mathrm{mV} / \mathrm{s}$ was employed.

## References and Notes

(1) (a) Department of Chemistry; (b) Department of Physics.
(2) J. Kovacs and U. R. Ghatak, J. Org. Chem., 31, 119 (1966:
(3) W. D. Closson, S. Ji, and S. Schulenberg. J. Am. Chem. Soc., 92, 650 (1970).
(4) P. T. Cottrell and C. K. Mann, J. Am. Chem. Soc., 93, 3579 (1971).
(5) M. R. Asirvathem and M. D. Hawley, J. Electroanal. Chem., 53, 293 (1974).
(6) O. Manousek, O. Exner, and P. Zuman, Collect. Czech. Chem. Commun., 33, 4000 (1968:.
(7) A. W. Francis, J. Am. Chem. Soc., 48, 655 (1926); G. A. Russell, Tech. Org. Chem., 8, Part 1, Chapter 8 (1961).
(8) J. C. Carnahan, Jr., W. D. Closson, J. R. Ganson, D. A. Juckett, and K. S. Quaal, J. Am. Chem. Soc., 98, 2526 (1976).
(9) J. C. Carnahan, Jr., unpublished work from these laboratories.
(10) N. Hirota, J. Am. Chem. Soc., 90, 3603 (1968); A. H. Crowley, N. Hirota, and R. Kreilick, J. Chem. Phys., 46, 4815 (1967).
(11) P. Chang, R. V. Slates, and M. Szwarc, J. Phys. Chem., 70, 3180 (1966)
(12) M. Szwarc and J. Jagur-Grodzinski, Ions Ion Pairs in Org. Reast. 1972-1974, 2, Chapter 1 (1974).
(13) S. Bank and B. Bockrath, J. Am. Chem. Soc., 94, 6076 (1972); see also R. V. Slates and M. Szwarc, J. Phys. Chem., 69, 4124 (1乌65).
(14) W. D. Closson, P. Wriede, and S. Bank. J. Am. Chem. Soc., 88, 1581 (1966); J. R. Ganson, S Schulenberg, and W. D. Closson, Tetrahedron Lett., 4397 (1970).
(15) S. J. Shaefer, Ph.D. Thesis, State U. of New York, 1976.
(16) Z. V. Todres, A. A. Pozdeeva, V. A. Chernova, and S. I. Zhdanov, Tetrahedron Lett., 3835 (1972).
(17) V. Kalyanaraman and M. V. George, J. Org. Chem., 38, 5.57 (1973).
(18) R. N. Adams. "Electrochemistry at Solid Electrodes"', Marc=1 Dekker. New York, N.Y., 1969, p 321 ff .
(19) P. Zuman, '"Substituent Effects in Organic Polarography'", Plenum Press, New York, N.Y., 1967, pp 1-20.
(20) C. C. Price and S. Oae, "Sulfur Bonding'", Ronald Press, New York, N. Y., 1962, pp 137-139.
(21) H. van Bekkum, P. E. Verkade, and B. M. Wepster, Recl. Trav. Chim. Pays-Bas. 78, 815 (1959).
(22) S. Bank and W. D. Closson, Tetrahedron Lett., 1349 (1965)
(23) L. Friedman ard H. Shechter, J. Org. Chem., 26, 2522 (1961).
(24) F. C. Whitmore and F. H. Hamilton, "Organic Syntheses", Collect. Vol. I, H. Silman and A. H. Blatt, Ed., 2nd ed. Wiley, New York, N.Y., 1941, p 492.
(25) J. A. Ferguson, Interface, 6, \#2 (1970).

# Addition of Halogens to Cyclopropylacetylene 

Dale F. Shellhamer* and Melanie L. Oakes<br>Department of Chemistry, Point Loma College, San Diego, California 92106

Received July 26, 1977

The halogenation of cyclopropylacetylene (1) with chlorine, bromine, trichloramine ( $\mathrm{NCl}_{3}$ ), and iodobenzene dichloride (IBD) is reported. Chlorine reacts with 1 primarily by an ionic pathway, while bromine can react by either an ionic or radical methanism. IBD and $\mathrm{NCl}_{3}$ were found to react only by a radical process. The reactivity of 1 with these halogenating reagents is used to make some statements about the relative energy of the transition states in these reactions.

Chlorine $\left(\mathrm{Cl}_{2}\right)$, ${ }^{\text {la,c }}$ bromine $\left(\mathrm{Br}_{2}\right)$, ${ }^{1 \mathrm{~b}, \mathrm{c}}$ trichloramine $\left(\mathrm{NCl}_{\varepsilon}\right)$, , ${ }^{1 \mathrm{~d}, 2}$ and iodobenzene dichloride $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ICl}_{2}\right)$ (IBD) ${ }^{1 \mathrm{e}, 2}$ are known to react with olefins and dienes by an ionic or radical process under the appropriate reaction conditions. The reactions of these halogenating reagents with acetylenes has not been studied extensively. Bromine reacts with acetylenes
by an ionic meshanism in acetic acid as solvent. ${ }^{4}$ Nazarov and Bergel'son examined the stereochemistry of the radical addition of bromine to a variety of substituted acetylenes. ${ }^{5}$ They found that the cis isomers were favored due to the preference of a trans rela:ionship of the bulky substituents in the intermediate 3a. ${ }^{6}$ Poutsma reported that chlorine reacts only by

Table I. Halogenation of Cyclopropylacetylene (1)

| Entry | Solvent | Mol fraction of $1^{a}$ | Reaction conditions ${ }^{b}$ | Halogenating reagent ${ }^{c}$ | Percent composition, ${ }^{\text {d }}$ ¢ 6 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \hline 5 a \text { or } \\ 5 b \\ \hline \end{gathered}$ | $\begin{aligned} & \text { 6a or } \\ & \mathbf{6 b} \end{aligned}$ | $\begin{gathered} \text { 7a or } \\ \text { 7b } \end{gathered}$ | $\begin{gathered} 8 \mathrm{a} \text { or } \\ \mathbf{8 b} \\ \hline \end{gathered}$ |
| 1 | $\mathrm{CCl}_{4}$ | 0.02 | $\mathrm{O}_{2}$, dark | $\mathrm{Br}_{2}$ | 65 | 10 | 4 | 21 |
| 2 | $\mathrm{CCl}_{4}$ | 0.02 | Inhibitor, ${ }^{\text {e dark }}$ | $\mathrm{Br}_{2}$ | 64 | 12 | 3 | 21 |
| 3 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 0.02 | $\mathrm{O}_{2}$, dark | $\mathrm{Br}_{2}$ | 43 | 19 | 4 | 34 |
| 4 | $\mathrm{CCl}_{4}$ | 0.50 | $\mathrm{N}_{2}$, UV | $\mathrm{Br}_{2}$ | 44 | 43 | 10 | 3 |
| 5 | $\mathrm{CCl}_{4}$ | 0.05 | $\mathrm{N}_{2}$, UV' | $\mathrm{Br}_{2}$ | 61 | 32 | 7 | 0 |
| 6 |  | Neat | $\mathrm{N}_{2}$, UV' | $\mathrm{Cl}_{2}$ | 50 | 36 | 6 | 8 |
| 7 | $\mathrm{CCl}_{4}$ | 0.05 | $\mathrm{N}_{2}$, UV' | $\mathrm{Cl}_{2}$ | 42 | 43 | 3 | 12 |
| 8 | $\mathrm{CCl}_{4}$ | 0.0 .35 | $\mathrm{N}_{2}$, UV' | $\mathrm{Cl}_{2}$ | 41 | 44 | 5 | 10 |
| 9 | c- $\mathrm{C}_{6} \mathrm{H}_{12}$ | 0.11 | $\mathrm{N}_{2}$, dark | $\mathrm{Cl}_{2} f$ | 39 | 48 | 1 | 12 |
| 10 | c- $\mathrm{C}_{6} \mathrm{H}_{12}$ | 0.02 | $\mathrm{N}_{2}$, dark | $\mathrm{Cl}_{2} f$ | 35 | 51 | 3 | 11 |
| 11 | $\mathrm{CCl}_{4}$ | 0.02 | $\mathrm{O}_{2}$, dark | $\mathrm{Cl}_{2}$ | 37 | 40 | 8 | 15 |
| 12 | $\mathrm{CCl}_{4}$ | 0.05 | $\mathrm{N}_{2}$, UV' | IBD | 91 | 2 | 1 | 6 |
| 13 | $\mathrm{CCl}_{4}$ | 0.005 | $\mathrm{N}_{2}$, UV | IBD | 85 | 2 | 3 | 10 |
| 14 | $\mathrm{CCl}_{4}$ | 0.05 | Inhibitor, ${ }^{\boldsymbol{e}}$ dark | IBD | $g$ | $g$ | $g$ | $g$ |
| 15 |  | Neat | $\mathrm{N}_{2}$, UV | $\mathrm{NCl}_{3}$ | 72 | 14 | 5 | 9 |
| 16 | $\mathrm{CCl}_{4}$ | 0.05 | $\mathrm{N}_{2}$, UV | $\mathrm{NCl}_{3}$ | 73 | 14 | 4 | 9 |
| 17 | $\mathrm{CCl}_{4}$ | 0.005 | $\mathrm{N}_{2}$, UV | $\mathrm{NCl}_{3}$ | 69 | 19 | 8 | 4 |
| 18 | $\mathrm{CCl}_{4}$ | 0.05 | Inhibitor, ${ }^{e}$ dark | $\mathrm{NCl}_{3}$ | $g$ | $g$ | $g$ | $g$ |

${ }^{a}$ Mole fraction of 1 in solvent before the addition of halogenating reagent. ${ }^{b}$ The temperature of the reaction mixture was -10 to $-5^{\circ} \mathrm{C}$, except for IBD, which was done at $25^{\circ} \mathrm{C}$. The UV light was from a $275-\mathrm{W}$ General Electric sunlamp. ${ }^{c}$ Bromine was added neat; chlorine and $\mathrm{NCl}_{3}$ were added in a $\mathrm{CCl}_{4}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of known molarity; IBD was added as a solid. ${ }^{d}$ Product compositions were determined by VPC analysis on at least two separate runs. ${ }^{e}$ The organic inhibitor was $1.0 \mathrm{M} 2,6$-di-tert-butyl-4-methylphenol. $f$ Yields of 9.0 and $0.5 \%$ of chlorocyclohexane were obtained at 0.10 and 0.02 mol fractions, respectively. Control experiments showed that chlorocyclohexane was not formed by direct chlorination of the solvent. ${ }^{8}$ Did not react.
a radical mechanism with 1 -butyne to give trans-1,2-di-chloro-1-butene as the major product ${ }^{3}$ ( $85-90 \%$ ).

In a recent study of ours ${ }^{2}$ on the reaction of various halogenating reagents with vinylcyclopropares, we reported that 2 -cyclopropylpropene reacts with chlcrine, bromine, and trichloramine only by an ionic process, whereas IBD reacts primarily by a radical process. Apparently these reagents prefer to react by an ionic process because a very stable cyclopropylcarbinyl cation intermediate can be formed. The

radical process was indicated by an increase in the ring-opened products when the concentration of the radical addend was decreased. This dilution effect was observed because the equilibrium between the classical cyclopropylcarbinyl (2a) and homoallyl (2b) intermediates was competitive with the chain-transfer step.

Ionic additions to cyclopropylacetylene (1) would give a vinylcyclopropylcarbinyl cation intermediate (4). This ion should be nonclassical since a nonclassical vinylcyclopropylcarbinyl cation has been reported in solvolysis reactions of 1-cyclopropyl-1-iodoethylene ${ }^{\text {ia }}$ and similar substrates. ${ }^{7 \mathrm{~b}}$ As far as we can determine, the cation intermediate (4) has not been formed by the addition of electrophiles to cyclopro-


3a, R = alkyl
b, $\mathrm{R}=$ cyclopropyl


4, $\mathrm{X}=\mathrm{Br}, \mathrm{Cl}$
pylacetylene. Also, we were unable to find a repo-t in the literature of a vinyl radical $\alpha$ to a cyclopropane ring (3b).

In this paper we investigated the halogenation of cyclopropylacetylene (1) with $\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{NCl}_{3}$, and IBL. ${ }^{8}$ Our purpose was to (1) identify the products obtained from the addition of electrophiles to 1 , and (2) to determine whether these reagents react by an ionic and/or a radical process. We felt that a comparison of these data with that reported earlier for vinylcyclopropanes ${ }^{2}$ might allow us to make a statement about the relative energy of the transition states derived from vinylcyclopropanes and cyclopropylacetylene witt. these reagents.

## Results and Discussion

Bromination of 1 under ionic conditions gives 1,2 addition ( $5 a$ and $6 a$ ) and ring-opened products ( $7 a$ and $8 a$ ). The data in Table I show that the 1,2 products are favored by ca. 60-75\% (entries $1-3$ ). ${ }^{9}$ Addition of bromine to 1 under radical conditions (entries 4 and 5) gives less ring-opened products than bromination under ionic conditions. ${ }^{10}$ The increase in cisdibromide 6a relative to trans-dibromide $\mathbf{5 a}$ is typical of radical brominations of acetylenes ${ }^{5}$ and is evidence for a radical intermediate in this reaction (compare entries 4 and 5 with $1-3$ ). Molecular chlorine appears to react with 1 predominately by an ionic process since oxygen ${ }^{11}$ does not inhibit the reaction or change the product composition significantly (compare entry 11 to 7 and 8).9,12

We propose that the chlorinations of 1 with IBD (entries

$7 \mathrm{a} . \mathrm{b}$
$\mathrm{a}, \mathrm{X}=\mathrm{Br} ; \mathrm{b}, \mathrm{X}=\mathrm{Cl}$


Figure 1. $\Delta G$ vs. reaction coordinates for the formation of a cyclopropylcarbinyl radical and cation. $\Delta \Delta G^{\ddagger}$ is the energy difference.

12-14) and $\mathrm{NCl}_{3}$ (entries 15-18) occur by a radical pathway since there is no reaction when an inhibitor is added to the reaction mixture. ${ }^{13}$ The smaller amount of cis-dichloride $\mathbf{6 b}$ with $\mathrm{NCl}_{3}$ and IBD compared to cis-dibromide 6a under radical conditions (compare entires $12-18$ with 4 and 5 ) is probably due to a larger steric effect in 10b than 11 b when these intermediates react in the chain-transfer step. ${ }^{14}$

There is no significant dilution effect when $\mathrm{Br}_{2}, \mathrm{NCl}_{3}$, or IBD is added to cyclopropylacetylene (1) like that observed for the addition of radical halogenating reagents to vinylcyclopropanes. ${ }^{2}$ Possibly equilibration of the radical intermediates derived from 1 is faster than the chain-transfer step. Thus, product ratios from these radical reactions are a function of the reactivity of each intermediate ( $9 \mathrm{a}, \mathrm{b}-12 \mathrm{a}, \mathrm{b}$ ) and

not the equilibrium concentration as we observed for the intermediates from vinylcyclopropanes. ${ }^{2}$

Trichloramine and iodobenzene dichloride readily react by a radical pathway with 1 , while molecular bromine can react by an ionic or radical mechanism under the appropriate reaction conditions. Our previous work showed that only IBD could be forced to react with a vinylcyclopropane by a radical process. ${ }^{2}$ This comparison shows that the energy difference between the formation of a vinylcyclopropylcarbinyl radical and cation ( $\Delta \Delta G^{\ddagger}{ }_{2}$, see Figure 2) is not as large as the energy difference between the formation of a cyclopropylcarbinyl radical and cation ( $\Delta \Delta G^{\ddagger}{ }_{1}$, see Figure 1). Conceivably, $\Delta \Delta G^{\ddagger}$ is greater than $\Delta \Delta G^{\ddagger}$ due to the unusual stability of a nonclassical cyclopropylcarbinyl caion intermediate.

## Experimental Section

General. Cyclopropylacetylene (1) was prepared from the dibromide of vinylcyclopropane as reported by Slobodin. ${ }^{15}$ Vinylcyclopropane was prepared from the tosylhydrazone of methylcyclopropyl ketone. ${ }^{6}$ Trichloroamine ${ }^{17}$ and iodobenzene dichloride ${ }^{18}$ were prepared as described in the literature. All other reagents and solvents were obtained commercially. Ionic conditicns were low mole fractions of olefin, the absence of light, and added inhibitor. ${ }^{11}$ Radical conditions were high mole fractions of olefin, the removal of oxygen by nitrogen gas, and ultraviolet light. The light was from a 275 -W General Electric lamp. When the reaction was complete, the mixture was


Figure 2. $\Delta G$ vs. reaction coordinates for the formation of a vinylcyclopropylcarbinyl radical and cation. $\Delta \Delta G_{2}{ }_{2}$ is the entrgy difference.
concentrated to abciut 0.3 mL at $25^{\circ} \mathrm{C}$ on a rotary evapcrator. The crude product mixtare was transferred to an NMR tube, and 20-30 $\mu \mathrm{L}$ of a 1.0 M solution of benzene in carbon tetrachloride was added as a standard. Reaction yields were determined by NMR integration. Product ratios were determined by VPC analysis with a HewlettPackard 5730 flame ionization chromatograph on a $10 \mathrm{ft} \times 0.25$ in stainless steel column of $5 \%$ SE-30 on $80-100$ Chromosorb W. ${ }^{19}$ Collection of products ty VPC was accomplished with a Varian aerograph on a similar column except $12 \mathrm{ft} \times 0.25 \mathrm{in}$. NMR spectra were obtained on a Varian T-60A spectrometer.

Reaction of Bromine with 1 . To $66 \mathrm{mg}(1.0 \mathrm{mmol})$ of 1 in a weighted amount of solvent so as to obtain the mole fraction listed in Table I at -10 to $-5^{\circ} \mathrm{C}$ was added 100 mg of neat bromine. The yield by NMR analysis was ca. 50 and $80 \%$ under radical and ionic conditions, respectively. Product ratios by VPC are reported in Table I. The products were collected by preparative VPC and had the following retention times on the analytical column: $t_{\mathrm{R}}{ }^{76}{ }^{\circ} \mathrm{C}=16,21,24$, and 35 min for $5 \mathrm{a}, 6 \mathrm{a}, 7 \mathrm{a}$, and $8 \mathbf{a}$, respectively. The products had the following NMR spectra: $5 \mathrm{a}\left(\mathrm{CCl}_{4}\right), \delta 0.92(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 6.43$ $(\mathrm{s}, 1 \mathrm{H}) ; 6 \mathrm{a}\left(\mathrm{CCl}_{4}\right),\{0.75(\mathrm{~m}, 4 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}) ; 7 \mathrm{a}\left(\mathrm{CCl}_{4}\right), \delta 237-3.07(\mathrm{~m}, 4 \mathrm{H}), 4.87(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}) ; 8 \mathrm{a}$ $\left(\mathrm{CCl}_{4}\right), \delta 2.72$ ( m with apparent q of d, $J=6.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.37 ( t , $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 537 (apparent $\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H})$.

Reaction of Chlorine with 1 . To $66 \mathrm{mg}(1.0 \mathrm{mmol})$ of 1 in a weighed amount o: solvent (Table I) at -10 to $-5^{\circ} \mathrm{C}$ was added a $1.8-\mathrm{mL}$ solution of 0.39 M chlorine in carbon tetrachlorid $\epsilon$. The yields determined by NMR analysis varied from 50 to $80 \%$. Product ratios were determined by VPC on the analytical column with the following retention times: $t_{\mathrm{R}}{ }^{52^{\circ} \mathrm{C}}=8.5,11.5,12$, and 18 min for $5 \mathbf{b}, 6 \mathbf{b}, 7 \mathbf{b}$, and $\mathbf{8 b}$, respectively. The products gave the following NMR spectra: $\mathbf{5 b}$ $\left(\mathrm{CCl}_{4}\right), \delta 0.92(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}) ; 6 \mathrm{~b}\left(\mathrm{CCl}_{4}\right), \delta 0.80(\mathrm{~m}$, $4 \mathrm{H}), 2.2-2.8(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 7 \mathrm{~b}\left(\mathrm{CCl}_{4}\right), \delta 2.1-2.9$ $(\mathrm{m}, 4 \mathrm{H}), 4.8(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{~m}, 1 \mathrm{H}) ; 8 \mathrm{~b}, \delta 2.62(\mathrm{~m}$ with apparent q of $\mathrm{d}, J=6.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.60(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.70 (apparent q, $J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H})$.

Small amounts of chlorocyclohexane ( 0.5 and $9.0 \%$ at C .02 and 0.10 mol fractions, respectively) were obtained when the chlorination was carried out in cyclohexane as solvent. Control experiments showed that molecular chorine does not chlorinate cyclohexane under the conditions of this reaction (under nitrogen and the absence of light).

Reaction of Trichloramine with 1 . The reaction was carried out as described above for the chlorination of 1 . Trichloramine ${ }^{17}$ was added as a $0.60-\mathrm{M}$ solution in carbon tetrachloride. The reaction mixture was stirred for 10 min at -10 to $-5^{\circ} \mathrm{C}$ and then concentrated and analyzed as described above. Analysis by NMR showed yields of about $60 \%$. The product ratios are listed in Table I.

Reaction of Iodobenzene Dichloride with 1. To $66 \mathrm{mg}(1.0$ mmol ) of 1 in a weighed amount of carbon tetrachloride (Table I) at $25^{\circ} \mathrm{C}$ with stirring was added $190 \mathrm{mg}(0.69 \mathrm{mmol})$ of IBD. The reaction mixture was stirred for 15 min and then concentreted and analyzed as described above. Product ratios are listed in Table I.

Acknowledgment. Support for this work was provided by Research Associates of Point Loma College.

Registry No.-1, 6746-94-7; 5a, 64871-18-7; 5b, 64871-19-8; 6a, 64871-20-1; 6b, 64871-21-2; 7a, 64871-22-3; 7b, 64371-23-4; 8a,

64871-24-5; 8b, 64871-25-6; $\mathrm{Br}_{2}, 7726-95-6 ; \mathrm{Cl}_{2}, 7782-50-5$; IBD, 932-72-9; $\mathrm{NCl}_{3}, 10025-85-1$.

## References and Notes

(1) (a) M. L. Poutsma, J. Am. Chem. Soc., 87, 2161.2171 (1965); J. Org. Chem., 31, 4167 ( ${ }^{-}$966); (b) V. L. Heasley and S. K. Taylor, ibid., 34, 2779 (1969); V. L. Heasley, G. E. Heasley, S. K. Taylor, and C. L. Frye, ibid., 35, 2967 (1970); (c) D. F. Shellhamer. V. L. Heasley. G. E. Heasley J. E. Foster, and J. K. Luttrull, ibid., 42, 2141 (1977); (d) K. W. Field and P. Kovicic, ibid., 36, 3566 (1971), and references cited therein; V. L. Heasley and G. E. Heasley, unpublished results; (e) D. Tanner and G. Gidley, J. Org. Chem. 33, 38 (1968); V. L. Heasley, G. E. Heasley, K. D. Rold, and D. B. McKee, ibid., 41, 1287 (1976).
(2) D. F. Shellhamer, D. B. McKee, and C. T. Leach, J. Org. Chem., 41, 1972 (1976).
(3) M. L. Poutsma and J. L. Kartch, Tetrahełron, 22, 2167 (1966).
(4) J. A. Pincock and K. Yates. Can. J. Chem., 48, 3332 (1970); R. C. Fahey. Top. Stereochem., 3, 237 (1968).
(5) I. N. Nazarov and L. D. Bergel'son, Izv. Akad. Nauk SSSR. Ser Khim., 887. 896 (1960): Zh. Otshch. Khim., 37, 1540 (1967).
(6) The radical addition of trichlorosilane, cnloroform, and thioacetic acid to terminal acetylenes gives predominantly the cis product. For thioacetic acid, see J. A. Kampmeir and G. Chen. J. Am. Chem. Soc., 87, 2608 (1965); for chloroform, see R. M. Kochik and J. A. Kampmeir, ibid., 90, 6733 (1968); for trichlorosilane, see R. A. Benkeser, M. L. Burrous, L. E. Nelson, and J. V. Sivisher, ibid., 83, 4385 (1961), and F. A. Benkeser and R. A. Kichner, ibid., 80, 5298 (1958).
(7) (a) S. A. Sherrod and R. G. Bergman, J. Am. Chem. Soc., 93, 1925 (1971); (b) L. R. Subramanian and M. Hanack, J. Org. Chem., 42, 174 (1977); J. Chem. Educ., 52, 80 (1975), and references cited therein.
(8) Our investigation of the halogenation of vinylcyclopropane (ref 2 ) included a study of methyl hypochlorite. We were unable to isolate any addition products or a propargyl chloride product when cyclopropylacetylene was treated with methyl hypochlorite in a nonpolar solvent.
(9) Cyclobutyl and allenic products are also formed in the solvolysis of 1-cyclopropyl-1-iodoethylene in acetic acid at $25^{\circ} \mathrm{C}$. Cyclopropyl products are also the major components ( $97 \%$ ) of the solvolysis reaction (see ref 7a).
(10) Products derived from 11a,b are interesting since the sat urated intermediates $(\mathbf{2 a , b})$ do not rearrange to the the cyclobutyl intermediate (see ref 2).
(11) Oxygen is known to be a ver efective inhibitor of the radical reaction with molecular chlorine (see re ${ }^{-1} 1$ ).
(12) There is a minor radical component participating in this reaction since small amounts of chlorocyclohexane were obtained when cyclohexane was used as the solvent under reaction conditions which do not chlorinate cyclohexane (see the Experimental Section)
(13) The observation that 2,6 -di-ten-butyl-4-methylphenol inhibits the reaction of trichloramine with 1 is curious since Kovacic ${ }^{10}$ was unable to inhibit the radical reaction of trichloramine with alkenes. It appears that the chaintransfer step is slower with alkynes than with alkenes. The discussion above on the dilution study also gives support for a slow chain-transfer step with 1.
(14) A similar steric effect for IBD and $\mathrm{NCl}_{3}$ was observed when cyclopentadiene was treated with these radical halogenating reagents: see V. L. Heasley, G. E. Heasley. K. D. Rold, and D. B. McKee, J. Org. Chem., 41, 1287 (1976).
(15) Ya. M. Slobodin and I. Z. Egenburg, Zh. Org. Khim., 5, 1315 (1969).
(16) W. Kirmse. B. G. Bulow. and H. Schepp, Justus Liebigs Ann. Chem.. 641, 41 (1966).
(17) P. Kovacic and S. S. Chudary. "Organic Syntheses", Collect. Vol. 5, Wiley, New York, N.Y., 1973, p 35.
(18) H. J. Lucas and E. R. Kennedy, "Organic Syntheses"', Collect. Vol. 3, Wiley. New York. N.Y., 1973, p 482.
(19) Control experiments were serformed to snow that rearrangement of the products did not occur. Pure compounds were reinjected into the VPC instrument and found to be stable under olr analysis conditions. The appearance of the baseline between well-separated peaks of the isomers on our analytical column also ruled ou: on-column rearrangement. The area/weight response factors for our isomers were similar on the hydrogen flame chromatograph. ${ }^{20}$ The value of the cy=lobutyl product differed slightly because we could only obtain a small amount of this minor isomer.
(20) Previous work from these laboratories has shown that flame ionization detector response values are similar from structural isomers if their retention times do not differ grea:ly: see G. E. Heasley. V. L. Heasley. S. L. Manatt, H. A. Day, R. V. Hodjes, P. A. Kroon, D. A. Redfield, T. L. Rold, and D. E. Williamson, J. Org. Chem.. 38, 4109 (1973).

# Free-Radical Reactions of Pentafluorobenzenesulfenyl Chloride with Alkanes and Alkylbenzenes 

J. F. Harris. Jr.<br>Central Research and Development Department, ${ }^{1}$ Experimental Station, E. I. du Pont de Nemours and Company<br>W:Imington, Delau:are 19898

Received November 18, 1976


#### Abstract

Light-induced, free-radical reactions of pentafluorobenzenesulfenyl chloride with methyltenzenes give very high yields of pentafluorophenyl benzyl sulfides. With other alkylbenzenes which contain benzylic hydrogens. high yields of benzylic sulfides are also obtained along with small quantities of nonbenzylic pentafluorophenyl aralkyl sulfides. In all of these reactions, minor amounts of chloroalkylbenzenes and bis(pentafluorophenyl) disulfide are also obtained. In reactions with several alkanes, the major products are usually pentafluorophenyl a kyl sulfides, but substantial yields of chloroalkanes and bis(pentafluorophenyl) disulfide are also obtained.


In the past few years, sporadic reports of free-radical reactions of sulfenyl halides with hydrocarbons have been published. The studies to date, which primarily involve reactions of highly halogenated alkanesulfenyl chlorides ${ }^{2,3}$ and pentachlorobenzenesulfenyl chlorid $\epsilon, 4.5$ show that the course of these reactions is highly sensitive to the nature of the organic group of the sulfenyl chloride. For example, the reactions of $\mathrm{CF}_{3} \mathrm{SCl}^{2}$ and $\mathrm{Cl}_{3} \mathrm{CSCl}^{3}$ with alkanes contrast sharply: only chloroalkanes are derived from the alkane in the $\mathrm{Cl}_{3} \mathrm{CSCl}$ reactions, while in the $\mathrm{CF}_{3} \mathrm{SCl}$ reactions trifluoromethyl alkyl sulfides are often the major products. In the few reactions of pentachlorobenzenesulfenyl chloride examined, sulfides were also major products. ${ }^{4,5}$ This paper summarizes a study of the free-radical substitution reactions of pentafluorobenzenesulfenyl chloride (1) with alkylbenzenes and alkanes.

## Results

The results of the experiments are summarized below and are tabulated in Table I. Authentic samples of several of the
sulfide products were prepared by the UV-initiated addition of pentafluorobenzenethiol to appropriate olefins (Table II). Characterization of new compounds is given in Tables IV and V. ${ }^{6}$

Alkylbenzenes. The light-induced reactions of 1 with excess methylbenzenes, e.g., toluene, $o$-xylene, $p$-chlorotoluene, and mesitylene, are long chain free-radical reactions which give very high yields of pentafluorophenyl benzyl sulfides (2-5, Table I) and HCl , along with very low yields of bis(pentafluorophenyl) disulfide (6) and $x$-chloroioluenes. For example, the reaction with toluene gave pentafluorophenyl benzyl sulfide (2) in over $95 \%$ yield (eq 1).

$$
\begin{align*}
& \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCl}+\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \xrightarrow{h_{\nu}} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{HCl}  \tag{1}\\
& 2 \\
&+\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~S}_{2}+\mathrm{ClCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \\
& 6
\end{align*}
$$

Table I. Photoreactions of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCl}$ (1) with Hydrocarbons

| Hydroc | rbon | $\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$ | $\begin{aligned} & \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCl}, \\ & \mathrm{~g},(\mathrm{~mol}) \end{aligned}$ | $\begin{gathered} \text { Hydro- } \\ \text { car- } \\ \text { boal } \\ \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCl} \end{gathered}$ | Irradia tion time, min | $\begin{gathered} \text { Yield of } \\ \left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~S}_{2}, \\ \% \\ \hline \end{gathered}$ | $\begin{gathered} \text { Sulfide (S) } \\ (\text { yield }) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Kegistry } \\ & \text { no. } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Chloride (Cl) } \\ \text { (yield) }) \\ \hline \end{gathered}$ | $\mathrm{S} / \mathrm{Cl}$ | Other products | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ | $\begin{gathered} 75 \mathrm{~mL} \\ 65 \mathrm{~g} \\ 0.705 \\ \mathrm{~mol} \end{gathered}$ | 108-88-3 | $\begin{aligned} & 10.08 \\ & (0.0429) \end{aligned}$ | 16.4 | 30 | $\sim 1$ | $\begin{aligned} & \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \\ & 2(>95 \%) \end{aligned}$ | 33288-16-3 | $\underset{\text { (trace) }}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}}$ | >100:1 | $2 \begin{gathered}2 \text { unknown } \\ \text { traces }\end{gathered}$ |  |
|  | $\begin{aligned} & 100 \mathrm{~mL} \\ & 90 \mathrm{~g} \\ & 0.845 \\ & \mathrm{~mol} \end{aligned}$ | 95-47-6 | $\begin{aligned} & 16.31 \\ & (0.0695) \end{aligned}$ | 12.1 | 25 | 3-5 |  | 65015-48-7 |  | 100:1 | 2 unknown traces | Yield of distilled sulfide 3 = 82\% |
|  | $\begin{aligned} & 60 \mathrm{mLL} \\ & 64 \mathrm{~g} \\ & 0.507 \\ & \mathrm{~mol} \end{aligned}$ | 106-43-4 | 4.0 (0.0171) | 29.7 | 73 | <10 |  | 65015-49-8 |  |  | 2 unknown traces |  |
|  | $\begin{aligned} & 60 \mathrm{~mL} \\ & 52 \mathrm{~g} \\ & 0.431 \\ & \mathrm{~mol} \end{aligned}$ | 108-67-8 | 4.54 (0.0193) | 22.3 | 30 | <10 |  | 65015-50-1 |  |  | Unknown trace | Sulfide 5 crystallized after excess mesitylene was distilled |
| $\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}- \\ \mathrm{CH}_{3} \end{gathered}$ | $\begin{gathered} 67 \mathrm{~mL} \\ 58.1 \mathrm{~g} \\ 0.547 \\ \mathrm{~mol} \end{gathered}$ | 100-41-4 | 9.70 (0.0413) | 13.2 | 15 | 2-4 | $\begin{gathered} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}\left(\mathrm{CH}_{3}\right)- \\ \mathrm{C}_{6} \mathrm{H}_{5} \\ 7(94-95 \%) \\ \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{CH}_{2}- \\ \mathrm{C}_{6} \mathrm{H}_{5} \\ 8(\sim 3 \%) \end{gathered}$ | $65015-51-2$ $65015-52-3$ | $\begin{aligned} & \underset{(1-2 \%)}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHClCH}} 3 \\ & \underset{\substack{ \\ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}}}{ } \\ & \hline \end{aligned}$ | 50-100:1 | Unknown trace | Yield of distilled sulñides 7 and $8>80 \%$ |
| $\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}- \\ \left(\mathrm{CH}_{3}\right)_{2} \end{gathered}$ | $\begin{gathered} 50 \mathrm{~mL} \\ 43.2 \mathrm{~g} \\ 0.359 \\ \mathrm{~mol} \end{gathered}$ | 98-82-8 | 7.00 (0.0298) | 12.0 | 17 | 1-2 | $\begin{gathered} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}- \\ \mathrm{C}_{6} \mathrm{H}_{5} \\ 9(91 \%) \\ \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{CH}-\mathrm{H}^{-} \\ \left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5} \\ 10(8 \%) \end{gathered}$ | 65015-53-4 <br> 65015-54-5 | $\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}- \\ & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right)- \\ & \mathrm{CH}_{2} \mathrm{Cl} \\ & (1-2 \%) \end{aligned}$ | $\sim 50: 1$ | Traces of $o t-$ methylstyrene + several unknowns | Sulfide 9 crystallized after excess cumene was distilled |
| $\begin{gathered} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}- \\ \left(\mathrm{CH}_{3}\right)_{3} \end{gathered}$ | $\begin{gathered} 60 \mathrm{~mL} \\ 52.0 \mathrm{~g} \\ 0.388 \\ \mathrm{~mol} \end{gathered}$ | 98-06-6 | $\begin{aligned} & 10.00 \\ & (0.0426) \end{aligned}$ | 9.1 | 83 | 24 | $\begin{gathered} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{C}- \\ \left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5} \\ \quad 11(76 \%) \\ \end{gathered}$ | 65036-37-5 | $\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}- \\ & \mathrm{CH}_{2} \mathrm{Cl} \\ & (8 \%) \end{aligned}$ | 9.5 | Traces of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Cl}+$ several unknowns | Distillation yielded fraction boiling at $85-88^{\circ} \mathrm{C}$ ( 0.5 mm ) which solidified; recrystallization from $\mathrm{CH}_{3} \mathrm{OH}$ gave 11 as needles |
| $\begin{gathered} \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}- \\ \mathrm{CH}_{2} \end{gathered}$ | $\begin{aligned} & 97 \mathrm{~mL} \\ & 97.1 \mathrm{~g} \\ & 0.577 \\ & \mathrm{~mol} \end{aligned}$ | 101-81-5 | $\begin{aligned} & 10.00 \\ & (0.0426) \end{aligned}$ | 13.5 | 161 | 10-20 | $\begin{gathered} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}- \\ \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \\ 12(\sim 70 \%) \end{gathered}$ | 65015-55-6 | $\underset{(10-20 \%)}{\mathrm{ClCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}}$ |  |  | The sulfide 12 , which crystallized after the excess diphenylmethane was distilled, was isolated in $50 \%$ yield |
| c- $\mathrm{C}_{6} \mathrm{H}_{12}$ |  | 110-82-7 | 9.96 (0.0425) | 16.3 | 40 | 32.4 | $\begin{gathered} \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{SC}_{6} \mathrm{~F}_{5} \\ \quad 13(67.6 \%) \end{gathered}$ | 56717-64-7 | $\begin{gathered} \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl} \\ (15.2 \%) \end{gathered}$ | 4.45 |  | Distillation through a small spinning band still did not cleanly separate 13 from disulfide |


| $n-\mathrm{C}_{4} \mathrm{H}_{10}$ | 75 mL <br> 60 g <br> 1.03 mol | 106-97-8 | $\begin{aligned} & 20.00 \\ & (0.0852) \end{aligned}$ | 12.1 | 400 | 38.6 | $\begin{gathered} n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SC}_{6} \mathrm{~F}_{5} \\ 15\left(15.9{ }^{2}\right) \\ \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}\left(\mathrm{CH}_{3}\right)- \\ \mathrm{C}_{2} \mathrm{H}_{5} \\ 16(45.6 \%) \end{gathered}$ | $33288-22-1$ $65015-56-7$ | $\begin{aligned} & n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl} \\ & (2.8 \%) \\ & \mathrm{CH}_{3} \mathrm{CHClC}_{2} \mathrm{H}_{5} \\ & (5.8 \%) \end{aligned}$ | 5.63 7.92 | Traces of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Cl}$ and two pentafluorophenyl chlorobutyl sulfides |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$ | $\begin{aligned} & 24 \mathrm{~mL} \\ & 19.2 \mathrm{~g} \\ & 0.33 \mathrm{~mol} \\ & \mathrm{~mol} \end{aligned}$ | 75-28-5 | $\begin{aligned} & 1.00 \mathrm{~mL} \\ & 1.68 \\ & \quad(0.00716) \end{aligned}$ | 46.1 | 70 | 40.4 | $\begin{gathered} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{CH}- \\ \left(\mathrm{CH}_{3}\right)_{2} \\ 17(20.2 \%) \\ \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{3} \\ 18(39.3 \%) \end{gathered}$ | $65015-57-8$ $65015-58-9$ | $\begin{gathered} \mathrm{ClCH}_{2} \mathrm{CH} \\ \left(\mathrm{CH}_{3}\right)_{2} \\ (0.4 \%) \\ \mathrm{ClC}\left(\mathrm{CH}_{3}\right)_{3} \\ (6.1 \%) \end{gathered}$ | 47.05 6.49 | Isobutylene <br> and <br> small <br> quantity of a pentefluoro phenyl chlorobutyl sulfide |
| $\begin{gathered} \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}- \\ \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \end{gathered}$ | 65 mL 43 g 0.50 mol | 79-29-8 | 10.0 (0.0426) | 11.7 | 75 | 54.5 | $\begin{gathered} \mathrm{C}_{0} \mathrm{~F}_{5} \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2}- \\ \mathrm{CH}\left(\mathrm{CH}_{3}{ }_{2}\right. \\ 19\left(45.4 \%_{2}\right) \\ \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{CH}- \\ \left(\mathrm{CH}_{3}\right) \mathrm{CH}- \\ \left(\mathrm{CH}_{3}\right)_{2} \\ 20(\text { trace }) \end{gathered}$ | $65015-59-0$ $65015-60-3$ | $\begin{aligned} & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CClCH}- \\ & \left(\mathrm{CH}_{3}\right)_{2} \\ & (20 \%) \end{aligned}$ | 2.27 | $\begin{aligned} & \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Cl} \text { (lrace), } \\ & \text { detected by } \\ & \text { MS-GC } \end{aligned}$ |

${ }^{a}$ Registry no.: $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCl}$ (1), 27918-31-6.
Table II. Free-Radical Additions of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathbf{S H}^{\text {a }}$ to Olefins: $\mathrm{C}_{6} \mathrm{~F}_{5} \mathbf{S H}+\mathrm{C}=\mathrm{C} \xrightarrow{h \nu} \mathrm{C}_{6} \mathrm{~F}_{5} \mathbf{S C C H}$

| Olefin |  | $\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$ | $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SH}$, <br> g (mol) | $\begin{gathered} \text { Olefin/ } \\ \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SH} \end{gathered}$ | Irradiation time, min | Products (yield) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}$ | $\begin{aligned} & 12 \mathrm{~mL} \\ & 10.91 \mathrm{~g} \\ & 0.105 \mathrm{~mol} \end{aligned}$ | 100-42-5 | 10.00 (0.050) | 2.1 | 195 | $\begin{aligned} & \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{(80 \%)} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \\ & \hline \end{aligned}$ |  |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$ | $\begin{aligned} & 15 \mathrm{~mL} \\ & 13.7 \mathrm{~g} \\ & 0.116 \mathrm{~mol} \end{aligned}$ | 98-83-9 | 10.00 (0.050) | 2.32 | 230 | $\begin{aligned} & \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5} \\ & \quad 10 \%) \end{aligned}$ |  |
|  | $\begin{aligned} & 35 \mathrm{~mL} \\ & 28.4 \mathrm{~g} \\ & 0.343 \mathrm{~mol} \end{aligned}$ | 110-83-8 | 8.00 (0.040) | 8.6 | 390 | $\begin{aligned} & \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{SC}_{6} \mathrm{~F}_{5} \\ & 13(60 \%)+ \\ & \left.\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SSC}_{6} \mathrm{~F}_{5} \text { (few } \%\right) \end{aligned}$ |  |
| $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ | $\begin{aligned} & 30 \mathrm{~mL} \\ & 24 \mathrm{~g} \\ & 0.428 \mathrm{~mol} \end{aligned}$ | 106-98-9 | 10.00 (0.050) | 8.6 | 320 | $\begin{aligned} & \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ & 15 \\ & \quad+\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SSC}_{6} \mathrm{~F}_{5} \end{aligned}$ | Gas chromatogram showed presence of much unreached thiol |
| $\underset{(\text { cis })}{\mathrm{CH}_{3} \mathrm{CH}}=\mathrm{CHCH}_{3}$ | $\begin{aligned} & 25 \mathrm{~mL} \\ & 20 \mathrm{~g} \\ & 0.357 \mathrm{~mol} \end{aligned}$ | 590-18-1 | 10.00 (0.050) | 7.1 | 825 | $\left.\begin{array}{c} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3} \\ 16 \end{array}\right\} \begin{aligned} & \text { sulfide/disulfide } \\ & \text { ratio 3:1 } \end{aligned}$ | Gas chromatogram showed conversion was about $20 \%$ |
| $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ | $\begin{aligned} & 30 \mathrm{~mL} \\ & 19.8 \mathrm{~g} \\ & 0.353 \mathrm{~mol} \end{aligned}$ | 115-11-7 | 8.00 (0.04) | 8.8 | 293 | $\begin{gathered} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \\ 17(85-90 \%)+ \\ \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SSC}_{6} \mathrm{~F}_{5}(5-7 \%) \end{gathered}$ |  |
| $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ | $\begin{aligned} & 20 \mathrm{~mL} \\ & 13.6 \mathrm{~g} \\ & 0.16 \mathrm{~mol} \end{aligned}$ | 563-78-0 | 10.00 (0.05) | 3.2 | 127 | $\begin{aligned} & \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \\ & 20(>90 \%)+\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SSC}_{6} \mathrm{~F}_{5} \\ & \text { (few } \% \text { ) } \end{aligned}$ |  |

Table III. Ratio of Pentafluorophenyl Cyclohexyl Sulfide
(S) and Chlorocyclohexane (CI) Formed at Various Conversions in the Photoreaction of 1 with Cyclohexane: Analysis by Gas Chromatography

| Sample <br> no. | Time,, <br> min | Conversion, $b$ <br> $\%$ | $\mathrm{~S} / \mathrm{Cl}^{\mathrm{c}}$ | $\mathrm{S} / \mathrm{Cl}^{d}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | 31 | 6.68 | 5.84 |
| 3 | 5 | 52 | 7.08 | 5.94 |
| 4 | 7.75 | 83 | 6.45 | 5.93 |
| 5 | 11 | $>95$ | 6.83 | 6.62 |
| 6 | 16 | 100 | 6.97 | 6.44 |

${ }^{a}$ Time elapsed after light was turned on. ${ }^{b}$ Conversion was estimated from the area of the peak for the product (14) of the dark reaction of excess 1 and $p$-methylacetophenone. ${ }^{c}$ These ratios were determined from peak areas calculated from the product of the peak heights and the widths at half-height. ${ }^{d}$ These ratios were determined by weighing the cut-out peaks traced onto thick, translucent paper.

With alkylbenzenes containing hydrogens on carbons both $\alpha$ and $\beta$ to the benzene ring, both possible sulfides were obtained, with that derived by substitution on the $\alpha$-carbon predominating. Thus, from ethylbenzene, 7 and 8 in a ratio of $30: 1$ were the major products. With cumene, again the major products were sulfides 9 and 10 in a ratio of 10:1. Low yields of $6, \alpha$ - and $\beta$-chlorocumene, and $\alpha$-methylstyrene were also obtained. ${ }^{7}$ Both of these were long chain reactions.


The reactions with tert-butylbenzene, the only case examined of an alkylbenzene with no benzylic hydrogens, and diphenylmethane appeared to be slower than the reactions just discussed. The respective sulfides ( 11 and 12) were the major products, but much higher yields of 6 and the chlorides were obtained than were seen in the reactions discussed above.

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5} \\
11
\end{gathered}
$$

$$
\begin{gathered}
\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHSC}_{6} \mathrm{~F}_{5} \\
12
\end{gathered}
$$

Alkanes. Light-induced reactions of 1 with excess cyclohexane, $n$-butane, isobutane, and 2,3-dimethylbutane did not appear to be as rapid as the reactions with methylbenzenes. In all cases but one, the highest yield products were pentafluorophenyl alkyl sulfides, but the yields of $\mathbf{6}$ and chlorohydrocarbons were much higher than in the methylbenzene reactions (Table I). The distributions of products in the cyclohexane, $n$-butane, and isobutane reactions were similar to those reported previously for the analogous reactions of pentachlorobenzenesulfenyl chloride, ${ }^{5}$ except that in the reactions of 1 with $n$-butane and isobutane, chlorobutyl sulfides were also obtained, and in the isobutane reaction, isobutylene ${ }^{10}$ was formed, all in very small yields.
In one experiment, a cyclohexane reaction (eq 2) was sampled periodically to detect any variation in the relative

amounts of the sulfide 13 and chlorocyclohexane during the course of the reaction. Each withdrawn aliquot was treated with excess $p$-methylacetophenone in order to convert unreacted 1 to a material (14) which gave a reproducible gas chromatography (GC) peak (eq 3). The GC analysis showed a small increase in the ratio of 13 to chlorocyclohexane be-


14
tween 30 and $100 \%$ conversion of 1 (Table III). In another cyclohexane experiment in which a $1: 1$ molar mixture of 1 and 6 in an excess of cyclohexane was irradiated until 1 was consumed, the GC ratio of 13 to chlorocyclohexane at the end of the experiment was 7.38 , compared to 6.31 for an analogous experiment with no added 6.
From the reaction with 2,3 -dimethylbutane, the main products were pentafluorophenyl 1,1,2-trimethylpropyl sulfide (19), 2 -chloro-2,3-dimethylbutane, and 6. A trace amount of the other possible sulfide (20) was also obtained, but none of the corresponding chloroalkane, i.e., 1 -chloro-2,3-dimethylbutane, was detected.

$$
\begin{array}{cc}
\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} & \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \\
19
\end{array}
$$

## Discussion

In free-radical reactions of $\mathrm{S}-\mathrm{Cl}$ compounds with hydrocarbons studied to date, the fate of the chain-carrving alkyl radicals has varied from exclusive $\mathrm{C}-\mathrm{S}$ bond formation, e.g., in the reaction of $\mathrm{SCl}_{2}$ with cyclohexane, ${ }^{12}$ to exclusive $\mathrm{C}-\mathrm{Cl}$ bond formation in the trichloromethanesulfenyl chloride reactions referred to above. ${ }^{3}$ All other cases so far stadied, including the react:ons of 1 , fall between these two extremes, giving both chloride and sulfide from the alkyl radical.

The steps in Scheme I have been proposed as the principal sources of the major products of sulfenyl halide-hydrocarbon free-radical reactions. ${ }^{2,4,5}$ There is agreement that step e is the primary source of chlorohydrocarbon, but both steps $f$ and $g$ have been proposed to account for sulfide formation. If step f was the sole pathway for forming sulfide, then the ratio of sulfide to chlorohydrocarbon should remain constant throughout the reaction since both products would derive from a single substrate. It is apparent in the cyclohexane reaction examined in this study that some sulfide is being formed by a process other than step f (presumably step g) since the sulfide/chloride ratio increases somewhat as the reaction goes on (Table III). But since the increase is small, it is concluded that step $g$ does not contribute importantly to sulfide formation. The same conclusion is drawr from the cyclohexane experiment done in the presence of a molar equivalent of 6 ; the moderately higher sulfide/chloride ratio observed at the $\epsilon$ nd of the reaction suggests relatively small involvement of sjep g.

Results of a previous study of free-radical reactions of

Scheme I

| RSCl | $\longrightarrow$ | $\mathrm{RS} \cdot+\mathrm{Cl} \cdot$ |
| :--- | :--- | :--- |
| $\mathrm{Cl} \cdot+\mathrm{R}^{\prime} \mathrm{H}$ | $\longrightarrow$ | $\mathrm{R}^{\prime} \cdot+\mathrm{HCl}$ |
| $\mathrm{RS} \cdot+\mathrm{R}^{\prime} \mathrm{H}$ | $\longrightarrow$ | $\mathrm{R}^{\prime} \cdot+\mathrm{RSH}$ |
| $\mathrm{RSCl}+\mathrm{RSH}$ | $\longrightarrow$ | $\underline{\mathrm{RSSR}}+\underline{\mathrm{HCl}}$ |
| $\mathrm{R}^{\prime}+\mathrm{RSCl}$ | $\longrightarrow$ | $\mathrm{R}^{\prime} \mathrm{Cl}+\mathrm{RS}$. |
| $\mathrm{R}^{\prime}+\mathrm{RSSR}$ | $\longrightarrow$ | $\mathrm{RSR}^{\prime}+\mathrm{Cl}$. |
|  |  | $\mathrm{RSR}^{\prime}+\mathrm{RS}$. |

$\mathrm{CF}_{3} \mathrm{SCl}$ with a group of alkanes show that the preference of atta:k by various alkyl radicals on sulfur vs. chlorine is best ordered on a steric basis, assuming that alkyl radicals intrinsically prefer to attack sulfur, but increasingly settle for attack on the more accessible chlorine as they become more bulky. ${ }^{2}$ The same trend is evident in the reactions of 1 with alkyl radicals (Table I), but the shift to preference for chlorine by the more bulky radicals appears to be less pronounced than in the $\mathrm{CF}_{3} \mathrm{SCl}$ reactions. The extremely high preference for attack on sulfur by benzylic radicals suggests that factors other than steric, e.g., reactivity of the radical, can be important in determining the pattern of attack by hydrocarbon radicals upon sulfenyl chlorides.

## Experimental Section

I. Free-Radical Reactions of 1 with Hydrocarbons. A stirred solut on of 1 dissolved in excess hydrocarbon contained in a quartz tube ( $7 \times 1.5 \mathrm{in}$.) was irradiated under nitrogen with a sunlamp until the characteristic color of 1 was gone and the evolution of gas ceased. The reaction mixture was analyzed quantitatively by gas chromatography, and the principal products were identified by (1) comparison of retention times with materials of known structure, (2) mass spectroscopic examination of peaks in the gas chromatogram, or (3) isolation by distillation followed by elemental and proton NMR analyses. Details of the experiment are tabulated in Table I. Character zation of all new compounds is given in Tables IV and V. ${ }^{6}$
II. Free-Radical Reactions of Pentafluorobenzenethiol with Olefins. A stirred solution of the thiol and olefin contained in a quartz tube $17 \times 1.5 \mathrm{in}$ ) fitted with a dry ice condens 2 and a magnetic stirrer was irradiated under nitrogen with a spiral-shaped, low-pressure mercury resonance lamp fitted around the reactor. The adducts were isolated by distillation, and structures were established by ${ }^{1} \mathrm{H}$ NMR spect:oscopy. The details of these reactions are tabulated in Table II.
III. Determination of the Ratio of Pentafluorophenyl $\mathbf{C y}$ clohexyl Sulfide (13) to Chlorocyclohexane at Various Conversions in the Photoreaction of I with Cyclohexane. A solution of 2.0 mL of 1 and 30 mL of cyclohexane (both freshly distilled) was placed in a small Pyrex flask fitted with a magnetic stirrer, a reflux condenser, and a syringe adapter. The mixture was irradiated with a sunlamp placed 5-6 in from the reactor. Samples ( 0.5 mL ) were withdrawn periodically via syringe. Each sample was placed in a test tube containing 0.2 mL of $p$-methylacetophenone and shaken until colorless. A $5-\mu \mathrm{L}$ sample was then examined ty GC. The results of the measurements are given in Table III.
IV. Reaction of 1 with $p$-Methylacetophenone. A $5-\mathrm{mL}$ amount of 1 was added in small portions to 80 mL of freshly distilled $p$ -
methylacetophenone with stirring. The color of 1 faded quickly after each addition. GC analysis showed the presence of one product. Distillation through a small Vigreux still gave 8.40 g (70\%) of pentafluorophenyl $p$-methylphenacyl sulfide (14), distilling at 116-122 ${ }^{\circ} \mathrm{C}(0.20 \mathrm{~mm})$. Elemental analysis and a ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum data are given in Tables IV and V. ${ }^{6}$
V. Reaction of 1 with Cyclohexane in the Presence of 6. A mixture of $0.2 \mathrm{~mL}(0.31 \mathrm{~g}, 0.00132 \mathrm{~mol})$ of $1,0.53 \mathrm{~g}(0.00133 \mathrm{~mol})$ of 6 , and 3 mL of cyclohexane was irradiated as described above for 21 min. The color of the reaction mixture remained pale yellow during the last 5 min of the irradiation period. The mixture was analyzed by GC, and the ratio of the peak areas corresponding to 13 and chlorocyclohexane was found to be 7.38 (average of two determinations).

For comparison, a mixture of 0.2 mL of 1 and 3 mL of cyclohexane was similarly irradiated for 13 min , after which the mixture was essentially colorless. The peak area ratio of 13 to chlorocyclohexane was found to be 6.31 .
VI. Preparation of 1 . Compound 1 was prepared by the chlorination of pentafluorobenzenethiol (Peninsular Chem. Research) in carbon tetrachloride as described by Sheppard and Foster. ${ }^{13}$
VII. Gas Chromatography. The GC analyses were done primarily with a $6 \mathrm{ft} \times 0.25$ in column packed with $20 \% \mathrm{SE}-30$ on $60-80$ mesh WAWDMCS. Temperatures varied from 50 to $200^{\circ} \mathrm{C}$. The helium flow rate was about $100 \mathrm{~mL} / \mathrm{min}$.
VIII. Mass Spectroscopy/Gas Chromatography. A Du Pont Model 21-490 mass spectrometer interfaced to a Varian Model 1440 gas chromatograph and a VG 2040 data system was used.

Registry No.-14, 65015-61-4; p-methylacetophenone, 122-009.

Supplementary Material Available: Tables IV and V of elemental analyses and ${ }^{1} \mathrm{H}$ NMR spectral data for the rew pentafluorophenyl alkyl and aralkyl sulfides (8 pages). Ordering information is given on any current masthead page.

## References and Notes

(1) Contribution No. 2451
(2) J. F. Harris, Jr., J. Org. Chem., 31, 931 (1966).
(3) H. Kloosterziel, Recl. Trav. Chim. Pays-Sas, 82, 497, 508 (1963).
(4) N. Kharasch and Z. S. Ariyan Chem. Ind. (London), 929 (1964).
(5) D. D. Tanner, N. Wada, and B. G. Brownlee, Can. J. Chem., 51, 1870 (1973).
(6) See paragraph at the end of paper about supplementary material.
(7) The $\alpha$-methylstyrene detected probably arose from the thermally induced loss of HCl from $\alpha$-chlorocumene during the GC analysis. 8,9
(8) M. S. Kharasch and H. C. Brown, J. Am. Chem. Soc., 61, 2142 (1939).
(9) E. Rothstein and R. W. Saville, J. Chem. Soc., 1949 (1946).
(10) The isobutylene no doubt arose from disoroportionation of the tert-butyl radical. ${ }^{11}$
(11) S. W. Benson, Advan. Photochem., 2, 1 i 1964).
(12) E. Muller and E. W. Schmidt, Chem. Ber. 96, 3050 (1963).
(13) W. A. Sheppard and S. S. Foster, J. Fluorine Chem., 2, 53 (1972).

# Peracid Oxidations of Cyclopropenes and Cyclopropenones ${ }^{\text {1a }}$ 

Jack K. Crandall* and Woodrow W. Conover II ${ }^{\text {b }}{ }^{\text {b }}$<br>Contribution No. 3045 from the Department of Chemistry, Indiana University, Bloomington, Indiana 47401

Received August 2, 1977

The reactions of cyclopropenes la-c with peracid yield isomeric conjugated ketones $\mathbf{2 a - c}$ and $\mathbf{3 a}, \mathbf{b}$. These conversions are interpreted in terms of an oxabicyclobutane intermediate. The peracid oxidation of cyclopropenones 11 and 21 were shown to initially produce $\mathrm{CO}_{2}$ and an acetylene. The latter is converted to other products under the reaction conditions.

Considerable recent effort has been directed toward the synthesis and chemical characterization of novel small-ring heterocyclic systems. 2-Oxabicyclo[1.1.0]butane is the parent of one such class of highly strained heterocycles. Although no authentic example of this elusive structure has yet been described in the literature, species of this type have been considered as reactive intermediates in photochemical isomer-
izations of conjugated carbonyl compounds ${ }^{2}$ and from peracid oxidations of cyclopropenes. ${ }^{3-8}$ In this report, we detail our results concerning potential approaches to oxabicyclobutanes.

Concurrently with published studies, we too have explored the peracid oxidation of cyclopropenes. Thus, oxidation of 1,2-diethyl-3-carbethoxycyclopropene (1a) with an excess of
$m$-chloroperbenzoic acid (MCPBA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution resulted in an 85:15 mixture of isomeric conjugated enones 2 a and 3 a . The use of methanol as solvent gave a $91: 9$ ratio of 2a/3a, whereas a 90:10 mixture was obtained in cyclohexane. However, neither peracetic acid nor perozybenzimidic acid ${ }^{9}$ promoted appreciable conversion of la. The structures of the enones follow from their spectral characteristics which are detailed in the Experimental Section. The N.MR data permit assignments of double-bond configuratiors, since the olefinic proton should be at lower field for the $E$ isomer relative to the $Z$ form. ${ }^{10}$ The isomeric relationship of 2a and 3 a was readily confirmed by photochemical equilibration. However, these enones did not interconvert under the reaction conditions, indicating that the observed ratios reflect kinetic product distributions.

The reaction of $1 \mathbf{b}$ (in which a hydrcxymethyl group is present at $\mathrm{C}-3$ ) with MCPBA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ produced a $65: 35$ mixture of $\mathbf{2 b}$ and $\mathbf{3 b}$. In methanol the product ratio was 70:30 and in cyclohexane it was 60:40. Product stereochemistry is again assigned by NMR. Photoequilibration experiments interrelated the two enones, which were stable to interconversion under the reaction conditions.
Sterically hindered cyclopropene 1c was examined with the idea that its bulky substituents might permit the isolation of an unstable intermediate. This strategy has been successfully employed in a number of similar situations. However, in the case of 1c only conjugated ketone 2 c was produced by MCPBA oxidation, even when the reaction product was examined at $0^{\circ} \mathrm{C}$. Since certain hindered olefins are epoxidized by ozone, ${ }^{1:}$ the ozonolysis of $1,2,3$-tri-tert-butylcyclopropene (1d) was studied at low temperatures in the absence of protic materials. Unfortunately, diketone 4, derived from normal ozone double-bond cleavage, was the only important product.

a, $R_{1}=E t ; R_{2}=\mathrm{CO}_{2} \mathrm{Et} ; \mathrm{R}_{3}=\mathrm{H}$
b, $\mathrm{R}_{1}=\mathrm{Et} ; \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OH} ; \mathrm{R}_{3}=\mathrm{H}$
c, $\mathrm{R}_{1}=t-\mathrm{Bu} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Me}$
$\mathrm{d}, \mathrm{R}_{1}=\mathrm{R}_{2}=t-\mathrm{Bu} ; \mathrm{R}_{3}=\mathrm{H}$
e, $\mathrm{R}_{1}=\mathrm{Ph}: \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OH} ; \mathrm{F}_{-3}=\mathrm{H}$
$\mathrm{f}, \mathrm{R}_{1}=\mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{OMe} ; \mathrm{R}_{1}=\mathrm{H}$

4

6

Although concrete evidence has still not been obtained for the intermediacy of oxabicyclobutanes $\mathbf{5}$ in the peracid oxidation of cyclopropenes, the production of conjugated carbonyl compounds is most readily rationalized in terms of the formatior and spontaneous rearrangement of such species. ${ }^{3-8}$ The latter transformation is formally analogous to the bicy-clobutane-butadiene isomerization, which has received considerable attention. ${ }^{12}$ If similar concerted mechanisms obtain in these structurally related systems, the proposed oxabicy-
clobutanes must be much more susceptible to thermal rearrangement than their hydrocarbon analogues. In fact, the isomerization of the parent oxabicyclobutane to acrolein is predicted ${ }^{2,13}$ to be ca. $20 \mathrm{kcal} / \mathrm{mol}$ more exothermic than the bicyclobutane to butadiene conversion when equivalent strain energies are assumed for the two strained-ring systems. ${ }^{14}$ Nonetheless, estimates of the expected kinetic behavior of oxabicyclobutane suggest that it might be an observable species. ${ }^{13}$

The heterocyclic system is more likely to react by acidcatalyzed mechanisms, but kinetic ${ }^{8}$ and product studies ${ }^{7}$ have been used to argue persuasively against intermediates of type 6 anywhere in the overall conversion of cyclopropenes to conjugated carbonyl compounds. However, protonation of oxabicyclobutanes could well hasten concerted decomposition to protonated enones. ${ }^{4}$

Friedrich has calculated that the parent oxabicyclobutane should display a preference for "disrotatory" over "conrotatory" ring opening. ${ }^{4}$ He has also inferred from product studies on le and If that the disrotatory mode leading initially to a transoid enone conformer (path a) is preferred over the alternate disrotatory process which gives the cisoid enone (path b). ${ }^{5}$ These transformations result in geometrical isomers of the enone product when $R_{2} \neq R_{3}$ in oxabicyclobutane 5 . The above hypothesis does not appear to satisfactorily accommodate our results.


In order to follow the stereochemistry of the oxabicyclobutane ring openirg, a knowledge of the structure of this reactive intermediate is required. In the case of la this can be predicted to be predominately the exo isomer $5_{\mathrm{X}}$ with some confidence. This conclusion is based on the known stereochemistry of attack of other sterically demanding reagents on cyclopropenes ${ }^{15}$ and the usual propensity for peracid to approach a cyclic olefin bearing a proximate ester function from the side of the molecule away from this polar group. ${ }^{16}$ The rules given above predict $\mathbf{3 a}$ as the major enone product from $5_{\mathrm{X}}$, whereas experimentally 2 a is observed to predominate. Note also that the $2 a / 3 a$ product ratio is not significantly different in the three solvents utilized (cyclohexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and methanol).

The stereochemistry of the intermediate from $1 \mathbf{b}$ is less certain, although there is ample precedence for expecting peracid attack cis to the hydroxymethyl group owing to association by hydrogen bonding prior to reaction. ${ }^{16}$ This line of reasoning predicts preferential formation of the endooxabicyclobutane $5_{N}$ in inert solvents. Rearrangement of $5_{N}$ is predicted to yield $\mathbf{2 b}$ as the major enone product in agreement with the experimental results. However, hydrogen bonding between peracid and $\mathbf{l b}$ will not be important in methanol and the exo intermediate $5_{\mathrm{X}}$ should predominate in this solvent. Accordingly, a reversal in the enone stereochemistry would je anticipated. In fact, the $\mathbf{2 b} / \mathbf{3} \mathbf{b}$ product
distribution is not greatly affected by the nature of the solvent. Thus, either the neighboring hydroxy group is not functioning as anticipated or the product ratio is not dependent on the stereochemistry of the oxabicyclobutane intermediate. In any event. the predominance of the $E$ enone for both la and 1 b contrasts markedly with the results for the pair le and if which give major enones of opposite stereochemistry ( $Z$ and $E$. respectively).

We conclude that the currently available data do not present a consistent pattern for the $2 / 3$ ratios which can be rationalized in terms of a preferred decomposition mode for the intermediate oxabicyclobutanes. Rather, if such species are indeed formed. their product ratios are probably determined by subtle substituent interactions. In fac:, typical product distributions correspond to rather similar energies for the competitive kinetic pathways to isomeric enone products; i.e., the reactions are not very stereoselective.

The possibility of photochemical.y isomerizing conjugated enones to oxabicyclobutanes has been considered. However, ketone 7 does not so react, preferring transformation to the isomeric oxetene 8 instead, ${ }^{2}$ probably from a cisoid conformation of the starting enone. Consequently, the photochemistry of 9 , an enone which cannot readily achieve a planar cisoid conformation, was examined with the hope that the alternate cycloaddition mode to an oxabicyclobutane might be favored by this conformational distortion. No reaction was observed upon prolonged irradiation of 9 through Pyrex, but a facile photoconversion occurred upon irradiation through quartz. Disappointingly the photoisomer thus obtained was shown to be cyclobutanol 10. Such photochemical transformations are, of course. amply precedented. ${ }^{17}$


10

Peracid oxidations were also performed on several cyclopropenones, a rather special class of cyclopropenes. ${ }^{15.18}$ Thus, di-tert-butylcyclopropenone (11) reacted slowly with an excess of MCPBA to yield di-tert-butylacetylene and ketones 12, 13, 14, and 15 in a 1:2:5:90:2 ratio. One equivalent of $\mathrm{CO}_{2}$ was also produced. The carbonyl products suggest the intermediacy of oxirene 16, a highly reactive, antiaromatic species which is expected to yield stable products via the isomeric ketocarbene $17 .{ }^{19}$ A pathway to oxirene 16 proceeding by way of the oxabicyclobutanone 18 was considered prior to the identification of di-tert-butylacetylene as a minor product from 11. However, the reaction of this acetylene with peracid is known to yield ketones $12-15$ in a process postulated to involve the oxirene intermediate $16 .{ }^{19}$ Repeating the oxidation of the acetylene under the reaction conditions used for the cyclopropenone gave ketones 12, 13, 14. and 15 in a 3:5:90:2 ratio. The identity of the product distributions in the two oxidation reactions establishes with virtual certainty that the acetylene is a key intermediate in the cyclopropenone reaction. Furthermore, this description is more in accord with the characteristic behavior of cyclopropenones, which are likely to suffer nucleophilic attack at the carbonyl group. ${ }^{16}$ Adduct 19. formed by addition of peracid to cyclopropenone 11 , can fragment to $\mathrm{CO}_{2}$ and di-tert -butylacetylene either concertedly or by first rearranging to lactone 20. Cyclopropancnes are reputed to undergo a related conversion to olefin and $\mathrm{CO}_{2} .{ }^{20}$

Acetylenes are also produced as side products during the peracid oxidation of certain highly hindered cyclopropenes by a process which appears to involve an intermediate cyclopropenyl cation. ${ }^{7}$ (Interestingly cyclopropenone 11 did not react with ozone, an electrophilic reagent.)

The MCPBA oxidation of diphenylcyclopropenone (21) resulted in a 40:10:50 mixture of diphenylacetylene, benzophenone. and benzil. Identical treatment of the acetylene resulted in partial conversion to the two ketones in a 1:5 ratio, essentially as described in the literature. ${ }^{21}$ An intermediate oxirene is again postulated as the key intermediate.


The absence of benzyl phenyl ketone in the product mixture from 21 and MCPBA was puzzling in view of a report that the oxidation of 21 with basic hydrogen peroxide gave this ketone as the major product. ${ }^{22}$ In fact, duplication of this experiment led to a 30:10:40:20 mixture of diphenylacetylene, benzophenone, benzil, and benzyl phenyl ketone more in agreement with the MCPBA results. Submitting cyclopropanone 19 to the basic reaction conditions in the absence of hydrogen peroxide gave cis-1,2-diphenylacrylic acid 22 as anticipated. ${ }^{23}$



Acid 22 was readily converted to benzyl phenyl ketone in high yield by basic hydrogen peroxide. These results account for the experimental discrepancies and demonstrate part of the route to this ketone. The salt of acid 22 is undoubtedly epoxidized to give the glycidic acid salt 23 which decarboxylates to benzyl phenyl ketone.

Finally, cycloheptenocyclopropenone (24) was transformed by excess MCPBA to a complex mixture containing a $51 \%$ yield of chlorobenzene and $6 \%$ of cycloheptanone as the major components. These unanticipated results were not further investigated, but the observed products can be rationalized in terms of initial acetylene formation. In this instance, the very unstable cycloheptyne is postulated to nucleophilically add peracid to give the vinyl perester 25 which can proceed to the observed products by plausible free-radical processes.


## Experimental Section

General. NMR spectra were recorded for $\mathrm{CCl}_{4}$ solutions on a Varian HR-220 spectrometer; infrared spectra were obtained on a Perkin-Elmer IR-7 prism spectrophotometer. Commercial $m$-chloroperbenzoic acid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ after which it analyzed as $>98 \%$ peracid. ${ }^{24}$ Sodium sulfate was used as a drying agent. Analyses were performed by Spang Microanalytical Laboratory.

1,2-Diethyl-3-carbethoxycyclopropene (1a). To a mixture of 10 g of 3 -hexyne and 0.1 g of electrolytic Cu at reflux temperature was added 50 g of ethyl diazoacetate over a 12 -h period. After gas evolution ceased, the mixture was distilled to give 7.5 g (55\%) of 1,2-diethyl3 -carbethoxycyclopropene of $>95 \%$ purity by GLPC: bp $90-95^{\circ} \mathrm{C}(30$ mm ); IR 5.28, 5.81, 7.35, 8.10, and $8.48 \mu \mathrm{~m}$; NMR $\delta 1.14(\mathrm{t}, 6, J=7 \mathrm{~Hz}$ ), $1.19(\mathrm{t}, 3, J=7 \mathrm{~Hz}), 1.96(\mathrm{~s}, 1), 2.42(\mathrm{q}, 4, J=7 \mathrm{~Hz})$, and $4.01(\mathrm{q}, 2, J$ $=7 \mathrm{~Hz}$ ).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ : C, 71.39; $\mathrm{H}, 9.59$. Found: C, 71.2; H , 9.5.

Peracid Oxidation of 1 a . A mixture of 0.5 g of 1 a and 2 g (4 equiv) of MCPBA in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirrec at $0^{\circ} \mathrm{C}$ for 3 h , washed successively with solutions of $\mathrm{NaHCO}_{3}, \mathrm{NaHSO}_{3}, \mathrm{NaHCO}_{3}$, and dried. Solvent removal under vacuum at $0^{\circ} \mathrm{C}$ gave $2.1 \mathrm{~g}(96 \%)$ of a mixture of two products in a $85: 15$ ratio by GLPC. Inspection of the crude reaction mixture by NMR indicated that the GLPC isolated products were the only components. The major component was ethyl $(E)$-3-ethyl-4-keto-2-hexenoate (2a): IR 5.80, 5.92 6.11, and $8.28 \mu \mathrm{~m}$; NMR $\delta 0.98(\mathrm{t}, 3, J=7 \mathrm{~Hz}), 1.09(\mathrm{t}, 3, J=7 \mathrm{~Hz}), 1.29(\mathrm{t}, 3, J=7 \mathrm{~Hz}), 2.63$ $(\mathrm{q}, 2, J=7 \mathrm{~Hz}), 2.75(\mathrm{q}, 2, J=7 \mathrm{~Hz}), 4.17(\mathrm{q}, 2, J=7 \mathrm{~Hz})$, and $6.33(\mathrm{~s}$, 1).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 65.19 ; \mathrm{H}, 8.75$. Found: $\mathrm{C}, 65.3 ; \mathrm{H}$, 8.9.

The minor component was ethyl ( $Z$ )-3-6thyl-4-keto-2-hexenoate (3a); IR 5.82 (br), 6.08, 8.3 , and $8.8 \mu \mathrm{~m}$; NMR $\delta 1.10$ (br t, $6, J=7 \mathrm{~Hz}$ ), $1.25(\mathrm{t}, 3 . J=7 \mathrm{~Hz}), 2.51(\mathrm{brq}, 2, J=7 \mathrm{~Hz}), 2.57(\mathrm{q}, 2, J=7 \mathrm{~Hz}), 4.11$ $(\mathrm{q}, 2, J=7 \mathrm{~Hz})$, and $5.56(\mathrm{t}, 1, J=2 \mathrm{~Hz})$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$ : $\mathrm{C}, 65.19 ; \mathrm{H}, 8.75$. Found: $\mathrm{C}, 65.3 ; \mathrm{H}, 8.7$. Reaction of la with peracetic acid at $0^{\circ} \mathrm{C}$ for 24 h resulted in recovery of starting maierial, as did reaction with peroxybenzimidic acid. ${ }^{9}$

Peracid Oxidation of la in Methanol. A mixture of 0.5 g of 1 a and 2 g (4 equiv) of MCPBA in 25 mL of methanol was stirred at $0^{\circ} \mathrm{C}$ for 6 h . Addition of 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and workup as described above gave 2a ( $91 \%$ ) and 3 a ( $9 \%$ ).

Peracid Oxidation of la in Cyclohexane. A mixture of 0.5 g of

1a and 2 g ( 4 equiv) of MCPBA in 25 mL of cyclohexane was stirred at $0^{\circ} \mathrm{C}$ for 6 h . After workup as described above the solvent was removed under vacuum to give a $90: 10$ ratio of $\mathbf{2 a} / 3 \mathbf{a}$.

Photoequilibration of 2a and 3a. Pure samples of 2a and 3a were independently irradiated in a Rayonet reactor with $3100-\AA$ bulbs until an identical ratio of $91: 9$ of $2 a / 3 a$ was obtained ( 6 h ).

Acid Stability of 2a and 3a. Pure samples of 2a and 3a were stirred with a mixture of 0.5 g of $m$-chlorobenzoic acid and 0.5 g of MCPBA in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ for 24 h . Workup as described above followed by GLPC analysis indicated no interconversion of isomers under these reaction conditions.

1,2-Diethyl-3-hydroxymethylcyclopropene (1b). To a slurry of 1 g of LAH in 100 mL of ether in an ice bath was added 1 g of la in ether at a rate to maintain the temperature below $5^{\circ} \mathrm{C}$. Immediately after the addition of $1 \mathbf{a}, 2 \mathrm{~mL}$ of saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution was added slowly. Filtration and removal of solvent gave $0.5 \mathrm{~g}(66 \%)$ of 1 b which was $96 \%$ pure by GLPC: IR $3.05,5.40,6.9$, and $9.9 \mu \mathrm{~m}$; NMR $\delta 1.14$ (t, $6, J=7 \mathrm{~Hz}), 1.15(\mathrm{t}, 1, J=7 \mathrm{~Hz}), 2.43(\mathrm{q}, 4, J=7 \mathrm{~Hz}), 3.41(\mathrm{~d}, 2, J=$ 7 Hz ), and $4.20(\mathrm{~s}, 1)$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 76.14 ; \mathrm{H}, 11.18$. Found: $\mathrm{C}, 76.0 ; \mathrm{H}$, 11.2.

Peracid Oxidation of $\mathbf{1 b}$. A mixture of 1 g of 1 b and 2 g of MCPBA (1.5 equiv) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred for 6 h in an ice bath. After workup the solvent was removed under vacuum at $0^{\circ} \mathrm{C}$ to give 1.1 g $(96 \%)$ of a mixture of two compounds in a $65: 35$ ratio. The major component was $(E)$-4-ethyl-6-hydroxy-4-hexen-3-one (2b): IR 2.98, $5.88,6.10$, and $8.05 \mu \mathrm{~m}$; NMR $\delta 1.08(\mathrm{t}, 3, J=7 \mathrm{~Hz}), 1.18(\mathrm{t}, 3, J=7$ $\mathrm{Hz}), 2.18(\mathrm{q}, 2, J=7 \mathrm{~Hz}), 2.68(\mathrm{q}, 2, J=7 \mathrm{~Hz}), 3.51(\mathrm{~d}, 2, J=6 \mathrm{~Hz})$, $4.50(\mathrm{~s}, 1)$, and 6.72 ( $\mathrm{t}, 1, J=6 \mathrm{~Hz}$ ).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$ : C, 67.57 ; $\mathrm{H}, 9.92$. Found: $\mathrm{C}, 67.3 ; \mathrm{H}$, 10.0.

The minor component was ( $Z$ )-4-ethyl-6-hydroxy-4-hexen-3-one (3b): IR 2.98, 5.89, 6.11, and $8.15 \mu \mathrm{~m}$; NMR $\delta 1.03(\mathrm{t}, 3, J=7 \mathrm{~Hz}), 1.20$ $(\mathrm{t}, 3, J=7 \mathrm{~Hz}), 2.20(\mathrm{q}, 2, J=7 \mathrm{~Hz}), 2.70(\mathrm{q}, 2, J=7 \mathrm{~Hz}), 4.31(\mathrm{~d}, 2$, $J=6 \mathrm{~Hz}), 4.73(\mathrm{~s}, 1)$, and $5.65(\mathrm{t}, 1, J=6 \mathrm{~Hz})$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$ : C, 67.57; H, 9.92. Found: C, 67.6; H, 9.8.

Oxidation using peracetic acid in an ice bath for 24 h resulted in recovery of starting material, as did oxidation with peroxybenzimidic acid.

Peracid Oxidation of $\mathbf{1 b}$ in Methanol. A mixture of 0.5 g of $1 \mathbf{b}$ and 1 g of MCPBA ' 1.5 equiv) in 25 mL of methanol was stirred in an ice bath for 6 h . Addition of 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and processing as described above gave a $\mathbf{2 b} \mathbf{- 3 b}$ mixture in a $70: 30$ ratio ( $93 \%$ ).

Peracid Oxidation of $1 \mathbf{b}$ in Cyclohexane. A mixture of 0.5 g of 1 b and 1 g ( 1.5 equiv) of MCPBA in 25 mL of cyclohexane was stirred at $0^{\circ} \mathrm{C}$ for 6 h . After workup as described above the solvent was removed under vacuum to give a $60: 40$ ratio of $2 \mathbf{b} / 3 \mathbf{b}$.

Photoequilibration of $\mathbf{2 b}$ and $\mathbf{3 b}$. Pure samples of $\mathbf{2 b}$ and $\mathbf{3 b}$ were independently irraciated in a Rayonet reactor with $3100-\AA$. bulbs until an identical cis-trans ratio of 27:73 was observed ( 3 h ).

Acid Stability of $\mathbf{2 b}$ and $\mathbf{3 b}$. Samples of pure $\mathbf{2 b}$ and $\mathbf{3 b}$ were stirred with 0.5 g of $m$-chlorobenzoic acid and 0.5 g of MCPBA in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 24 h in an ice bath. Workup and analysis as described above indicated no interconversion of isomers under these reaction conditions.

1,2-Di-tert-butyl-3,3-dimethylcyclopropene (1c). To 1 g of di-tert-butylcyclopropenone ${ }^{25}$ in 50 mL of ether was added 10.4 mL of a 1.15 M MeLi solution. After stirring $2 \mathrm{~h}, 1 \mathrm{~mL}$ of water was added and stirring was continued for an additional 2 h . The solution was dried and 1 mL of $10 \% \mathrm{HClO}_{4}$ in acetic anhydride was adced dropwise at $0^{\circ} \mathrm{C}$. The solid thus formed was removed by filtration and washed with ether. To this material suspended in 100 mL of ether was added 10.4 mL of 1.15 M MeLi solution. After stirring $3 \mathrm{~h}, 1 \mathrm{~mL}$ of water was added, the ether solution was dried, and the solvent was removed to give 1,2-di-tert-butyl-3,3-dimethylcyclopropene (1c): IR 5.50, 7.19, 9.58 , and $10.0 \mu \mathrm{~m}$; NMR $\delta 0.98(\mathrm{~s}, 6)$ and $1.21(\mathrm{~s}, 18)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24}$ : C, 86.59; H, 13.41. Found: C, 86.3; H, 13.7.

Peracid Oxidation of $1 \mathbf{c}$. A mixture of 300 mg of 1 c and 600 mg (2 equiv) of MCPBA in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was worked up in the usual fashion and the solvent was removed under vacuum at $0^{\circ} \mathrm{C}$ to give $295 \mathrm{mg}(90 \%)$ of $2,5,5$-tri-methyl-3-tert-butyl-2-hexen-4-one (2c), pure by GLPC: IR 5.91, 6.13, $7.18,7.32,9.56$, and $10.0 \mu \mathrm{~m}$; NMR $\delta 1.15(\mathrm{~s}, 9), 1.21(\mathrm{~s}, 9), 1.96(\mathrm{~s}, 3)$, and 2.16 (s, 3).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 79.53 ; \mathrm{H}, 12.32$. Found: C, 79.4; H, 12.4.

Reaction of 1,2,3-Tri-tert-butylcyclopropene ${ }^{25}$ (1d) with Ozone. Into a solution of 172 mg of 1 d in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$
was bubbled 1 zquiv of ozone from a Welsbach ozone generator. After bubbling nitrogen through the solution for 30 min , it was allowed to warm to room temperature. Removal of the solvent under vacuum gave a mixture of two compounds in a 90:10 ratio. The major compound isolatec by GLPC ( $160 \mathrm{mg}, 80 \%$ ) was assigned as $2,2,6,6$-tet-ramethyl-4-tert-butyl-3,5-heptadione, (4): IR 5.80, $10.0 \mu \mathrm{~m}$; NMR $\delta 0.97(\mathrm{~s}, 9), 1.14(\mathrm{~s}, 18)$, and $4.55(\mathrm{~s}, 1)$; mass spectrum $\mathrm{m} / \mathrm{e} 57(100)$, 85 (60), 128 (13), 141 (7), 156 (2), 169 (3), 183 (7), 184 (7), and 240 (2).

Anal. Calcd for $\mathrm{C}_{: 5} \mathrm{H}_{28} \mathrm{O}_{2}$ : $\mathrm{C}, 74.95 ; \mathrm{H}, 11.74$. Found: $\mathrm{C}, 74.6 ; \mathrm{H}$, 11.7.

Inspection of the reaction mixture by NMR at $-78^{\circ} \mathrm{C}$ indicated that 4 was already formed and no change was observed upon warming. A reaction under identical conditions in methanol solvent gave similar results.

4-tert-Butyl-2,2-dimethyl-4-penten-3-one (9). A 3-g sample of $2,2,5,5$-tetramethyl-3,4-hexadione was treated with 12 mL of a 1.7 M methyllithicm solution in 300 mL of ether at room temperature and stirred for 2 h . A $5-\mathrm{mL}$ sample of acetyl chloride was added and stirring was continced for an additional 3 h . The reaction was quenched by the addition of 10 mL of water. The mixture was washed with water and a solution of $\mathrm{NaHCO}_{3}$, and dried. The ether was removed by vacu am and the crude material passed through a flow system pyrolysis tube at $450{ }^{\circ} \mathrm{C}$. The collected 4 -tert-butyl-2,2-di-methyl-4-penten-3-one (9) was purified by GLPC and gave: IR 5.95, $6.17,7.22,7.38,7.80,8.31,9.61,10.0,11.0$, and $11.4 \mu \mathrm{~m}$; NMR $\delta 1.13$ $(\mathrm{s}, 9), 1.19(\mathrm{~s}, 9 \cdot 5.02(\mathrm{~s}, 1)$, and $5.25(\mathrm{~s}, 1)$.

Photolysis cf 9 . A $50-\mathrm{mg}$ sample of 9 was dissolved in 125 mL of pentane and irradiated through Pyrex at $-78^{\circ} \mathrm{C}$ with a Hanovia medium-pressure Hg arc. After 12 h the pentane was removed. The NMR of the residue indicated only starting material. Irradiation through quartz under the same conditions for 30 min gave three products by GLPC ir. a 96:2:2 ratio. Collection of the major product by GLPC and spectral analysis indicated 1 -tert-butyl-3,3-di-methyl-2-meth jlenecyclobutanol (10): IR 2.80, 2.93, 6.05, 7.24, 7.32, $8.87,10.4,11.2$, and $11.6 \mu \mathrm{~m}$; NMR $\delta 0.92(\mathrm{~s}, 9), 1.07(\mathrm{~s}, 3), 1.24(\mathrm{~s}, 3)$, $1.88(\mathrm{AB}, 2, \Delta \nu=0.4 \mathrm{ppm}, J=13 \mathrm{~Hz}), 1.75(\mathrm{~s}, 1), 4.91(\mathrm{~s}, 1)$, and 5.05 ( $\mathrm{s}, 1$ ).

Anal. Calcd :or $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}$ : C, 78.51; H, 11.98. Found: C, 78.6; H, 12.0.

Peracid Oxidation of 11. A mixture of 1 g of 11 and 5.2 g of MCPBA ( 4.5 equiv) in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was refluxed for 8 h . The usual workup geve 1.3 g of a mixture of 5 products in a 1:2:5:90:2 ratio by GLPC. The :irst product was identified as di-tert-butylacetylene by spectral conparison with an authentic sample. ${ }^{26}$ The second product was identified as 2,3,5,5-tetramethyl-2-hexen-4-one (12) by GLPC retention time and mass spectral comparison with an authentic sample: ${ }^{19}$ mass spectrum $m / e 154$ (9), 139 (8), 97 (87), 83 (4j), 69 (22), and 57 (100). The third product was identified as $1,2,2$-trimethylcyclopropyl tert-tutyl ketone (13) by spectral comparison with an authentic sample. ${ }^{57}$ The fourth product was identified as $2,3,5,5$-tetra-methyl-2,3-epozy-4-hexanone (14) by spectral comparison with an authentic samp e: ${ }^{19}$ IR 5.91, 7.25, 7.31, 8.0, 11.4, and $12.0 \mu \mathrm{~m}$; NMR $\delta 1.36(\mathrm{~s}, 3), 1.2 \mathrm{c}(\mathrm{s}, 3), 1.16(\mathrm{~s}, 9)$, and $1.14(\mathrm{~s}, 3)$; mass spectrum $m / e$ 170 (19), 155 (4C), 138 (1.5), 113 (15), 86 (62), 85 (46), 71 (57), and 57 (100). The fifth product was identified as $2,2,5,5$-tetramethyl-3,4hexadione (15) by spectral comparison with an authentic sample.

An identical experiment was conducted in which a slow stream of nitrogen was passed through the reaction mixture. The exiting gases were passed thr ugh $\mathrm{CaSO}_{4}$ and a weigied drying tube containing Ascarite. The Ascarite gained 28.0 mg in weight which corresponds to a $97 \%$ yield of $\mathrm{CO}_{2}$.

Peracid Oxidation of Di-tert-butylacetylene. A solution of 1 $g$ of di-tert-butslacetylene was oxidized under the conditions described for di-te-t-butylcyclopropenone to give 12, 13, 14, and 15 in a $3: 5: 90: 2$ ratio ty GLPC $(94 \%$ total yield).

Reaction of 1 with Ozone. A solution of 1 g of 11 in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\mathrm{c}} \mathrm{C}$ was saturated with ozone from a generator until a blue color persisted. The color remained for 24 h , after which excess ozone was removed by passing through a nitrogen stream. Warming the reaction mixture tc room temperature and removal of the solvent gave only recovered 19.

Peracid Oxidation of Diphenylcyclopropenone (21). A mixture of 1 g of $21^{23}$ and 4.2 g (5 equiv) of MCPBA in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was
refluxed for 8 h . Usual workup gave 1.3 g of 40:10:50 mixture of diphenylacetylene, benzophenone, and benzil.

Hydrogen Peroxide Oxidation of 21. A mixture of 1 g of $21,0.5$ g of $\mathrm{NaOH}, 2 \mathrm{~mL}$ of water, and 5 mL of $40 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in 25 mL of dioxane was stirred at room temperature for 24 h . The mixture was poured into 200 mL of water, acidified with $10 \% \mathrm{HCl}$, and extracted with ether. Drying and removal of the solvent gave a $30: 10: 40: 20$ mixture of diphenylacetylene, benzophenone, benzil, and benzyl phenyl ketone: mass spectrum $m / e 196(15) .178$ (5), 165 (4), 105 (100), 92 (36), 78 (60), 51 (48), and 45 (42).

Reaction of 21 with Base. A mixture of 1 g of $21,0.5 \mathrm{~g}$ of NaOH , and 2 mL of water in 25 mL of dioxane was stirred for 24 h at room temperature. The mixture was poured into water, acid:fied with $10 \%$ HCl , and extracted with ether. Solvent removal gave crystalline cis-1,2-diphenylacrylic acid (22). ${ }^{23}$

Hydrogen Peroxide Oxidation of 22. A mixture of 0.5 g of 22, 0.5 g of $\mathrm{NaOH}, 2 \mathrm{~mL}$ of water, and 5 mL of $40 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in 25 mL of dioxane was stirred at room temperature for 24 h . The mixture was poured into water, acidified with $10 \% \mathrm{HCl}$, and extracted with ether. Drying and removal of the solvent gave only benzyl phenyl ketone in $93 \%$ yield.

Peracid Oxidation of Cycloheptenocyclopropenone (24). A mixture of 1 g of $24^{28}$ and 5 g (3 equiv) of MCPBA in 50 mL of methylene chloride was stirred at reflux for 8 h . The usual workup gave a mixture of six products by GLPC in a $85: 10: 1: 1: 2: 1$ ratio. The major component was chlorobenzene ( $51 \%$ yield); the $10 \%$ product was cycloheptanone ( $6 \%$ yield based on starting cyclopropenone).

Registry No.-1a, 35920-11-7; 1b, 65016-07-1; 1c, 65016-08-2; 1d, 23438-08-6; 2a, 65016-09-3; 2b, 65016-10-6; 2c, 65016-11-7; 3a, 65016-12-8; 3b, 65016-13-9; 4, 65016-14-0; 9, 35373-26-3; 10, 65016-15-1; 11, 19985-79-6; 12, 17325-92-7; 14, 42915-86-6; 21, 886-38-4; 24, 696-47-9; ethyl diazoacetate, 623-73-4; methyllithium, 917-54-4; 2,2,5,5-tetramethyl-3,4 hexadione, 4388-88-9; di-tert -butylacetylene, 17530-24-4.

## References and Notes

(1) (a) Support by a grant from the National Science Foundation is acknowledged. (b) National Institutes of Health Predoctoral Fellow, 1970-1973.
(2) L. E. Friedrich and G. B. Schuster, J. Am. Chem. Soc., 94, 1193 (1972), and references cited.
(3) H. Prinzbach and V. Fischer. Helv. Chim. Acta., 50, 1669 (1967).
(4) L. E. Friedrich and R. A. Cormier, J. Org. Chem., 35, 450 (1970).
(5) L. E. Friedrich and R. A. Cormier, Tetrahedron Lett., 476- (1971).
(6) J. Ciabattoni and P. J. Kocienski, J. Am. Chem. Soc., 91, 6534 (1969).
(7) J. Ciabattoni and J. P. Kocienski, J. Am. Chem. Soc., 93, 4902 (1971); J. Org. Chem., 39, 388 (1974).
(8) L. E. Friedrich and R. A. Fiato, v. Org. Chem., 39, 416, 2267 (1974); J. Am. Chem. Soc., 96, 5783 (1974).
(9) G. B. Payne, Tetrahedron, 18, 786 (1962)
(10) M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed, Pergamon Press, New York, N.Y., 1969, pp 184-192.
(11) P. S. Bailey and A. G. Lane, J. Am. Chem Soc., 89, 4473 (1967).
(12) K. B. Wiberg, Adv. Alicyclic Chem., 2, 185 (1968).
(13) W. W. Conover, Ph.D. Thesis, Indiana University, 1973.
(14) The strain energies of cyclopropane and ethylene oxide are virtually the same: S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Snaw, and R. Walsh, Chem. Rev., 69, 279 (1969).
(15) G. L. Closs, Adv. Alicyclic Chem., 1, 53 (1966).
(16) G. Berti, Top. Stereochem., 7, 93 (1973).
(17) See, for example, P. J. Wagner, Acc. Chem. Res., 4, 168 (1971).
(18) A preliminary account has appeared: J. K. Crandall and W. W. Conover, Tetrahedron Lett., 583 (1971).
(19) J. Ciabattoni, R. A. Campbell, C. A. Renner, and P. W. Concannon, J. Am. Chem. Soc., 92, 3826 (1970).
(20) J. K. Crandall, W. H. Machleder, and S. A. Sojka, J. Org. Chem., 38, 1149 (1973); J. E. Baldwin and J. H. I. Cardellia, Chem. Commun., 588 (1968)-
(21) R. N. McDonald and P. A. Schwab, J. Am. Chem. Soc., 86, 4866 (1964); J. K. Stille and D. D. Whitehurst, ibid., 86, 4871 (1964).
(22) S. Marmor and M. M. Thomas, J. Org. Chem., 32, 252 (1967).
(23) R. Breslow, T. Eicher, A. Krebs, R. A. Peterson, and J. Posner. J. Am. Chem. Soc., 87, 1320 (1965).
(24) F. D. Greenspan and D. G. MacKeller, Ana'. Chem., 20, 1061 (1948).
(25) J. Ciabattoni and E. C. Nathan III, J. Am. Chem. Soc., 91 , 4766 (1969).
(26) G. F. Hennion and T. F. Banigan, J. Am. Cr.em. Soc., 68, 1202 (1946).
(27) J. K. Crandall and L. C. Lin, J. Am. Chem. Soc.. 89, 4526 (1967).
(28) R. Breslow, L. J. Altman, A. Krebs. E. Mohacsi, I. Murata, R. A. Peterson, and J. Posner, J. Am. Chem. Scc., 87, 1326 (1965).

# Internal Rotation in peri-Phenylnaphthalenes ${ }^{1}$ 

Roger L. Clough ${ }^{2}$ and John D. Roberts*<br>Contribution No. 5528, Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, Californ:a 91125

Received March 7, 1977


#### Abstract

A $180^{\circ}$ rotation about a phensl-naphthyl bond is expected to be effectively blocked for derivatives of the peridiphenylnaphthalenes, in which steric requirements force the phenyl rings to assume a face-to-face conformation. However, surprisingly low rotational energy barriers have been found. The preparation and the measurement of the barrier to phenyl ring rotation of a derivative of the highly crowded $1,4,5,8$-tetraphenylnaphthalene system is described. The barrier for this substance is $14.9 \mathrm{kcal} / \mathrm{mol}$ compared with $16.4 \mathrm{kcal} /$ mol determined for 1,8 -diphenylnaphthalene; both of these barriers are much lower compared with the $33.5 \mathrm{kcal} / \mathrm{mol}$ reported for the stereotopically similar [3.4]paracyclophane. The differences are discussed in terms of a rotational transition state having large deformations of the naphthalene ring.


Molecular models suggest that the only possible geometry for 1,8 -diphenylnaphthalene will have the phenyl rings face to face, 1 , and this has been confirmed by recent $x$-ray diffraction. ${ }^{3}$ Even in this conformation there is severe crowding of the phenyl rings. As a result, the aryl rings would be ex-


1
pected to have a high barrier to a $180^{\circ}$ rotation about the aryl-naphthyl bond. Indeed, CPK space-filling models would seem to indicate that such a rotation is in fact impossible, except by breaking one or more bonds. House and co-workers have prepared several derivatives of 1,8 -diphenylnaphthalene having a substituent at one meta position of each phenyl ring, with the expectation that they would be able to isolate cis and trans isomers. ${ }^{4}$ However, it was not found possible to obtain separate isomers, and, instead, a single crystalline compound was isolated in each case. Subsequent NMR measurements ${ }^{5}$ on the derivative, 2 , showed that the barrier to rotation was


2
only $16.4 \mathrm{kcal} / \mathrm{mol}$, consistent with rapid rotation at room temperature.

The 1,8-diarylnaphthalenes may be profitably compared with the ortho-substituted biphenyls, for which many examples having rotational barriers high enough to allow separation of optical isomers are known, for example, 3 and 4. ${ }^{6}$ The naphthyl derivative, 5 , has also been resolved, ${ }^{7}$ as has $\alpha, \alpha^{\prime}$ -


4
binaphthyl, 6 , for which a rotational barrier of $22.5 \mathrm{kcal} / \mathrm{mol}$ was obtained. ${ }^{8}$ Cram has reported that the [3.3]paracyclophane, 7 , showed no tendency to racemize at temperatures up to $240^{\circ} \mathrm{C}^{9}$ and that the [3.4] paracyclophane, 8 , racemized only


7


8
slowly at $160^{\circ} \mathrm{C} .{ }^{10}$ The barrier to phenyl ring rotation in the latter was calculated to be $33.5 \mathrm{kcal} / \mathrm{mol}$. These two compounds provide a striking contrast to derivatives of 1 , for which similar steric requirements would be inferred.
Several other naphthalene derivatives having different types of peri substituents have been recently reported to have what seem surprisingly low barriers to rotation about the naphthyl-substituent bond. ${ }^{11,12}$ For example, the barrier to rotation of the teri-butyl group of 9 was $<6 \mathrm{kcal} / \mathrm{mo}$. and that of 10 was estimated at about $6.5 \mathrm{kcal} / \mathrm{mol} .^{11}$


9


10

We report here the synthesis and measurement of the rotational barrier of the highly strained 11, which has two sets of crowded peri-phenyl groups.


11

## Synthesis and NMR Study of 11

The synthetic scheme for 11 had 12 as a key intermediate, with the $m$-chloro group intended to serve as a marker which
would be inert to conditions of the synthetic sequence, but which would permit direct functionalization of the aromatic ring after construction of the naphthalene framework. In-


12


13
termediate 12 was synthesized in eight steps starting from $m$-chlorobenzaldehyde and involving oreparation of the chlorotetraphenylbenzoisofuran, 13 , with subsequent DielsAlder addition and aromatization, simi-ar to the synthetic routes used previously in preparation of several substituted napththalenes including 1,4 -diphenylnaphthalene, ${ }^{13}$ 5,10diphenylanthracene, ${ }^{14}$ and 1,4,5,8-tetraphenylnaphthalene. ${ }^{15}$

The chloro group of 12 proved to bs highly inert, and standard procedures for generating the anion failed. Stirring with a solution of $n$-butyllithium gave no halogen-metal exchange. No reaction could be induced between 12 and strips of lith:um metal and no reaction was observed when 12 was added to a freshly prepared dispersion of sodium. However, when 12 was added to an excess of fine lithium dust ( 140 mesh ) under argon with bromobenzene present to activate the metal with ether as a solvent, the solution turned to a deep purple on heating to reflux. Addition of the organolithium compound to acetone in ether gave 11 in $57 \%$ yield.

When ring rotation of 11 is slow on the NMR time scale, its methyl groups become diastereotopic. The methyl proton NMR resonances of 11 at $100^{\circ} \mathrm{C}$ were a single sharp peak, which, on lowering the temperature, broadened and at $5^{\circ} \mathrm{C}$ began to separate into two equal signals. Visual matching using computer-generated spectra allowed calculation of the energy barrier for rotation, $\Delta G^{\ddagger}$, of $14.9 \mathrm{kcal} / \mathrm{mol} .{ }^{16}$

## The Rotational Mechanism of periPhenylnaphthalenes

Detailed calculations on the rotational barriers of some $2,2^{\prime}$-sujstituted biphenyls have been reported by Westheimer, ${ }^{17}$ who showed that the rotational intermediates must have geometric deformations local to the interannular bond. Important distortions include bending of the ortho substituents away from each other, interannular bond stretching, and $\mathrm{C}-\mathrm{H}$ (crtho) bond compression.

For peri-phenylnaphthalenes, a rotational transition state may be visualized in which one phenyl ring must turn to a position perpendicular to the adjacent peri-phenyl ring. ${ }^{18}$ There are two modes of distortion available to the intermediate which we believe responsible for the low barriers observed. These two modes, which have no analogue in the biphenyls, are in-plane and out-of-plane splaying of the peri groups. In-plane splaying can occur both by a bending of the exocyclic naphthyl-substituent bond which increases the $\mathrm{C} 9-\mathrm{C} 1$-substituent angle and by an openirg of the $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 8$

angle of the naphthalene nucleus. $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 8$ angle opening can be especially effective, because the distance between the peri substituents is increased without a concomitant increase in crowding between the substituent and the adjacent naphthyl proton. Out-of-plane splaying would involve displacement of the peri substituents (and to a lesser extent, the naphthalene atoms C 1 and C 8 ) to opposite sides of the naphthalene plane.

Recent x-ray investigations ${ }^{19}$ demonstrate a surprising lack of rigidity of the naphthalene ring and show that nonbonded interactions between bulky peri substituents are considerably relieved by large in-plane and out-of-plane distortions of the type described above. The strain energy is effectively absorbed by the naphthalene nucleus; this is accomplished by a distribution of the strain throughout the framework which includes angle bending, bond stretching and compression, and in- and out-of-plane nuclear displacements. Distortions are substantial. ${ }^{20-22}$ In 1,8 -diphenylnaphthalene ${ }^{3,22}$ the $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 8$ angle is forced open to over $126^{\circ}$, the C9-C1-phenyl angles open to more than $125^{\circ}$, and the naphthyl-phenyl out-ofplane angles are about $2^{\circ}$. Such distortions can become even larger. For example, in the related peri-diphenylacenaphthene, due to a pinching effect at the 4,5 carbon atoms, the $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 8$ angle is $129.4^{\circ} .{ }^{23}$ For the extremely crowded 1,8 -diiodonaphthalene, the $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 8$ angle exceeds $130^{\circ} .^{24}$

These x -ray determined structures provide insight into the geometry of the rotational transition state of the 1,8 -diarylnaphthalenes, although to achieve the more highly strained geometry of the rotational intermediate, the distortions must be considerably enhanced. Because of the considerable flexibility of the naphthalene nucleus, the dramatic oowering of the rotational barriers of both 1,8-diphenylnaphthalene and 1,4,5,8-tetraphenylnaphthalene as compared with [3.3]paracyclophane and [3.4]paracyclophane becomes understandable. The reason is that the cyclophanes lack the possibility of phenyl-phenyl splaying. The low barriers of peri-substituted naphthalenes compared with systems $3,4,5$, and 6 are also understandable because in peri-substituted naphthalenes the ground-state strain is sufficiently large to allow the transition state for rotation to be achieved more readily than for simple ortho-substituted biphenyl derivatives, where ground-state interactions are small.

The difference between the rotational barriers in 1,8 -diphenylnaphthalene and 1,4,5,8-tetraphenylnaphthalene derivatives is also seen as a consequence of the involvement of the naphthalene ring distortions in the phenyl ring rotation. The tetraphenyl compound has crowding interactions at both pairs of peri positions, making this molecule more strained than the 1,8 -diphenylnaphthalene. The increased strain enhances the distortion of the naphthalene nucleus and consequently facilitates attainment of the rotational transitionstate geometry. Evidence of this synergistic distortion is shown by the ground-state geometries of these two molecules, as determined by x-ray diffraction. ${ }^{22}$ The distribution of the distortion is somewhat different in these molecules, ${ }^{22}$ but the tetraphenyl compound has the larger overall phenyl-phenyl splaying as shown by the ground-state dihedral angle between the two phenyl rings in 1,8 -diphenylnaphthalene of $20^{\circ}$ and that in 1,4,5,8-tetraphenylnaphthalene of about $36^{\circ}$.

A further example consistent with conjoint peri distortion and ring rotation is provided by the comparison of the ease of racemization of the binaphthyl derivatives, $3,8^{\prime}$-dicar-boxy-1,1'-binaphthyl, 20, and $2,2^{\prime}$-dicarboxy-1,1'-b:naphthyl, 21. A cursory inspection of the structural formulas, 20 and 21, might lead one to expect rather similar restrictions to a $180^{\circ}$ rotation about the naphthyl-naphthyl bond. In fact, resolved 21 shows no change in optical activity after 8 h at $175^{\circ} \mathrm{C},{ }^{25 a}$ while 20 has a half-life with respect to racemization of only


20


21
about 15 mir at $50^{\circ} \mathrm{C}$ (roughly comparable to $\alpha, \alpha^{\prime}$-binaphthyl itself). ${ }^{25 b}$ However, the ground-state peri crowding in 20 is highly conducive to the naphthalene splaying interaction necessary for rotation. The low rotational barriers in other peri-substituted naphthalene derivatives, such as 9 and 10 , can be acsounted for in the same way. ${ }^{11}$

## Experimental Section

Triphenylcinnamylphosphonium Chloride, 14. Triphenylcinnamylphosphonium chloride was prepared by the method of Organic Syntheses. ${ }^{26}$ From 40 g ( 0.26 mol ) of ( 3 -chloropropenyl)benzene and $92 \mathrm{~g}(0.35 \mathrm{~mol})$ of triphenylphosphine was obtained $101 \mathrm{~g}(93 \%)$ of 14 ( $\mathrm{mp} 224-226{ }^{\circ} \mathrm{C}$ (lit. ${ }^{27} \mathrm{mp} 224-226{ }^{\circ} \mathrm{C}$ )) which was used without further purification.
1-(3-Chlorsphenyl)-4-phenyl-1,3-butadiene, 15. The procedure from Organic Syntheses ${ }^{26}$ for 1,4-diphenyl-1,3-butadiene was slightly modified for making the chlorinated derivative. Thus, 630 mL of 0.2 M lithium ethoxide (prepared from the dissolution of 2.1 g of lithium wire in 1.5 L of absolute ethanol) was added with stirring to a solution of $50 \mathrm{~g}(0.21 \mathrm{~mol})$ of 14 and $18.04 \mathrm{~g}(0.127 \mathrm{~mol})$ of $m$-chlorobenzaldehyde in 150 mL of absolute ethanol. A de 2 p red-orange color developed, which faded after the mixture had been stirred at room temperature for 45 min . Addition of 600 mL of $\mathrm{H}_{2} \mathrm{O}$ caused formation of precipitate, which was collected and washed with 150 mL of $60 \%$ aqueous ethanol. The crude diene was stirred with a solution of ethanol $(20 \mathrm{~mL})$ and refiltered to give $21 \mathrm{~g}(0 . C 87 \mathrm{~mol}, 69 \%)$ of glossy, pale-yellow plates, which melted at $109-110^{\circ} \mathrm{C}$ after recrystallization from etheno-isopropyl alcohol and from cyclohexane: NMR $\delta$ ( $\mathrm{CDCl}_{3}$ ) 6 2-7.5 (m); IR (Nujol) 1009, $1092,770 \mathrm{~cm}^{-1}$; mass spectra Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl} 240.0706,240.0706$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}$ : C, 79.83; H, 5.44: Cl, 14.73. Found: C, 79.60; H, 5.56; Cl, 14.46.

1,2-Dibenzoyl-3-(3-chlorophenyl)-6-phenylcyclohex-4-ene, 16. When the Diels-Alder reaction of 15 with trars-dibenzoylethylene was carried out in gently refluxing isopropyl alcohol for 8 h , only a brown oil resulted; however, the product could be prepared in reasonable yisld under more vigorous conditions. Thus, $18 \mathrm{~g}(0.075 \mathrm{~mol})$ of 15 and 20 ( 0.08 mol ) of trans-dibenzoylethylene were refluxed vigorously (no stirring; bath temperature $=136^{\circ} \mathrm{C}$ ) in 300 mL of isopropyl alcohol for 18 h . The mixture was allowed to cool to $50^{\circ} \mathrm{C}$ and when the walls of the vessel were scratcied with a glass stirring rod a white solid precipitated. The solid was removed by filtration at $50^{\circ} \mathrm{C}$, rinsed twice with 30 mL of warm isopropyl alcohol, then dissolved in acetone ( $1.5 \mathrm{~mL} / 1 \mathrm{~g}$ ) and filtered, and the filtrate was evaporated s.owly to dryness yielding 15.5 g of $16(0.033 \mathrm{~mol}, 44 \%)$. The infrared spectrum showed the presence of two carbonyl peaks, a major peak, at $1680 \mathrm{~cm}^{-1}$, and a minor peak, at $1697 \mathrm{~cm}^{-1}$, both different from the starting material peak ( $1600 \mathrm{~cm}^{-1}$ ). Repeated recrystallizations failed to yield a sharply melting material. When the reaction was sarried out with 24 h of reflux, the product showed almost exclusively the $1680-\mathrm{cm}^{-1}$ peak. Recrystalization from isopropyl alcohol-acetone gave a white, crystalline solid (mp 136.5-139.5 ${ }^{\circ} \mathrm{C}$ ); mass spectra Calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{ClO}_{2} 476.1542$, 476.1543. Aromatization of either the product with the two carbonyl peaks (presumably a mixture of isomers) or that with the single peak, by the method described below, gave similar good yields of compounds having identical spectra.
1,2-Dibenzoyl-3-(3-chlorophenyl)-6-phenylbenzene, 17. To a solution of $20.3 \mathrm{~g}(0.043 \mathrm{~mol})$ of 16 in 130 mL of chloroform stirred under reflux was added dropwise ( 15 min ) a solution of 90 mL of chloroform containing 4.3 mL of bromine. As the refluxing continued, large amounts of HBr were evolved. When the gas evolution had ceased ( $\sim 30 \mathrm{~min}$ ), the solvent was removed with a rotary evaporator to give a yellow-brown gummy substance which was crystallized by stirring overnight with absolute ethanol. Further purification was effected $כ y$ stirring the finely powdered solid with 20 mL of methanol for 20 min and washing with 5 mL of methanol to yield $18 \mathrm{~g}(0.038 \mathrm{~mol}$, 89\%) of a wnite, crystalline solid which was recrystallized from isopropyl alcohol-acetone to give opaque rods: mp $150-153^{\circ} \mathrm{C}$; IR (Nujol) $1670 \mathrm{~cm}^{-1}$; mass spectra Calcd for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{ClO}_{2}, 472.1231$, 472.1230 .

4-(3-Chlorophenyl)-1,3,7-triphenylisobenzofuran, 13. Zinc dust $(7 \mathrm{~g})$, activated by stirring with dilute NaOH solution, then washed with water and ethanol, was added with stirring to a refluxirg solution of $7.5 \mathrm{~g}(15.9 \mathrm{mmol})$ of 17 and 7 g of NaOH in 165 mL of ethanol. Refluxing for short reaction times was found to give only partial conversion. During 6 h of reflux, the solution turned bright yellow-green and then faded. The reaction mixture was filtered into $\leq 50 \mathrm{~mL}$ of glacial acetic acid, and 20 mL of water was added to the filtrate. The solution was evaporated to about 25 mL , and the heterogeneous aqueous mixture was extracted twice with benzene. The combined organic portions were filtered through 15 g of anhydrous sodium sulfate, evaporated to a syrupy yellow liquid, and left standing overnight to yield 6.5 g ( $14.2 \mathrm{mmol}, 89 \%$ ) of a brilliant-yellow sclid having a powerful green fluorescence in benzene: $\mathrm{mp} 174.5-177^{\circ} \mathrm{C}$;IR (Nujol) 1470, $855 \mathrm{~cm}^{-1}$ (no carbonyl); mass spectra Calcd. for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{ClO}$ 456.1282, 456.1281. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{ClO}: \mathrm{C}, 84.11 ; \mathrm{H}, 4.63$; Cl , 7.76. Found: C, 84.23; H, 4.92; Cl, 7.80.

Adduct of 13 with Acrolein, 18. Freshly distilled acrolein ( 5 mL ) was added to a stirring, gently refluxing solution of $6.5 \mathrm{~g}(14.2 \mathrm{mmol})$ of 13 in 50 mL of benzene. After 30 min , an additional 2 mL of acrolein was added. Twenty minutes later, the bright yellow had faded to give a nearly colorless soution, and the reaction was stopped. The crude mixture was evaporated to dryness and crystallized from 10 mL of isopropyl alcohol to give a white product ( $6 \mathrm{~g}, 11.7 \mathrm{mmol} .83 \%$ ): mp $148-151{ }^{\circ} \mathrm{C}$; IR (Nujal) $1725 \mathrm{~cm}^{-1}$ (carbonyl); NMR $\delta\left(\mathrm{CDCl}_{3}\right) 9.3$ (m, 1), 3.4 ( $\mathrm{m}, 1$ ), 2.5 (m. 2), 6.6-6-7.6 ( $\mathrm{m}, 21$ ); mass spectra showed only peaks due to the retro-Diels-Alder product, 13. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Cl}: \mathrm{C} 81.94, \mathrm{H} 4.91, \mathrm{Cl} 6.91$. Found: C $82.11, \mathrm{H} 4.68, \mathrm{Cl}$ 6.86 .

5-(3-Chlorophenyl)-1,4,8-triphenyl-2-naphthaldehyde, 19. Anhydrous, gaseous HCl was bubbled for 25 min through a stirred solution of $7 \mathrm{~g}(13.7 \mathrm{mmol})$ of 18 in 50 mL of glacial acetic acid at $0^{\circ} \mathrm{C}$. The starting material largely dissolved, yielding a reddish solution. The reaction mixture was stirred for an additional hour without cooling after the addition of the HCl was stopped. The chilled mixture was filtered and the filtrate was rinsed with 8 mL of cold acetic acid. The crude yellow product ( $5 \mathrm{~g}, 10.1 \mathrm{mmol}, 74 \%$ ) was contaminated with 13. Stirring with a small amount of isopropyl alcohol removed most of this impurity. Recrystallization from isopropyl alcohol gave light-yellow crystals of $19: \mathrm{mp} 208-210^{\circ} \mathrm{C}$; IR (Nujol) $1683 \mathrm{~cm}^{-1}$ (aromatic aldehyde); mass spectra Calcd for $\mathrm{C}_{35} \mathrm{H}_{23} \mathrm{ClO}$ 494.1437, 194. 1437.

1-(3-Chlorophenyl)-4,5,8-triphenylnaphthalene, 12. The attempted decarbonslation of 19 with tris(triphenylphosphine)rhodium(I) chloride in refluxing benzene resulted only in precipitation of the red dimer of the rhodium complex, a result which has been observed before with other sterically crowded aldehydes ${ }^{28}$ Nitriles are reported to stabilize the monomeric rhodium species. ${ }^{28}$ When 1 g of 19 was heated at $160-165^{\circ} \mathrm{C}$ in 9 mL of benzaldehyde, the reaction was judged complete by TLC analysis after 8 min . Chromatography of the crude mixture on silica gel with hexane as the eluent afforded $12(0.80 \mathrm{~g}, 80 \%)$. Recrystallization from hexane gave clear prisms: mp $216-21{ }^{\circ} \mathrm{C}$; NMR $\hat{o}\left(\mathrm{CDCl}_{3}\right) 7.5$ (broad singlet, 4), 7.0 (broad singlet 19); mass spectra Calcd for $\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{Cl} 466.1490,466.1488$

Preparation of Carbinol 11. All equipment was dried immediately before use in an oven at $150^{\circ} \mathrm{C}$ overnight. The reagents were transferred to the reaction vessel in a drybox under argon. A positive pressure of argon was maintained in the reaction vessel throughout the course of the reaction. A solution of $0.23 \mathrm{~g}(0.5 \mathrm{mmol})$ of 12 in 5 mL of ether was combined with 0.04 g of lithium dust (Alfa Chemical Co., 140 mesh) and 2 drops of bromobenzene. The solution was refluxed with stirring for 20 min ; a deep purple color was observed 2 min after the start of refluxing. The mixture was added to a solution of 1 mL of anhydrous acetone in 10 mL of ether and, after 5 min , was hydrolyzed. Two successive preparative TLC runs using $15 \%$ ether in benzene ( $R_{f} 0.45$ ) gave $0.14 \mathrm{~g}(57 \%)$ of 11 as clear oil: IR (Nujol) 3590 $\mathrm{cm}^{-1}\left(\mathrm{O}-\mathrm{H}\right.$ stretchi; NMR $\delta\left(\mathrm{CDCl}_{3}\right) 7.46$ (s, 4), 6.85-7.15 (s, 19), 1.48 ( $\mathrm{s}, 6$ ), 1.90 (broad s, 1); ${ }^{13} \mathrm{C}$ NMR (in ppm relative to $\mathrm{Me}_{4} \mathrm{Si}^{\text {, in }} \mathrm{CDCl}_{3}$ ) 31.4 (methyl), 81.0 ihydroxyl carbon); mass spectra Calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{O}$ 490.2293, 490.22965.

Rotational Barrier Measurements. The proton spectra for the rotational-barrier measurement of 11 were obtained over a temperature range of 70 to $-30^{\circ} \mathrm{C}$ using a Varian Associates HR-220 NMR spectrometer. The temperature was determined for each measurement from the peak separations of standard samples of either methanol or ethylene glycol. The methyl signal from 11 broadened steadily from a sharp singlet at the high-temperature limit to the coalescence point at $5^{\circ} \mathrm{C}$. The peak separation reached a maximum of 3.6 Hz at $-10^{\circ} \mathrm{C}$. The natural line width of the methyl peak was taken to vary linearly from 1.1 to 1.5 Hz over the temperature range examined.

Computer-simulated line shapes were obtained with the program CLATUX ${ }^{29}$ and were visually matched to the experimental spectra. From the pre-exchange lifetimes, the free energy of rotation was calculated for each measurement using the equation $\Delta G^{\ddagger}=$ $4.575 T\left(10.32+\log T-\log K_{\mathrm{r}}\right)$. Good agreement was obtained, particularly for measurements made in the coalescence region. From the values between -11 and $+38^{\circ} \mathrm{C}$, a $\Delta G^{\ddagger}$ of $14.9 \pm 0.2 \mathrm{kcal} / \mathrm{mol}$ was obtained.

Registry No.-11, 64682-91-3; 12, 64728-28-5; 13, 64682-94-6; 14, 1530-35-4; 15, 27331-30-2; 16, 64754-24-1; 17, 64728-29-6; 18, 64682-93-5; 19, 64682-92-4; m-chlcrobenzaldehyde, 587-04-2; trans-dibenzoylethylene, 959-28-4.

## References and Notes

(1) Supported by the National Science Foundation.
(2) NDEA Title IV Fellow. 1971-1974.
(3) R. A. Ogilvie, Ph.D. Thesis, Massachusetts Institute of Technology, 1971.
(4) (a) H. O. House and R. W. Bashe II, J. Org Chem., 40, 2942 (1965); 32, 784 (1967); (b) H. O. House, R. W. Magin. and H. W. Thompson, ibid., 28, 2403 (1963).
(5) H. O. House, W. J. Campbell, and M. Gall, J. Org. Chem., 35, 1815 (1970).
(6) E. Eliel, "Stereochemistry of Carbon Compounds", McGraw-Hill, New York, N.Y., 1962, pp 156-162.
(7) D. M. Hall, S. Ridgwell, and E. E. Turner, J. Chem. Soc., 2498 (1954).
(8) W. Theilacker and R. Hopp. Chem. Ber., 92, 2293 (1959).
(9) D. J. Cram and J. M. Cram, Acc. Chem. Res., 4, 204 (1971).
(10) H. J. Reich and D. J. Cram, J. Am. Chem. Soc., 91,3517 (1969).
(11) J. E. Anderson. R. Franck, and W. Mandella, J. Am. Chem. Soc., 94, 4608 (1972).
(12) D. Fields and T. Regan, J. Org. Chem., 36, 2986 (1971).
(13) A. Etienne, A. Spire, and E. Toromanoff. Bull. Soc. Chim. Fr., 750 (1952).
(14) G. Wittig, E. Knauss, and K. Niethammer, Justus Liebigs Ann. Chem., 630, 10 (1960).
(15) E. D. Bergmann, Sh. Blumberg, P. Bracha, and Sh. Epstein, Tetrahedron,

20, 195 (1964).
(16) In the absence of phenyl ring rotation. derivatives of $1,4,5,8$-tetraphenylnaphthalene having a substituent in the meta position of one phenyl ring must exist as enantiomers. Wrether or no: ring rotation is rapid in solution. the possibility existed that the enantiomers could crystallize separately. as has been observed for other large dissymmetric aromatics including heptahelicene. Microscopic examination of crystals of $\mathbf{1 2}$ grown by slow evaporation of a hexane solut on revealey that they are triclinic but have a center of symmetry and belong to the pinacoidal class. indicating that 12 crystallizes as a racemic mixture.
(17) (a) F. H. Westheimer and J. E. Mayer, J. Chem. Phys., 14. 733 (1946); (b) R. Reiger and F. H. Westheimer, J. Am. Chem. Soc., 72, 19 (1950); (c) F. H. Westheimer, "Steric Effects in Organic Chemistry". M. S. Newman, Ed., Wiley, New York, N.Y.. 1956, Chapter 1z.
(18) One recent result (R. L. Clough and J. D. Roberts. J. Am. Chem. Soc., 98 , 1018 (1976)), readily understood with the model of phenyl ring rotation through an intermediate having this geometry, is the rotational barrier of 1,8 -di-o-tolylnaphthalene which is 8 kcal 'mol higher than that measured for 2. The magnitude of the barrier is such that the postulated stable cis and trans isomers are capable of isolation. The increased barrier with 1.8 -di-o-tolylnaphthalene is the result of unfavorable interactions of the o-methyl groups with the naphthyl C2 hydrogen atom in the rotational transition state.
(19) V. Balasubramaniyan, Chem. Rev., 66, 567 (1966).
(20) H. Einspahr, J.-B. Robert, R. E. Marsh, and J. D. Roberts, Acta Crystallogr., Sect. B, 29, 1611 (1973).
(21) J.-B. Robert, J. S. Shertinski, R. E. Marsh, and J. D. Roberts, J. Org. Chem., 39, 1152 (1974).
(22) R. L. Clough, W. J. Kung, R. E. Marsh, and J. D. Roberts, J. Org. Chem., 41, 3603 (1976).
(23) A detailed discussion of the cooperative influences of strain interactions at the two sets of peri positions on the geometry of the naphthalene nucleus is presented in ref 22.
(24) J. S. Sherfinski, J. D. Roberts, and R. E. Marsh, to be published.
(25) (a) V. Balasubramaniyan, Chem. Rev., 66, 585 (1966), and numerous references therein; (b) F. Bell and W. H. D. Morgan, J. Chem. Soc., 1716 (1954); (c) M. Harris and C. Ling, Chem. Ind. (London). 1378 (1962).
(26) Org. Synth., 40, 36 (1960).
(27) T. W. Campbell and R. N. McDonald, J. Org. Chem., 24, 1969 (1959).
(28) J. Tsuji and K. Ohno, Synthesis, 12, 164 (1969).
(29) G. Binsch, Top. Stereochem., 3, 97 (1968).

# Centrosymmetric 1,5-Naphthyridine Derivatives: Synthesis, Tautomerism, and Thermal Rearrangements ${ }^{1}$ 

S. B. Brown ${ }^{2}$ and M. J. S. Dewar*<br>Departmen: of Cizemistry, The University of Texas at Austin, Austin, Texas 78712

Received July 26, 1977


#### Abstract

Efficient syntheses of the centrosymmetric 1,5-napthyridine derivatives 2-8 are reported. The 8-methoxy-1,5naphthyridine 14 has been shown to undergo thermal rearrangement to its $N$-methyl isomer and thermal disproportionation to $N, N$-dimethy! and normethyl compounds. Tautomerism in hydroxy-1,5-naphthyridines has been investigated by UV spectroscopy in aqueous solution. Under these conditions the compounds studied exist predominantly as the pyridone tautomers. A remarkable alkylation reaction of the naphthyridine ring has been observed in the course of Lander rearrange ment of 8 . It has been found that 8 via its rearranged isomer 4 gives the centrosymmetric ring-methylated compound 5 when heated in the solid state with methyl iodide.


## Introduction

In connection with our studies of organometallic coordination polymers that might prove useful as semiconductors, ${ }^{3}$ we needed heteroaromatic compounds potentially capable of functioning as tetradentate ligands. We were particularly interested in obtaining tetradentate analogues of the wellknown bidentate chelating agent 8 -hydroxyquinoline (1). Such analogues could be derived on paper by incorporating two additional coordination sites across a center of symmetry in 1 or by substituting naphthyridine to form appropriate 4,8disubstituted 1,5 -naphthyridines. In the present work, we describe efficient syntheses of the centrosymmetric 1,5naphthyridine derivatives 2-8. Hydroxynaphthyridines throughout this work are shown schematically and named as their presumably more stable pyridone (i.e., keto) tautomers,
and evidence is presented that the latter tautomers indeed predominate in aqueous soution. Finally, we report novel results obtained during thermal rearrangement studies on alkoxynaphthyridines.


2, $\mathrm{X}=\mathrm{O} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
3, $\mathrm{X}=\mathrm{S} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$4, \mathrm{X}=\mathrm{O} ; \mathrm{R}^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{H}$

$$
5, X=O ; R^{1}=H ; R^{2}=M e
$$



6, $\mathrm{X}=\mathrm{Cl}$
7, $\mathrm{X}=\mathrm{NH}_{2}$
$8, \mathrm{X}=\mathrm{OMe}^{2}$


Scheme I


Scheme II



## Results and Discussion

Our initial goal was a high-yield synthesis of 1,5-naphthy-ridine-4 ( 1 H ), $8(5 \mathrm{H}$ )-dione (2). Compound 2 nad been prepared previously by Brown and Plasz ${ }^{4}$ in an overall yield of $1 \%$ using the classical ethoxymethylene malonic ester (EMME) method (Scheme I). In this route, 3 -nitro- $\gamma$-py-idone (9a) was catalytically reduced to the amine which was then condensed with EMME to give the adduct $10 \mathbf{a}(58 \%)$. Thermal cyclization of 10a gave the naphthyridine 11a in $50 \%$ crude yield but only $4 \%$ final yield after purification. Compound 2 was obtained by basic hydrolysis of pure ester 11a followed by thermal decarboxylation (sublimation) of acid 11b. Repeating this work, we were not able to improve the procedure by direct hydrolysis of the crude ester 1la under basic conditions. However, a dramatic increase in the overall yield of 2 resulted when crude 11 a was hydrolyzed in refluxing HCl . The product from the latter reaction, apparently a mixture of $11 b$ and 2 , was refluxed with quinoline to give $\mathbf{2}$ in $31 \%$ overall yield from 9 a.

We have also synthesized 2 by the somewhat longer route shown in Scheme II. 9a was converted into 4 -methoxy-3-nitropyridine (12) which was reduced to the amine and condensed with EMME to yield the adduct 13. Cyclization to the naphthyridine 14 was accomplished by adding 13 in one portion to refluxing diphenyl ether or Dowtherm A. Reaction of 14 with refluxing HBr gave an excellent yield of the acid 11 b which readily decarboxylated to 2 in refluxing quinoline. The overall yield of 2 from 9 a in this case was consistently $35-$ $45 \%$.

The crucial step in the latter synthesis was the thermal

cyclization of 13 to 14 . Yields of 14 were found to depend critically upon the duration of reaction, the isolated yields at various times being 6 ( 3 min ), $38(17 \mathrm{~min}$ ), and $65-75 \%$ ( 25 min ). Reaction times significantly longer than 25 min led to decreased yields of 14 because of further conversions leading to two other products.
The first of these products, isolated in small amounts even after $25-30 \mathrm{~min}$, was the thermodynamically more stable $N$-methyl isomer Ilc, identified by comparison with material synthesized independently according to Scheme I ( $\mathbf{9 b} \rightarrow \mathbf{1 0 b}$ $\rightarrow 11 \mathrm{c}$ ). Thermal rearrangements of the type $14 \rightarrow 11 \mathrm{c}$ have ample precedent in the pyridine ${ }^{5}$ and quinoline ${ }^{6}$ series, although few examples have been reported for naphthyridines. ${ }^{7}$ Studies on methoxypridines ${ }^{8}$ have shown the rearrangement to be an intermolecular process. 11 c could arise by intermolecular reaction involving either 13 or 14, although 14 has to be the primary scurce since after 25 min most of the 13 has been consumed.
In addition to this rearrangement, we found that as the concentration of $11 \mathbf{c}$ in the reaction mixture increased a disproportionation involving 14 and 11c became important. Thus, when 13 was refluxed with diphenyl ether for 2 h , a refractory mixture containing $14,11 \mathrm{c}$, and the disproportionation products 11 a and 11 d resulted. ${ }^{9}$ Refluxing 14 itself with diphenyl ether for 6.5 h produced qualitatively similar results, except that only traces of 14 remained, a fact facilitating separation of the other compounds. In this case, the $N, N$ dimethylnaphthyridone 11 d could be isolated by selective recrystallization Eollowed by gradient sublimation.
The fact that analytically pure 14 did not exhibit a sharp melting point suggests that the aforementioned rearrangement and disproportionation occur more rapidly in the solid state, as might be expected in view of their intermolecular nature. Both 14 and its 8 -ethoxy analogue ${ }^{10}$ began melting at about $215^{\circ} \mathrm{C}$ and were still partially solid at $270^{\circ} \mathrm{C}$.
Reaction of 2 with $\mathrm{POCl}_{3}$ in a sealed tube yielded the known ${ }^{4} 4,8$-dichloro-1,5-naphthyridine 6 (75-82\%). Treatment of 6 with ammonia in refluxing phenol gave 4,8 -di-amino-1,5-naphthyridine 7 (50-60\%). Finally, 1,5-naphthyridine $-4(1 \mathrm{H}), 8(5 \mathrm{H})$-dithione 3 was obtained in essentially quantitative yield by treating 6 with hydrogen sulfide in refluxing aqueous ethanolic potassium hydroxide. Dithione 3 was stable in the solid state for at least six months but autoxidized slowly in dilute solution (see Experimental Section).

The poor solubility of 3 in the usual solvents precluded determination of its NMR spectrum.

Tautomerism Studies. The $\gamma$-hydroxynaphthyridines 2, 11 c , and 14 are capable of pyridone-pyridinol type tautomerism as depicted in Scheme III. It is well known ${ }^{11}$ that, except in certain special cases, pyridone-type tautomers predominate in polar solvents and in the solid phase. The few studies which have been carried out on tautomerism in hydroxynaphthyridines ${ }^{12}$ have led to similar conclusions. In particular, it has been shown ${ }^{12 a}$ by UV spectroscopy that 1,5 -naphthyridin$4(1 H)$-one $(15 \mathrm{~A})$ is the major tautomer in polar solvents, while the pyridinol tautomer 15 B predominates in nonpolar ones.


We have studied tautomerism in the compounds in Scheme III by UV spectroscopy in aqueous solution only. Their UV spectra were compared among themselves and with the spectra of model compounds containing $N$ - or $O$-methyl groups. Two appropriate models for compound 2 were 4,8-dimethoxy-1,5-naphthyridine (8) and 1,5-dimethyl-1,5-naphthyridine-4(1H),8(5H)-dione (4). The $O, O$-dimethyl compound 8 was easily synthesized by reaction of 6 with sodium methoxide in methanol. As expected, 8 rearranged readily on heating to the isomer $\mathrm{N}, \mathrm{N}$-dimethyl derivative 4 (vide infra). The structures of 8 and 4 were established by standard spectroscopic methods and single crystal x-ray analysis. ${ }^{13}$

UV spectral data for all relevant compounds are summarized in Table I. The spectrum of the $N, N$-dimethyl derivative $\mathbf{4}$ closely resembles that of $\mathbf{2}$. Both possess a strong absorption maximum at 232 nm and two further maxima between 315 and 350 nm . Also, both spectra bear a formal resemblance to that of the known pyridone tautomer 15 A , which has a strong maximum at 240 mm and a single maximum at 323 nm . In contrast, the UV spectrum of the $O, O$-dimethyl derivative 8 does not resemble that of 2 but instead is quite similar to the spectrum of pyridinol tautomer 15B. Both 8 and 15 B absorb strongly around 225 nm and less intensely at about 284 nm .


16
These observations clearly eliminate the dipyridinol tautomer 2C and suggest that the dipyridone tautomer 2A predominates in aqueous solution. The data, however, do not rigorously exclude the pyridinol-pyridone tautomer $2 \mathbf{B}$. Despite several attempts, we were not able to synthesize the model corresponding to 2B, namely, the $\mathrm{N}, \mathrm{O}$-dimethyl derivative 16. Nevertheless, if 2B were the major tautomer in solution, then a priori one would expect the spectrum of 2 to show the characteristic absorption maxima present in the spectra of both 4 and 8 . In other words 2 should exhibit a band in the region $250-300 \mathrm{~nm}$ corresponding to the long-wavelength band in the spectrum of 8 . This is exactly what happens in the case of 14, a compound which has one ring only frozen in the pyridinol form. Here there are three bands, at 245, 304, and 317 nm , expected for a compound with a pyridinol-pyri-, done structure. Consequently, if 14 exists predominantly as

Table I. UV Spectral Data for 1,5-Naphthyridine Derivatives

| Compd | Registry no. | $\gamma_{\text {max }}, \mathrm{nm}$ | $\epsilon$ |
| :---: | :---: | :---: | :---: |
| $15 A^{a}$ |  | 240 | 27200 |
|  |  | 323 | 10600 |
| $15 B^{\text {b }}$ |  | 230 | 36100 |
|  |  | 286 | 5940 |
| 2 | 64761-13-3 | 232 | 38500 |
|  |  | 262 | 3200 |
|  |  | 318 | 19600 |
|  |  | 330 | 27400 |
| 4 | 63086-89-5 | 232 | 30700 |
|  |  | 267 | 3000 |
|  |  | 335 | 19600 |
|  |  | 348 | 21300 |
| 8 | 63086-86-2 | 222 | 51400 |
|  |  | 282 | 10000 |
| 11 c | 64761-17-7 | 232 | 29200 |
|  |  | 263 | 3800 |
|  |  | 319 | 19400 |
|  |  | 332 | 19600 |
| 11d | 64761-18-8 | 232 | 36100 |
|  |  | 265 | $4500$ |
|  |  | 319 | 22800 |
|  |  | 333 | 23000 |
| 14 | 64761-20-2 | 221 | 24300 |
|  |  | 245 | 16800 |
|  |  | 304 | 15200 |
|  |  | 317 | 13600 |

${ }^{a}$ In $\mathrm{H}_{2} \mathrm{O}$; ref $12 \mathrm{a} .{ }^{b}$ In dioxane; ref 12 a .
the pyridone tautomer 14 A , then the absence of a prominent band around $250-300 \mathrm{~nm}$ in the spectrum of 2 is evidence that $\mathbf{2 B}$ is not the principal tautomer in solution. A similar argument can be applied in the case of 11 c . Its spectrum resembles those of 2 and its dipyridone model 4, in possessing only two prominent long-wavelength bands, both above 300 nm . The spectrum of 11 c is, moreover, virtually identical with that of the dipyridone 11d, the only model for 11c available. It therefore seems clear that the predominant tautomer of 11c in aqueous solution is $11 \mathbf{c A}$.

Thermal Reactions of 8 and Synthesis of 5 . We have studied thermal reactions of the $O, O$-dimethyl compound 8 under a variety of conditions in sealed ampules. When 8 was heated in the solid state for 10 h at $226^{\circ} \mathrm{C}$, the $\mathrm{N}, \mathrm{N}$-dimethyl isomer 4 was isolated in $62 \%$ yield. As expected, the solid-state reaction could be catalyzed by methyl iodide (Lander rearrangement ${ }^{14}$ ). Heating 8 with 1 molar equiv of methyl iodide ( $2.5 \mathrm{~h} / 226^{\circ} \mathrm{C}$ ) gave 4 in $78 \%$ isolated yield. Catalysis by methyl iodide even allowed the reaction to be carried out in solution. Thus, when 8 was heated in diphenyl ether with methyl iodide ( 0.3 molar equiv $/ 20 \mathrm{~min} / 210^{\circ} \mathrm{C}$ ), 4 was obtained in essentially quantitative yield. In the absence of methyl iodide, no 4 was detected after 2.5 h at $232{ }^{\circ} \mathrm{C}$.

When 8 was heated in the solid state with methyl iodide ( 0.3 molar equiv $/ 220^{\circ} \mathrm{C}$ ) for 12 h instead of 2.5 h , a new compound 5 was obtained ( $53 \%$ ) which had properties similar to those of 2 . Specifically, 5 sublimed only above $230^{\circ} \mathrm{C}$ and possessed at least one acidic hydrogen, the material being soluble in base and reprecipitated with acid. The IR spectrum of 5 resembled closely that of 2 in the region above $1500 \mathrm{~cm}^{-1}$. The UV spectrum of 5 in water suggested that it was a dipyridone, the principal absorption bands appearing at 240 and 343 nm . Elemental analysis showed 5 to be an isomer of 8 and by a process of elimination we concluded that it had to be a ringmethylated derivative of 2 . This was confirmed by its NMR spectrum which showed two singlets at $\delta 2.61(6 \mathrm{H})$ and 8.70 ( 2 H ). Consequently we assigned 5 the centrosymmetric structure 3,7-dimethyl-1,5-naphthyridine-4(1H),8(5H)-dione.

Table II. Mass Spectral Data for the Crude Product from the Reaction of 4 with Methyl- $d_{3}$ Iodide

| $m_{\prime}^{\prime} e$ | Rel intensity |
| :---: | :---: |
| 190 | 85 |
| 193 | 100 |
| 196 | 35 |
| $2(14$ | 53 |
| 217 | 82 |
| 210 | 53 |
| 218 | 12 |
| 221 | 24 |
| 224 | 24 |

We preferred this structure to the isomeric 2,6-dimethyl derivative because the signals for two ring protons ( $\delta 8.70$ ) resembled those for $\mathrm{H}_{2,6}(\delta 8.65)$ in the spectrum of 2 (see end of Experimental Section).

The transformation $8 \rightarrow 5$ must take place via 4 , because 4 was isolated in good yield from reactions using shorter reaction times. Furthermore, 4 itself gave 5 in comparable yield when heated in the solid state with methyl iodide. In contrast, no reaction occurred when 4 was heated either in the solid state without methyl iodide or with methyl iodide in diphenyl ether solution ( $10 \mathrm{~h} / 225^{\circ} \mathrm{C}$ ).

It is possible that the reaction $4 \rightarrow 5$ involves an electrophilic substitution, attack by methyl iodide leading to the naphthyridinium intermediate 17 which then undergoes loss of a proton and cleavage of the $N$-methyl group by iodide. This mechanism implies the formation of intermediates such as 18a-d. A compound to which we have assigned the structure


17


18a, $R^{1}=\mathrm{Me} ; \mathrm{R}^{2}:=\mathrm{R}^{3}=\mathrm{H}$ b, $R^{1}=R^{2}=\mathrm{Me} ; \mathrm{R}^{3}=\mathrm{H}$ c, $R^{1}=R^{3}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{H}$ $\mathrm{d}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}$

18a was indeed isolated in erratic amounts, and apparently contaminated with 4 , when 8 was heated with methyl iodide at temperatures somewhat below $225^{\circ} \mathrm{C}$. As the material was not isolated analytically pure, its identification must remain tentative. ${ }^{15}$ More importantly, we have clearly detected triand tetramethylated species (presumably 18b-d) in the mass spectrum of crude 5 . For example, Table II shows mass spectral data for the crude product obtained by heating 4 with methyl- $d_{3}$ iodide ( 0.9 molar equiv $/ 15 \mathrm{~h} / 228{ }^{\circ} \mathrm{C}$ ). The $m / e$ $190-196$ series of peaks is due primarily to 5 , the 204-210 series to the trimethylated species, and the 218-224 series to the tetramethylated species. The absence of prominent peaks attributable to $d_{9}$ or $d_{12}$ species indicates that no compound contains more than two $\mathrm{CD}_{3}$ groups and that exchange of the $N$-methyl groups is not significant. The presence of $d_{0}$ tri- and tetramethylated compounds is evidence that unlabeled methyl iodide is produced in the course of the reaction. Pu rification of this crude mixture gave material containing $<5 \%$ trimethylated compounds and no 18d as shown by mass spectroscopy. The NMR spectrum showed the expected singlets at $\delta 2.61$ and 8.70 in the peak area ratio of 3.3:2 in good agreement with the expectation based on the mass spectrum.

There appears to be no precedent for carbon alkylation either in the Lander rearrangement ${ }^{14}$ or in the closely related Hilbert-Johnson reaction. ${ }^{16}$ The apparent regiospecificity of
the reaction $\mathbf{4} \rightarrow \mathbf{5}$ seems to rule out an alkylation mechanism involving radical intermediates, although this type of evidence is not entirely conclusive. ${ }^{17}$

Electrophilic alkylations of azaaromatic compounds are extremely rare. ${ }^{19}$ An interesting example in the pyridine series is the thermal reaction of trityl chloride with 2-pyridone or $N$-methyl-2-pyridone to yield, in both cases, 5 -triphenyl-methyl-2-puridone. ${ }^{20}$ In view of this, we examined the thermal reaction of 2 itself with methyl iodide ( 4.5 molar equiv/12 $\mathrm{h} / 228^{\circ} \mathrm{C}$ ). The crude product contained only traces of mono-, di-, and trimethylated species as shown by mass spectroscopy. This failure is somewhat curious, given the pyridone result. More work will be needed to resolve this anomaly.

## Experimental Section

Melting points were determined on a Hoover capillary melting point apparatus and are incorrected. IR spectra were taken on KBr pellets on a Beckman IR8 spectrophotometer. NMR spectra were determined on either a V'arian A-60 or a Perkin-Elmer R-12 spectrcmeter. Absorptions are repcrted relative to an internal tetramethylsilane standard. Ultraviolet and visible spectra were obtained on a Beckman DK-2A spectrophotometer. Solutions of the rather insoluble compounds $2,3,5$, and Ild were prepared for UV determination by warming a weighed amount of compound in the appropriate solvent in a volumetric flask until solution was complete. The solution was then allowed to cool to room temperature and made to volume. All UV/visible extinction coefficients were corrected for extraneous absorption determin $\mathcal{d}$ by running the solvent in both cells. Low-resolution mass spectre were obtained on a Model 21-491 and high-resolution spectra on a Model 21-110 DuPont-Consolidated Electrodynamics Corp. instrument. Gradient sublimations were run at $0.1-\mathrm{mm}$ pressure in $9-\mathrm{mm}$ glass tubes heated in a cylindrical $\mathrm{oven}^{21}$ constructed by Mr. F. C. Maseles. Elemental analyses were performed by Galbraith Labcratories, Knoxville, Tenn. Concentrated hydrobromic acid was distilled from stannous chloride dihydrate immediately before use. Predried quinoline was vacuum distilled ( 20 mm ) from zinc dust and stored over potassium hydroxide pellets.

3-Nitro- $\boldsymbol{\vartheta}$-pyridone (9a). $\gamma$-Pyridone was nitrated by the method of Crowe, ${ }^{22}$ except that the product was isolated in $55-55 \%$ yield in two crops: the first by filtration of the original acidic reaction mixture which had been poured onto ice and the second by filtration of the cold neutralized reaction mixture. Recrystallization from water and drying in a desiccator ( $\mathrm{P}_{2} \mathrm{O}_{5}$ ) gave yellow microcrystals, mp 275-277 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{22}$ $279{ }^{\circ} \mathrm{C}$ ).

3-Nitro-4-chloropyridinium Hydrochloride. 3-Nitro-4-chloropyridine was prepared from 9a by the method of Bishop et al. ${ }^{23}$ The hydrochloride was prepared by bubbling hydrogen chloride gas through a stirred cooled ether solution of the chloro compound. The resulting moisture-sensitive precipitate was quickly filtered and stored in a desiccator in vacuo. Yields were $70-82 \%$.

3 -Nitro-4-methoxypyridine (12). The synthesis was a modification of a proced rure of Bijlsma and den Hertog. ${ }^{24}$ To en ice-cooled solution of sodium metal ( $5.42 \mathrm{~g} ; 0.236 \mathrm{~mol}$ ) in dry methanol ( 200 mL ) was added dropwise with stirring a solution of 3-nitro-4-chloropyridinium hydrochloride ( 22.9 g ; 0.117 mol ) in dry methanol ( 200 mL ) over a 1-h period. At the end of the addition, the ice bath was removed and the mixture was stirred an additional 1 h . Carbon dioxide gas was bubbled through the liquid for 20 min and then the mixture was filtered. The sodium chloride precipitate was washed several times with dry methanol and then discarded. The yellow-tan filtrate was evaporated to dryness and the residue was boiled with ether and filtered to remove a small amount of residual sodium chloride. The ether filtrate was boiled down to a convenient volume and Skelly B was added to the hot solution until turbidity was evident. Refrigeration of the solution followed by filtration gave 12 as yellow microcrystals ( 13 g ). Two further crops were obtained from the filtrate. Final yield was 16.5 g (91\%), mp 73-75 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{25} 75^{\circ} \mathrm{C}$ ).
Diethyl [(4-Methoxy-3-pyridyl)amino]methylenemalonate (13). A mixture of 12 ( $5 \mathrm{~g} ; 0.0325 \mathrm{~mol}$ ), $10 \%$ palladium on carbon ( 500 mg ), and dry methanol ( 125 mL ) was hydrogenated for 6 h in a Parr apparatus at 50 osi . Filtration of the mixture through Celite and evaporation of the filtrate yielded the crude amine as a light tan oil or solid. The amine was stirred and refluxed in toluene ( 100 mL ) with ethoxymethylenemalonic ester (EMME; $7 \mathrm{~g} ; 0.0325 \mathrm{~mol}$ ) for 24 h and then the reaction mixture was evaporated to dryness. The residue was dissolved in boiling Skelly B, filtered by gravity, and cooled to room temperature. 13 crystallized as fine, white platelets ( $8 . \hat{\mathrm{E}} \mathrm{g}$; 87\% based
on 12), mp 98.5-100 ${ }^{\circ} \mathrm{C}$, after drying in vacuo. A small amount of this material was dissolved in boiling Skelly B and filtered hot through a thin pad of Norit A on Celite. Cooling the filtrate yielded an analytical sample of $13: \mathrm{mp} 100-101^{\circ} \mathrm{C}$; mass sfectrum $\mathrm{m} / \mathrm{e} 294.1215$ ( $\mathrm{M}^{+}$, calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}, 294.1216$ ); $\mathrm{NMR} \mathrm{iCDCl}_{3}$ ) $\delta$ 1.34, 1.39 (6 H , overlapping triplets, et hyl $\left.\mathrm{CH}_{3}\right), 4.03\left(3 \mathrm{H}, 3, \mathrm{OCH}_{3}\right), 4.29,4.36$ (4 H , overlapping quartets, ethyl $\left.\mathrm{CH}_{2}\right), 6.95\left(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{H}_{5}\right), 8.34$ ( $1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{H}_{6}$ ), $8.53\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right), 8.60(1, \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}$, collapses to singlet on shaking with $\mathrm{D}_{2} \mathrm{O}$. vinyl CH$), 11.00(1 \mathrm{M}, \mathrm{d}, J$ $=14 \mathrm{~Hz}$, vanishes on shaking with $\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}$ ).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ : C, $57.14 ; \mathrm{H}, 6.16 ; \mathrm{N}, 9.52$. Found: C, 57.25; H, 6.30; N, 9.34

Ethyl 8-Methoxy-1,5-naphthyridin-4(1H)-one-3-carboxylate (14). Diphenyl ether ( 200 mL ) was heated to reflux in a three-necked flask fitted with an air condenser and a mechanical stirrer. 13 ( 4.5 g ; 0.0153 mol ) was added to the flask in one portion and the solution was refluxed and stirred for exactly 25 min . The dark-brown solution was cooled rapidly to room temperature with an ai- gun and poured into Skelly B ( 200 mL ). The resulting precipitate was collected on a fritted glass funnel, washed well with Skelly B, and then boiled for several hours with benzene to remove residual diphenyl ether and again filtered through a fritted glass funnel. Addition cf Skelly B to the benzene filtrate yielded variable amounts of the V -methyl isomer 11 c (vide infra). The precipitate on the fritted funnel was dried in a vacuum oven at $80^{\circ} \mathrm{C}$ to vield crude $142.72 \mathrm{~g} ; 72 \%$ ) as a tan powder. A small portion was twice dissolved in boiling nitromethane, filtered hot through a thin pad of Norit A on Celite, and cooled to produce analytically pure 14 as white microcrystals which partially melted beginning at about $215{ }^{\circ} \mathrm{C}$ (see Discussion): mass spectrum m/e $248.0795\left(\mathrm{M}^{+}\right.$, calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}, 248.0797$ ); NMR ( $\mathrm{F}_{3} \mathrm{AcOH}$ ) $\delta$ 1.53 (3 H, t, ethyl $\mathrm{CH}_{3}$ ), 4.60, 4.68 ( 5 H , singlet and quartet overlapping, respectively, $\mathrm{OCH}_{3}$ and ethyl $\left.\mathrm{CH}_{2}\right), 7.94\left(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{7}\right)$, $9.16\left(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{6}\right), 9.39\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, $58.06 ; \mathrm{H}, 4.8$. Found: C, 57.79 ; H , 4.99.

1,5-Naphthyridine-4 $(1 H), 8(5 H)$-dione (2). A solution of 2.74 $\mathrm{g}(0.011 \mathrm{~mol})$ of 14 in 210 mL of concentrated hydrobromic acid was stirred and refluxed for 24 h . The resulting dark tan solution was evaporated to dryness on a rotary evaporator and the residue recrystallized from a large volume of water. Tan crystals of the acid IIb were collected by filtration and dried in a vacuum oven at $100^{\circ} \mathrm{C}$. Crude yield was $1.98 \mathrm{~g}(88 \%)$ : NMR $\left(\mathrm{F}_{3} \mathrm{AcOH}\right)$ ò $7.92(1 \mathrm{H}, \dot{\mathrm{c}}, J=6.5$ $\mathrm{Hz}, \mathrm{H}_{7}$ ) , $8.99\left(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{6}\right), 9.48\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right)$.
The acid 11b was ground to a powder and added to quinoline ( 90 mL ), and the heterogeneous mixture was stirred and refluxed for 10 h. After cooling to room temperature, the precipitate was collected on a fritted glass funnel, washed well with acetone, and dried in vacuo. The dried precipitate was dissolved in dilute aqueous sodium hydroxide on a steam bath to give a tan solution which was filtered hot through a thin pad of Norit A on Celite. The cooled filtrate was taken to pH 6 with 2 N hydrochloric acid and the $\mathrm{r} \in$ sulting precipitate was collected on a fritted glass funnel. Acidification of the filtrate to pH 2 gave a mixture of 2 , and 11 b which could be recycled in subsequent decarboxylation reactions. The precipitate on the fritted funnel was redissolved in dilute aqueous sodium hydroxide on a steam bath and then acidified to pH 2 with 2 N hydrochloric acid. The resulting precipitate was collected on a fritted glass funnel, washed well with water, and dried in a vacuum oven at $100^{\circ} \mathrm{C}$ to yield 2 as a white powder ( $1.38 \mathrm{~g} ; 88 \%$ ). Recrystallization from water ( $3 \mathrm{~mL} / \mathrm{mg}$ ) gave white microcrystals: $\mathrm{mp}>300^{\circ} \mathrm{C}$ (sublimes) (lit. ${ }^{4}>300^{\circ} \mathrm{C}$ ); NMR $\left(\mathrm{F}_{3} \mathrm{AcOH}\right) \delta 7.53\left(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3,7}\right), 8.6 \mathrm{E}(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\mathrm{H}_{2,6}$ ).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 59.26; H, 3.73; N, 17.28. Found: C, 57.35; H, 3.55; N, 17.03.

2 was prepared from 11a essentially as described above except that hydrochloric acid was substituted for hydrobromic acid in the initial hydrolysis step.
Diethyl [(1-Methyl-4-oxo-1,4-dihydro-3-pyridyl)amino]methylenemalonate (10b). The compound was prepared from $N$ -methyl-3-nitro- $\gamma$-pyridone $\mathbf{9 b}{ }^{26}$ by the same procedure used to make 13 from 12. Crude 10b was crystallized by adding Skelly B to a solution in hot benzene and cooling to room temperature. Yields were ca. 60\% tan crystals, $\operatorname{mp} 131-132^{\circ} \mathrm{C}$; the material was used without further purification: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30,1.37(5 \mathrm{H}$, overlapping triplets, ethyl $\left.\mathrm{CH}_{3}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.25,4.34(4 \mathrm{H}$, overlapping quartets, ethyl $\left.\mathrm{CH}_{2}\right), 6.43\left(1 \mathrm{H}, \mathrm{d}, J_{5,6}=7.2 \mathrm{~Hz}, \mathrm{H}_{5}\right), 7.38(1 \mathrm{H}$, doublet of doublets, $\left.{ }^{27} J_{5,6}=7.2 \mathrm{~Hz}, J_{2,6}=2 \mathrm{~Hz}, \mathrm{H}_{6}\right), 7.59\left(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}, \mathrm{H}_{2}\right)$, $8.39\left(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}\right.$, collapses to singlet on shaking with $\mathrm{D}_{2} \mathrm{O}$, vinyl CH$), 10.89\left(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}\right.$, vanishes on shaking with $\mathrm{D}_{2} \mathrm{O}$, NH ).

Ethyl 5-Methyl-1,5-naphthyridine-4(1H),8(5H)-dione-3carboxyate (11c). Starting with $10 b$ the procedure was the same as that used to prepare 14 from 13, except that the cyclization was performed in Dowtherm A and the reaction mixture was refluxed for only 15 min . Crude 11 c was obtained as a tan powder ( $\mathrm{mp} 250-253^{\circ} \mathrm{C}$ ) in ca. $35 \%$ yield. An analytical sample was prepared by the method used for 14 , yielding white microcrystals: $\mathrm{mp} 262-264^{\circ} \mathrm{C}$; $\mathrm{NMR}\left(\mathrm{F}_{3} \mathrm{AcOH}\right)$ $\delta 1.58\left(3 \mathrm{H}, \mathrm{t}\right.$, ethyl $\left.\mathrm{CH}_{3}\right), 4.69,4.81(5 \mathrm{H}$, singlet and quartet overlapping, respectively, $\mathrm{NCH}_{3}$ and ethyl $\left.\mathrm{CH}_{2}\right), 7.42(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{7}\right), 8.55\left(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{6}\right), 9.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, $58.06 ; \mathrm{H}, 4.87 ; \mathrm{N}, 11.23$. Found: C, 57.86; H, 4.80; N, 11.24.

Ethyl 1,5-Dimethyl-1,5-naphthyridine-4(1H),8(5H)-dione3 -carboxylate (11d). Compound $14(400 \mathrm{mg})$ was added to refluxing diphenyl ether ( 10 mL ) and the solution was stirred and heated for 6.5 h . The reaction was worked up with Skelly B in the usual manner and the resulting precipitate was boiled with benzene. Filtration of the hot benzene mixture gave 97 mg of precipitate $A$, shown by $I R$ to be a mixture of 11 a and 11 d . The yellow benzene filtrate was filtered hot through Norit A on Celite, evaporated to 15 mL , and refrigerated to yield 82 mg of precipitate B , shown by IR to be a mixture of 11c and 11d. Precipitate A was recrystallized from nitromethane (Norit A on Celite) to give crude 11 d ( 23 mg ) as yellow microcrystals, $\mathrm{mp} 274-281$ ${ }^{\circ} \mathrm{C}$. Gradient sublimation at $200^{\circ} \mathrm{C}$ yielded an analytical sample as white microcrystals, mp 282-283.5 ${ }^{\circ} \mathrm{C}$; NMR ( $\mathrm{F}_{3} \mathrm{AcOH}$ ) $\delta 1.55(3 \mathrm{H}$, t , ethyl $\mathrm{CH}_{3}$ ), 4.45-4.95 ( 8 H , multiplet dominated by broad singlet at $4.80, \mathrm{NCH}_{3}$ and ethyl $\left.\mathrm{CH}_{2}\right), 7153\left(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{7}\right), 8.57(1 \mathrm{H}$, $\left.\mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{6}\right), 9.17\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ : C, 59.53; H. 5.39. Found: C, $59.24 ; \mathrm{H}$, 5.36.

4,8-Dichloro-1,5-naphthyridine (6). To a heavy-walled glass tube ( $28-\mathrm{cm}$ long; $2-\mathrm{cm}$ o.d.) was added $2(335 \mathrm{mg} ; 0.0021 \mathrm{~mol}$ ) and phosphorus oxychloride ( 20 mL ). The tube was sealed and immersed to a depth of 4 cm in an oil bath at $175-185^{\circ} \mathrm{C}$. Solid 2 dissolved in about 6 h to yield a green solution. The tube was cooled and opened, and the solution was rinsed out with a little $\mathrm{POCl}_{3}$ and evaporated on a rotary evaporator. The green viscous residue was carefully decomposed with ice and then neutralized with 2 N aqueous ammonia. The resulting gray precipitate was collected and dried in a vacuum desiccator $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$. The dried precipitate was dissolved in benzene, filtered hot through a thin pad of Norit A or. Celite, and evaporated down to a convenient volume. Skelly B was added to the hot solution until turbidity was evident, and the solution was allowed to cool slowly to room temperature and was finally cooled in an ice bath. 6 crystallized as white needles ( $340 \mathrm{mg} ; 82 \%$ ), mp (sealed tube) $274-276{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4}$ $278-279^{\circ} \mathrm{C}$ ).

4,8-Diamino-1,5-naphthyridine (7). The procedure was a modification of that described by Case and Brennan ${ }^{28}$ for 4 -amino-1,5naphthyridine. To a $50-\mathrm{mL}$, three-necked flask fitted with an efficient condenser, a thermometer, and a fritted glass gas inlet tube was added warm phenol $(20 \mathrm{~mL})$. Ammonia gas passed through a potassium hydroxide drying tower was bubbled into the phenol for 10 min after which 6 ( $601 \mathrm{mg} ; 0.003 \mathrm{~mol}$ ) was added to the flask and the solution was heated to $170-180^{\circ} \mathrm{C}$ while the gas flow continued. Periodically, the white precipitate which formed on the gas inlet tube was scraped back into the reaction mixture. After 10 h , the tan solution was cooled, basified with $25 \%$ aqueous sodium hydroxide, and poured into a $125-\mathrm{mL}$ flask. Addition of water to the dark-green solution at this point occasionally caused the product to precipitate but the following procedure was more reproducible. Additional $10 \%$ aqueous sodium hydroxide was added to the solution to make a final volume of about 75 mL . The flask was placed in a refrigerator for 18 h and the resulting white precipitate was collected and washed twice with ice water. The dried precipitate was dissolved in warm 2 N sulfuric acid, filtered, cooled, and adjusted to pH 8 with saturated aqueous scdium carbonate solution. Care must be taken around $\mathrm{pH} 5-6$, since the mixture then becomes colloidal and froths. The precipitate was collected, washed with ice water, and dried to give 7 as white microcrystals ( 272 $\mathrm{mg} ; 56 \%$ ), mp $252-255^{\circ} \mathrm{C}$ (dec). An analytical sample, prepared by recrystallization from water, had $\mathrm{mp} 255-257{ }^{\circ} \mathrm{C}$ (dec); NMR (4:1 $\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6} / \mathrm{CDCl}_{3}\right) \delta 6.58,6.68(6 \mathrm{H}$, singlet and doublet partially overlapping, respectively, $J_{2,3}=5.5 \mathrm{~Hz}, \mathrm{NH}_{2}$ and $\left.\mathrm{H}_{3,7}\right), 8.22(2 \mathrm{H}, \mathrm{d}$, $\left.J_{2,3}=5.5 \mathrm{~Hz}, \mathrm{H}_{2,6}\right) ; \mathrm{UV} \gamma_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) 235(\epsilon 37000), 328 \mathrm{~nm}(13600)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}$ : C, 59.99; H, 5.03; $\mathrm{N}, 34.98$. Found: C, 59.73; H, 5.20; N, 34.72.

1,5-Naphthyridine-4(1H),8(5H)-dithione (3). To a $50-\mathrm{mL}$, three-necked flask fitted with an efficient condenser and a fritted glass gas inlet tube was added a solution of potassium hydroxide ( 5.5 g ) in ethanol/water ( $9: 1 ; 35 \mathrm{~mL}$ ). Hydrogen sulfide gas was passed through the solution for 2 h and then the gas flow was shut off while $6(1 \mathrm{~g}$;
0.005 mol ) was added to the flask. The gas fow was shut off while 6 $(1 \mathrm{~g} ; 0.005 \mathrm{~mol})$ was added to the flask. The gas flow was resumed and the mixture was gently refluxed. White crystalline 6 gradually dissolved and the mixture turned deep orange. Periodically, the orange precipitate which formed on the gas inlet ttbe was scraped off into the reaction mixture. After 12 h , the orange solution was washed into a $125-\mathrm{mL}$ flask with water and any orange precipitate was dissolved by adding a few pellets of solid potassium hydroxide. The solution was filtered and then carbon dioxide gas was passed through the liquid for 20 min . Dark orange crystals of 3 were collected on a fritted glass funnel, washed with water, and dried in a desiccator $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$. The yellow filtrate, containing traces of 3 , turned colorless in about 25 h as the dithione autoxidized. The dried product weighed 940 mg ( $96.4 \%$ ): $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; UV $\gamma_{\max }\left(\mathrm{CH}_{3} \mathrm{CN}\right) 246$ (sh, є 14900 ), 260 ( 19400 ), 328 ( 6000 ). 410 ( sh, 7400 ), 450 nm ( 13400 ). Within 30 h the yellowish-orange acetonitrile solution becamき colorless and exhibited the following UV/visible spectrum: 222 ( 15900 ), 238 (sh, 13500 ), 263 (sh, 830 C), 318 ( 9200 ), 330 ( 10500 ). The latter extinction coefficients were calculated on the assumption that the molecular weight of the autoxidized compound remained 194.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}_{2}$ : C, 49.46; H, 3.11; N, 14.42; S, 33.01. Found: C, 4C.54; H, 3.07; N, 14.45; S, 32.82.

4,8-Dimethoxy-1,5-naphthyridine (8). To a magnetically stirred solution of 210 mg ( 9.13 mmol ) of sodium metal in 75 mL of dry methanol was added $834 \mathrm{mg}(4.19 \mathrm{mmol})$ of 6 and the mixture was heated to reflux. Within 2 h 6 had all dissolved and the reaction was thereafter monitored by TLC (silica gel/ $\mathrm{CHCl}_{3}$ ). Refluxing was continued for either 96 h or until the TLC spot corresponding to the monomethoxy- monochloronaphthyridine intermediate had vanished. The solution was cooled and carbon dioxide gas was passed through the liquid fo: 15 min . The solution was evaporated to dryness and the residue dried in a vacuum desiccator $\left(\mathrm{P}_{2} \mathrm{O}_{\xi}\right)$. The dried residue was boiled three times with $75-\mathrm{mL}$ portions of acetone, the undissolved solid being collected on a fritted glass funnel between each step. The combined acetone filtrates were evaporated to dryness and the residue was dissolved in boiling benzene. Skelly $B$ was added to the boiling solution until turbidity was evident and the solution was allowed to cool slowly to room temperature and was finally cooled in an ice bath. The resulting white crystals were collected and vacuum dried to give $692 \mathrm{mg}(87 \%)$ of $8, \mathrm{mp} 209-212^{\circ} \mathrm{C}$. An analytical sample prepared by gradient sublimation at $95^{\circ} \mathrm{C}$ melted at $214-216^{\circ} \mathrm{C}$. Crystals grown by this method were large enough for x -ray structure determination: NMR $\left(\mathrm{F}_{3} \mathrm{AcOH}\right) \delta 4.64\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .8 .03\left(2 \mathrm{H}, \mathrm{d} . J=6.5 \mathrm{~Hz} . \mathrm{H}_{3.7}\right)$, $9.36\left(2 \mathrm{H}, \mathrm{d} . J=6.5 \mathrm{~Hz}, \mathrm{H}_{2,6}\right)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, $63.15 ; \mathrm{H}, 5.30 ; \mathrm{N}, 14.73$. Found: C, 62.97; H, 5.47; N, 14.49.

General Procedures for Thermal Reactions of 4 and 8. All solid-state reactions were carried out in sealed ampules totally immersed in $\varepsilon$ wax bath. For solid-state reactions employing methyl iodide, the reactants were usually blanketed with a small amount of mineral oil to facilitate sealing the ampule. The reactions were worked up by washing the ampule contents onto $\varepsilon$ fritted glass funnel with Skelly B. Reactions in diphenyl ether were run in sealed ampules immersed in a wax bath to the level of the liquid in the ampules. The latter reactions were worked up by pouring the ampule contents into Skelly B and filtering.

Thermal Reactions of 8. A. Solid State. Compound 8 ( 280 mg ) was heated at $226^{\circ} \mathrm{C}$ for 10 h . The crude product was dissolved in boiling benzene and filtered hot through a thin pad of Norit A on Celite. Cooling the filtrate yielded white crystalline 4 ( $174 \mathrm{mg} ; 62 \%$ ), $\mathrm{mp} 268.5-\mathrm{\Sigma} 72^{\circ} \mathrm{C}$. An analytical sample prepared by gradient sublimation at $110^{\circ} \mathrm{C}$ melted at $273-275.5^{\circ} \mathrm{C}$ : NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.30(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NCH}_{3}\right), 6.43\left(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}_{3,7}\right), 7.27\left(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}_{2,6}\right)$; NMR ( $\left.\mathrm{F}_{3} \mathrm{~A} \approx \mathrm{OH}\right) \delta 4.79\left(\mathrm{~s}, \mathrm{NCH}_{3}\right)$. (The solution was not concentrated enough to distinguish any other peaks. Upon standing, there formed in the solution crystals of the bis(triflucroacetate salt) of 4 large enough for x -ray analysis.)

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 63.15; F, $5.30 ; \mathrm{N}, 14.73$. Found: C, 62.97: H, 5.40; N, 14.62.
B. Solid State with Methyl Iodide. $8(140 \mathrm{mg})$ was heated with methyl iodide ( 34 mg ; molar ratio $=1: 0.33$ ) at $220^{\circ} \mathrm{C}$ for 12 h . The crude product was boiled with benzene to remove any 4 present and then gradient sublimed at $275^{\circ} \mathrm{C}$. The a hite crystalline sublimate was dissolved in warm dilute aqueous sodium hydroxide and the resulting violet solution was acidified to pH 2 with concentrated hydrochloric acid. The precipitate was collected and recrystallized from a large vol ume of water to yield analytically pure $5(74 \mathrm{mg} ; 53 \%)$ : mp $>300^{\circ} \mathrm{C}$; NMR ( $\mathrm{F}_{3} \mathrm{AcOH}$ ) $\delta 2.61\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{i}, 8.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2,6}\right)\right.$; UV $\gamma_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) 233$ (sh, $\delta 37400$ ), 237 (sh, $457(10), 240(51600), 273$ (4300), 332 (sh, 17 400), 337 (sh, 18300 ), 343 nm (23 300).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 63.15; $\mathrm{H}, 5.30 ; \mathrm{N}, 14.73$. Found: C, 62.98; H, 5.40; N, 14.67.

Heating 8 with methyl iodide at temperatures below $225^{\circ} \mathrm{C}$ for 12 $h$ produced complex mixtures of products from which an impure compound identified as 18a could be isolated in erratic yields by gradient sublimaticn at $132-150^{\circ} \mathrm{C}$. The material was contaminated with 4 and exhibited: $\mathrm{mp} 228-235^{\circ} \mathrm{C}$; NMR ( $\mathrm{F}_{3} \mathrm{AcOH}$ ) $\delta 2.57$ (s), 4.79 (s), 7.47-7.87 (m), 8.47-8.95 (m), peak area ratios 7:10:3:5.5, respectively; UV $\gamma_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right) 232$ ( $\epsilon 33600$ ), 267 (3500), 297 (sh, 5000), 325 ( 20000 ), $338 \mathrm{~nm}(24800$ ).

Heating $8(40 \mathrm{mg})$ with methyl iodide ( 34 mg ; molar ratio $1: 1.14$ ) for 2.5 h at $200-220^{\circ} \mathrm{C}$ produced $4(31 \mathrm{mg})$ which was isolated by gradient sublimation at $132^{\circ} \mathrm{C}$ and identified by mp, IR. and UV.
C. Solution. Heating $8(50 \mathrm{mg}$ ) in diphenyl ether ( 1 mL ) for 2.5 h at $232{ }^{\circ} \mathrm{C}$ yielded 45 mg of recovered 8 identified by IR.
D. Solution with Methyl Iodide. Heating $8(45 \mathrm{mg})$ in diphenyl ether with methyl iodide ( 9 mg ; molar ratio $1: 0.27$ ) for 23 min at $210-213^{\circ} \mathrm{C}$ yieldec 44 mg of 4 which was identified by IR.

Thermal Reactions of 4. A. Solid State. Heating 4 ( 22 mg ) for 10 h at $225^{\circ} \mathrm{C}$ yielded 22 mg recovered 4 which was identified by IR.
B. Solid State with Methyl Iodide. 4 ( 63 mg ) was heated with methyl iodide ( 57 mg ; molar ratio $1: 1.20$ ) for 17 h at $220-226^{\circ} \mathrm{C}$. The crude product was boiled with benzene and dried to yield 41 mg of material with the IR identical to that of 5 . The mass spectrum showed traces of tri- and tetramethylated derivatives in addition.

When $4\left(52 \mathrm{mg}\right.$ ) was heated with methyl- $d_{3}$ iodide ( 34 mg ; molar ratio 1:0.86) for 16 h at $228^{\circ} \mathrm{C}$, the crude product showed the mass spectrum given in Table II. Purification of the material by dissolution in dilute aqueous sodium hydroxide and reprecipitation with acid yielded material with the following properties: mass spectrum $m / e$ (relative intensity) 190 (95), 193 (100), 196 (32), 204 (4), 207 (9), 210 (3); NMR ( $\mathrm{F}_{3} \mathrm{AcOH}$ ) $\delta 2.61$ (s), 8.70 (s), peak area ratios 3.3:2, respectively.
C. Solution with Methyl Iodide. Heating $4(32 \mathrm{mg})$ with methyl iodide ( 7 mg ; molar ratio 1:0.28) in diphenyl ether for 10 h at $225^{\circ} \mathrm{C}$ yielded unchanged 4 ( 29 mg ) which was identified by IR.

Attempted Reaction of 2 with Methyl Iodide. Heating 2 ( 46 mg ) with methyl iodide ( 182 mg ; molar ratio 1:4.5) for 12 h at $228^{\circ} \mathrm{C}$ gave 47 mg of material which was identified as unchanged 2 by IR. The mass spectrum of the product showed traces of mono-. di-. and trimethylated species in addition.

Assignment of 'H NMR Spectra. All the naphthyridine derivatives with four unsubstituted positions $(2,3,6,7)$ showed two signals for the corresponding CH protons, separated by $1.3-1.5 \mathrm{ppm}$. These were assigned by analogy with 4 -pyridone, where the signals for the protons adjacent to nitrogen appear downfield by 1.3 ppm relative to those adjacent oo carbonyl ( $\delta 7.92,6.62$, respectively ${ }^{29}$ ).

Registry No.-3, 64761-22-4; 5, 63086-87-3; 6, 28252-80-4; 7, 64761-26-8: 9b, 64761-30-4; 10b, 64761-14-4; 11a, 64761-28-0; 11b, 64761-15-5: 12, 31872-62-5; 13, 64761-16-6; 18a, 63086-88-4; 4-me-thoxy-3-pyridinamine, 33631-09-3; ethyl ethoxymethylenemalonate, 87-13-8; 3-nitro-4-chloropyridinium hydrochloride, 54079-68-4; methyl iodide. 74-88-4.

Supplementary Material Available. Table III, IR spectral data, and Table IV, mass spectral data, for 1,5-naphthyridine derivatives and precursors, (7 pages). Ordering information is given on any current masthead page.

## References and Notes

(1) (a) The support of this work by the Robert A. Welch Foundation (Grant F-126) is gratefully acknowledged; (b) taken in part from the Ph.D. Thesis of S. B. Brown, The University of Texas at Austin, 1976; (c) preliminary communication: S. B. Brown and M. J. S. Dewar, J. Chem. Soc., Chem. Commun., 87 (1977)
(2) Robert A. Welch Predoctoral Fellow.
(3) M. J. S. Dewar and A. M. Talati, J. Am. Chem. Soc., 86, 1592 (1964).
(4) E. V. Brown and A. C. Plasz, J. Org. Chem., 36, 1331 (1971).
(5) H. Tiecrelmann, in "Oyridine and its Derivatives, Supplement, Part Three", R. A. Abramovitch. Ed., Wiley, New York, N.Y., 1974, pp 731 ff , and references therein.
(6) R. C. Elderfield, Heterocycl. Compd., 4, 152 (1952).
(7) (a) T. Nakagome, H. Agui, T. Mitani, and M. Nakashita, German Patent 2166375 (1973): Chem. Abstr. 80, 3486 (1974); (b) R. P. Brundage and G. Y. Lesher, U.S. Patent 3855232 (1974); Chem. Abstr., 82, 98000 (1975).
(8) K. B. Wilberg. ${ }^{\text {- }}$ M. Shryne, and R. R. Kintner, J. Am. Chem. Soc., 79, 3160 (1957).
(9) A disproportionation reaction also occurred when the carboxylic acid analogue of 14 was decarboxylated in refluxing quinoline. In that case, pure 2 was one of the products isolated by gradient sublimation.
(10) S. B. Brown aid M. J. S. Dewar, unpublished work.
(11) J. Elguero, C. Marzin, A. R. . Katritzky, and P. Linda, "The Tautomerism of Heterocycles', Academic Press, New York, N.Y., 1976.
(12) (a) D. N. Bailey, D. M. Hercules, and T. D. Eck, Anal. Chem., 39, 877 (1967); (b) E. E. Jaffe and H. Matrick, J. Org. Chem., 33, 4004 (1968); (c) A. Albert and A. Hampton, J. Chem. Soc., 505 (1954).
(13) R. L. Harlow and S. H. Simonsen, Acta Crystallogr., in press.
(14) P. Beak, J. Bonham, and J. T. Lee, Jr., J. Am. Chem. Soc., 90, 1569 (1968), and references therein.
(15) Although the spectroscopic data for 18a might also correspond to the data expected for a mixture of 4 and 5 , nevertheless, the low sublimation temperature employed in the isolation of 18a would appear to rule out the presence of 5.
(16) J. Pliml and M. Prystas, Adv. Heterocycl. Chem. 8, 115 (1967).
(17) Heating 1-alkylpyridinium halides (Ladenburg arrangement ${ }^{18}$ ) yields mixtures of 2-, 3-, and 4-alkylated products apparently by a free-radical mechanism. Also, Beak, Bonham, and Lee ${ }^{14}$ have presented evidence that the Lander rearrangement is not a free-radical process.
(18) R. G. Micetich, in "Pyridine and its Derivatives, Supplement, Part Two", R. A. Abramovitch, Ed., Wiley, New York, N.Y., 1974, p 286, and references'
therein.
(19) For recent Friedel-Crafts reactions applied to pyridones, see H . Tomisawa, R. Fujita, H. Hongo, and H. Kato, Chem. Pharm. Bull., 23, 592 (1975), and earlier papers in the series.
(20) R. Adams, J. Hine, and J. Campbell, J. Am. Chem. Soc., 71, 387 (1949).
(21) Available from Scientific Instrument Accessories, Aust n , Texas.
(22) W. H. Crowe, J. Chem. Soc., 2028 (1925).
(23) R. R. Bishop, E. A. S. Cavell, and N. B. Chapman, J. Chem. Soc., 437 (1952).
(24) U. G. Bijlsma and H. J. den Hertog, Recl. Trav. Chim. Pays-Bas, 75, 1187 (1956).
(25) O. Bremer, ustus Liebigs Ann. Chem., 529, 290 (1937)
(26) T. Takahashi and A. Koshiro, Yakugaku Zasshi, 79, 1123 (1959); Chem. Abstr., 54, 3418 (1960).
(27) One of these doublet of doublet peaks coincides with the $\mathrm{CHCl}_{3}$ impurity peak.
(28) F. H. Case and J. A. Brennan, J. Am. Chem. Soc., 81, 6297 (1959).
(29) "Sadtler Standard Spectra", Sadtler Research Laboratories, Philadelphia, Pa., no. 16076

# New Aspects of Intramolecular Hydrogen Transfer in Some Ortho-Substituted Aryl Radicals 

Seemon H. Pines,* Robert M. Purick, Robert A. Reamer, and George Gal<br>Merck Sharp \& Dohme Research Laboratories, Division of Merck \& Co., Inc., Rahway, New Jersey 07065

Received November 3, 1977

Intramolecular 1,5-, 1,6-, and 1,7-hydrogen transfers are observed when $o$-di- $n$-propylaminosulfonylbenzenediazonium tetrafluoroborate ( $1 \mathbf{l a}$ ) is decomposed in the system: $\mathrm{CuBr}_{2}-\mathrm{Me}_{2} \mathrm{SO}$. The reaction competes with the "Sand-meyer-like" aryl bromide formation. The extent of competition is shown, by study of lower homologues, to reflest steric effects which are alsc evident from a comparison of the similar dediazoniation of o-di-n-propylamino- and $o$-dimethylaminocarbonylbenzenediazonium ions, 8 a and 8 c , respectively. The stereochemical argument is amplified by the failure of $o-n$ - and -isopropoxycarbonylbenzenediazonium salts to undergo hydrogen transfer. A large solvent effect is also evident; the substitution of acetone for $\mathrm{Me}_{2} \mathrm{SO}$ in decomposition of 8 c decreases hydrogen transfer from near 90 to abcut $15 \%$, with a corresponding increase in bromoarene formation. The ultimate products of hydrogen transfer are identified and rationalized.

The demethylation of o-(dimethylaminocarbonyl)aryl or ( $N$-aryl- $N$-methylaminocarbonyl)aryl diazonium salts by intramolecular 1,5-hydrogen transfer in homolytic fashion (Scheme I) was probably first recognized in $1954 .{ }^{1}$ Despite extensive study of its mechanism, ${ }^{2}$ there are still many unanswered questions which merit further work. ${ }^{2 b, c}$ It is, however, already apparent that the manner and the medium in which the radical a (Scheme I) is generated play an important role in product determination, ${ }^{3 \mathrm{a}}$ and that when R is a substituted aryl, steric influences have been recognized. ${ }^{1,3 b, c}$

In connection with a synthetic project, we happened upon a related reaction which also involved radical transfer, but to a propyl group of a dipropyl sulfonamide (Figure 1). Astonishingly, attack occurred at the $\alpha, \beta$, and $\gamma$ positions! The $6-$, 7 -, and 8 -membered cyclic transition states that were required for this reactivity suggested that there were steric and other influences not previously recognized in this type of process. We have, accordingly, briefly examined some of them. Our experimental method comprised adding a dimethylsulfoxide $\left(\mathrm{Me}_{2} \mathrm{SO}\right)$ solution of the $o$-diazonium tetrafluoroborates to $\mathrm{CuBr}_{2}$ in $\mathrm{Me}_{2} \mathrm{SO}$, a system which is reported to give bromoaromatics in high yield, ${ }^{4,5}$ our original goal. The use of $\mathrm{CuBr}_{2}-\mathrm{Me}_{2} \mathrm{SO}$ ensured a homolytic reaction, and the high concentration could also be expected to minimize rearrangement of the alkyl radicals ${ }^{6}$ prior to oxidation and termination

Scheme I

in products. Since this system had not previously been used to generate the analogous carboxamide radicals, we examined two of these, and, for reasons which will become clear, we also studied the behavior of two esters.

## Results

The instantaneous decomposition of o-(dialkylaminosulfonyl) benzenediazonium tetrafluoroborates 1 in $\mathrm{CuBr}_{2}$-dry $\mathrm{Me}_{2} \mathrm{SO}$ at room temperature furnished $o$-bromobenzenesulfonamides 2 from a Sandmeyer-like ${ }^{7 a}$ reaction, along with products resulting from transfer of the initially generated aryl radical site tc the alkyl side chain. ${ }^{7 \mathrm{~b}}$ These latter products included monoalkyl sulfonamides, bromoalkyl sulfonamides, and alkenylalkyl sulfonamides (Scheme II), reflecting hy-

Scheme II



6a


Figure 1.

Table I. Yield of Products (\%) ${ }^{a}$ from the Decomposition of 1 in $\mathrm{CuBr}_{2}-\mathrm{Me}_{2} \mathrm{SO}$

| Product | $\begin{aligned} & \mathrm{la}, \mathrm{R}= \\ & n-\mathrm{C}_{3} \mathrm{H}_{7} \end{aligned}$ | $\begin{gathered} \mathrm{Ib}, \mathrm{R}= \\ \mathrm{C}_{2} \mathrm{H}_{5} \\ \hline \end{gathered}$ | $\begin{gathered} 1 \mathbf{c}, \mathrm{R} \\ =\mathrm{CH}_{3} \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| $o-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NR}_{2}$ (2) | 32 | 43 | 75 |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2}$ NHR (3) ( $\alpha$-abstraction) | 20 | 24 | <2 |
| $\underset{(\beta \text {-bromo })}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{NRR}^{\prime}(4)}$ | 32 | 10 |  |
| $\underset{\text { (enamide) }}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{NRR}^{\prime \prime}(5)}$ | 6 | 3 |  |
| $\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{NRR}^{\prime \prime \prime}(6) \\ & (\gamma \text {-bromo }) \end{aligned}$ | 7 |  |  |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{NR}_{2}$ (7) | 2 | 4 | 4 | (reduction)

${ }^{a} \mathbf{4} \mathbf{a}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CHBrCH}_{3} ; \mathbf{4} \mathbf{b}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} ; \mathbf{5 a}, \mathrm{R}^{\prime \prime}=$ $\mathrm{CH}=\mathrm{CHCH}_{3} ; \mathbf{5} \mathbf{b}, \mathrm{R}^{\prime \prime}=\mathrm{CH}=\mathrm{CH}_{2} ; \mathbf{6 a}, \mathrm{R}^{\prime \prime \prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} . \mathrm{A}$ small amount (1.5\%) of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}=\mathrm{CHBr}$ (5d) was also isolated from the reaction of $\mathbf{1 b}$. Approximately $10-12 \%$ of "dimeric" ether 3d was formed from 1c (see text for discussion). The yields reported were determined by preparative $\mathrm{SiO}_{2}$ chromatography or GLC determination against standards.
drogen abstraction from each of the aliphatic carbon atoms. A small amount of reduction product, dialkyl benzenesulfonamide 7 , was invariably reduced by what must be an intermolecular reaction. The yields of general products are summarized in Table I. Ethers were formed from two molecules, particularly in the case of $1 \mathbf{c}$, by what was probably an ionic process. Their characterization was incomplete, but nevertheless secure.

The effect of moisture on the reaction was assessed in the case of 1 b , the diethyl homologue. Both $N$-( $\beta$-bromovinyl)-$N$-ethylbenzenesulfonamide (5d) and $N$-ethyl- $N$-vinylbenzenesulfonamide (5b), minor products which formed in dry solvent, were not detected using $\mathrm{Me}_{2} \mathrm{SO}$ containing $0.1 \%$ moisture. An experiment employing reverse addition of the reactants showed that higher bromide concentrations favored Sandmeyer product formation over hydrogen transfer.

No Sandmeyer product 9 a was detected from decomposition of the dipropyl carboxamide 8a, (Scheme III), nor was there any evidence for 1,7 -hydrogen transfer. The products which were seen were (mono) $N$-propylbenzamide (10a) and the enamide 11 , products of 1,5 - and 1,6 -hydrogen transfers, respectively.

Dimethyl carboxamide $8 \mathbf{c}$ gave, in $\mathrm{CuBr}_{2}-\mathrm{Me}_{2} \mathrm{SO}$, only $11 \%$ bromide 9 c and ca. $75-85 \%$ of 2,6-dibenzoyl-2,6-diaza-4oxaheptane (12), which although not obtained in pure form

## Scheme III




Scheme IV

was thoroughly and unambiguously identified (Scheme IV). A small and variable amount ( $2-10 \%$ ) of $N$-methylbenzamide ( 10 c ) was detected by GLC. In contrast, decomposition of $8 \mathbf{c}$ in $\mathrm{CuBr}_{2}$-acetone gave $78 \%$ of Sandmeyer product and $14 \%$ of 10 c .

The diazonium salts 14 a and 14 b , prepared from $n$ - and

isopropylanthranilate, respectively, gave high yields of Sandmeyer product without any evidence for radical ransfer products. The ubiquitous reduction products were observed here just as they were with the sulfonamides and carboxamides.

## Discussion

As stated in the introductory section. 1,5-intramolecular hydrogen abstractions have previously been observed with some o-carboxamide radicals. The formation of 4,5 , and 6 (Table I) constitutes, to the best of our knowledge, the first authentic examples of 1,6- and 1,7-hydrogen abstractions by an aryl radical. ${ }^{8}$

Some of the studies by Cohen et al., utilizing isotopically labeled 8 c showed that the radical trans:er step was exceedingly rapid ${ }^{9}$ in terms of conformational motion of some of the involved atoms, and we have no reason no: to extrapolate their conclusions, at least qualitatively, to our system. This being so, one can make a case that the ratios of $\alpha$-, $\beta$-, and $\gamma$-abstraction products obtained from la represent, roughly, the conformational preferences of la. Conformational preferences were previously invoked in explaining the anomalously low reactivity in some intermolecular hydrogen transfers to aryl and other radicals. ${ }^{10}$ The rate at which hydrogen atoms are transferred to such a hot aryl radical site ${ }^{9}$ largely precludes attainment of conformational equilibrium during the fleeting existence of the radical per se.

Sulfonamides. It is clear from the yields shown in Table I that the hydrogen transfer products dominate the reaction of 1a and that the Sandmeyer bromoarene 2c prevails with the much less encumbered dimethyl homologue. The diethyl case, starting with $\mathbf{1 b}$, occupies an intermediate position. The yield of bromide $\mathbf{2 b}$ from it, $43 \%$, may be compared with the sum of $2 \mathbf{a}(32 \%)$ and $6 \mathbf{a}(7 \%)$, the latter coming from a $\gamma$-car-

Table II. Effect of Reaction Conditions on the
Decomposition of 1 b

| Decomposition of 1b |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Product | A | Conditions $^{\boldsymbol{a}, \boldsymbol{b}}$ |  |  |
| $\mathbf{2 b}$ | 54.8 | 6 | C |  |
| $\mathbf{3 b}$ | 26.8 | 27.8 | 34.2 |  |
| $\mathbf{4 b}$ | 12.2 | 9.3 | 32.0 |  |
| $\mathbf{5 b}$ | 4.8 | 0 | 16.9 |  |
| $\mathbf{5 d}$ | 1.5 | 0 | 14.8 |  |
|  |  | 2.2 |  |  |

${ }^{a}$ Standard conditions described in the Experimental Section (A); used undried $\mathrm{Me}_{2} \mathrm{SO}$ (B); inverse addition of reactants (C). ${ }^{b}$ Values are given in GLC area (\%).
bon transfer process not available to $1 \mathbf{l}$. On the other hand, when considering the minimally crowded dimethyl homologue 1c, even the $\alpha$-carbon hydrogen transfer diminishes in importance compared to the Sandmever path. accentuating a picture of steric obstruction to the approach of $\mathrm{Br}^{-}$with la and 1 b . A preparatively useful yield ( $60 \%$ ) of analytically pure 2c may, in fact, be obtained by one crystallization of its total reaction mixture.

Hydrogen transfer in the case of $1 \mathbf{c}$ gave not the simple demethylation product $3 \mathbf{c}$, but $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)$ $\mathrm{CH}_{2} \mathrm{CCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{O}_{2} \mathrm{SC}_{6} \mathrm{H}_{5}$ (3d) which was readily converted to 3 c during chromatography. Its formation may be rationalized in the same way as 12, an entirely analogous product from the corresponding carboxamide, which is discussed below in the section in carboxamides.

It is quite reasonable that both fundamental reaction routes (i.e., leading to Sandmeyer or hydrogen transfer products) compete from the same initial aryl radical and not from some other unidentified reactive species. Support for this view comes from an experiment in which the product ratio was altered by reversing the order of reactant addition. In that case, $\mathrm{CuBr}_{2}-\mathrm{Me}_{2} \mathrm{SO}$ solution was added slowly to $\mathbf{1 b}$ in $\mathrm{Me}_{2} \mathrm{SO}$, limiting the concentration of $\mathrm{Br}^{-}$in the system. The yield of bromoarene $\mathbf{2 b}$ dropped from 43 to $27 \%$, while the yields of $\mathbf{3 b}$, $\mathbf{4 b}$, and 5b increased accordingly, as measured by GLC area ratios (Table II). The increase in $\mathbf{5 b}$ was the greatest of the three, further suggesting a role for $\mathrm{Br}^{-}$concentration in determining the product split from the $\beta$-alkyl radical. We believe shat enamides $\mathbf{5 a}$ and $\mathbf{5 b}$ arise from a $\beta$-carbon radical by oxidative elimination either with or without the intermediacy of an organocopper species, ${ }^{6,11}$ although their formaticn from an $\alpha$-carbon radical similarly cannot be strictly ruled out by our data. The ease with which the latter should and does suffer either dealkylation or ether formation (see below) with the dimethyl homologue, and even more evidently with the carboxamide 8 c , suggests these latter processes are the most important outlets for $\alpha$-carbon radicals. Their res-onance-enhanced stability resulting from the adjacent nitrogen ${ }^{10}$ would also favor continued oxidation by the reagent to $\alpha$-carbenium ions like that postulated in anodic oxidations of dimethyl benzamide, ${ }^{12}$ as suggested in Scheme V.

Dehydrobromination of bromoalkylamides $4 a$ and $4 b$ to the enamides $5 a$ and $5 b$ is unlikely in view of the demonstrated stability of the former to GLC and silica gel chromatography. Vinyl derivative $\mathbf{5 b}$, however, is susceptible to hydrolysis, and is not recovered from silica gel chromatography in benzenemethanol. Moreover, it is not even cetected when the dediazoniation of $\mathbf{1 b}$ is performed in $\mathrm{Me}_{2} \mathrm{SO}$ containing as little as $0.1 \%$ water (Table II).

Bromovinyl sulfonamide 5d is an unusual product, owing its identification to the power of modern spectroscopic tools. Its obviously arises from a double oxidation. We did not find double oxidation products from other substrates, and we offer

Scheme V

no insight intc its formation. It was only a minor product, ca. $1.5 \%$; however, its formation was reproducible.

In summary, the major features of the reactions of sulfonamides la-c can be related to previous studies of $8 \mathbf{c}$ in different media, but modified by sensible steric arguments.

How does 8 c itself behave in the same medium, and what are the differences which are introduced in a larger homologue?

Carboxamides. We expected and found steric influences based on the differing bond lengths and angles of the $>\mathrm{C}=0$ vs. $>\mathrm{SO}_{2}$ bridging groups. The absence of radical attack upon the $\gamma$-methyl group of the dipropyl carboxamide 8a (cf. 7\% with 1a) and the lack of Sandmeyer product from the same substrate (cf. $32 \%$ with $1 \mathrm{a}, 11 \%$ with 8 c ) are clear examples (Scheme III). Polar effect differences of the aryl radical ${ }^{13}$ cannot be responsible for the latter; the two-carbon insulator eliminates any explanation based upon differences in nitrogen basicity ${ }^{10}$ in the former. ${ }^{14}$ Despite the fact that 1,5 -hydrogen abstractions are generally favored over 1,6 abstractions on steric grounds, 8 a shows a reversal in preference of ca. 4:1. This reversal in preference strengthens the case for conformational control in this fast reaction.

Incidentially, if we reject the hypothesis that the enamides result from $\beta$-carbon attack, and are another product of initial $\alpha$-carbon attack, then we would have, in the case of $8 \mathbf{a}$, a regiospecific reaction at the $\alpha$-carbon site. This seems very unlikely in view of the many observations reported above.

Other aspects of the carboxamide reactions deserve mention. We suggest that the total lack of a $\beta$-bromoalkyl product analogous to 4 a reflects greater electron density at the nitrogen atom which can stabilize transition to an enamide more readily than can the nitrogen in sulfonamide 1a.

The $11 \%$ yield of Sandmeyer product 9 c in $\mathrm{Me}_{2} \mathrm{SO}$ contrasts with the decomposition of the same substrate in chloridecontaining aqueous media. ${ }^{2 \mathrm{a}}$ In that case, $44.6 \%$ of $o-(N, N-$ dimethyl)chlcrobenzamide was formed. We suspect that the solvent plays a more important role than the different nucleophile, especially since decomposition of $8 \mathbf{c}$ in acetone$\mathrm{CuBr}_{2}$ yields $77.5 \%$ of 9 c . Zollinger's group, in studying the effect of solvents on dediazoniation, invoked charge transfer complex formation with $\mathrm{Me}_{2} \mathrm{SO}$ in a pre-rate-determining step of the decomposition of the $p$-nitrobenzenediazonium ion. ${ }^{15}$ On the other hand, Sandmeyer reaction in $\mathrm{Me}_{2} \mathrm{SO}$ to form aryl chlorides is inferior to the similar aryl bromide synthesis. ${ }^{4}$

Formation of the "dimeric" product (12, Scheme IV) from decompositior. of $8 \mathbf{c}$ merits comments, too. Initial examination of the reaction by GLC showed a small amount of 9 c and 10 c as the only volatile compounds, contrasting with TLC evidence of a major product different from those two. Preparative chromatography was accompanied by decomposition, as were initial attempts at mass spectroscopy. NMR spectra of the total reaction mixture suggested that this major product contained singlet aromatic, methyl, and methylene protons in integrated ratios of 5:3:2. ${ }^{16 \mathrm{a}}$ The aliphatic groupings were broad, but they sharpened on heating, ${ }^{16 \mathrm{~b}}$ suggesting the well-known phenomenon attributed to restricted rotation of an $N, N$-dialkyl amide. Decomposition of 12 became evident at $80^{\circ} \mathrm{C}$, and after carrying it to its completion the resulting

Scheme VI

product could be clearly identified at 10c. Particularly diagnostic for such a dealkylation process is the appearance of the lower field ortho aromatic protons, signifying allowed coplanarity of the ring and carbonyl moieties.

At the same time, solvolysis of a sample in methanol- HCl was followed by GC-MS, and formation of 10 c was shown to arise through the intermediacy of 13 . Structure 12 was thus supported by this chemistry and the ${ }^{1} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts for its methylene group. Further reinforcement then came from mass spectroscopy (chemical ionization); a strong $\mathrm{M}+1$ ion ( $m / e 313$ ) was formed with isobutane as the reactant gas. Indeed, even a mass spectrum (field desorption) was eventually obtained showing $\mathrm{M}^{+} 312$. As noted above, structures similar to 12 have been formed by anodic oxidation of $N, N$-dialkyl amides. ${ }^{12}$

The involvement of $\mathrm{Me}_{2} \mathrm{SO}$ in homolytic dediazoniation has recently been demonstrated by the inclusion of an ${ }^{18} \mathrm{O}$ label from the solvent into the product. ${ }^{15} \mathrm{~A}$ similar occurrence could explain the presence of the ether oxygen in 12, although an ionic pathway may be more likely in view of the enhanced stability of a carbenium ion intermediate. We have adapted the ideas of Ross ${ }^{12}$ and Zollinger ${ }^{15}$ in describing a plausible sequence to 12 (Scheme VI). The attack of $\mathrm{Me}_{2} \mathrm{SO}$ on carbenium ion d tu give e may be followed by bond reorganization as pictured, or stepwise, to give alcohol f and the methylenesulfonium ion g . The former, alcohol f , could be expected to yield 12 in reaction with another ion $d$ upon loss of a proton.

Modest amounts of such an ether 3 d arose also from $\mathbf{1 c}$, as indicated by ${ }^{13} \mathrm{C}$ NMR spectra and solvolytic enhancement of the yield of $3 \mathbf{c}$. Formation of its higher homolgue from $\mathbf{1 b}$ could also be supported from the ${ }^{13} \mathrm{C}$ NMR spectra of the total reaction.

Our last argument for steric effects rests on the failure of the ester analogues 14a and 14b to yield radical transfer products. No electronic reasons preclude hycirogen abstraction from the side chain; in fact, an adjacent oxygen increases reactivity at $\mathrm{C}_{\text {c }}$, compared to a hydrocarbon, albeit not as much as does an adjacent nitrogen. ${ }^{10}$ Beyond the $\alpha$ position, all electronic distinctions between the esters and amides should vanish. Even though rotation may occur freely in the alkoxycarbonyl moiety, we suggest that because of the diazo function, there is little concentration, if any, of a conformer having alkyl hydrogens near the proradical site. In the rapid reaction which occurs, hydrogen transfer cannot compete with attack by bromide.

## Experimental Section ${ }^{17}$

Starting materials were made from the corresponding o-nitro acid chlorides followed by catalytic reduction over $\mathrm{PtO}_{2}$ in alcohol. The only aniline not previously reported was $\mathrm{N}, \mathrm{N}$-di-n-propyl-2-aminobenzenesulfonamide, bp $148-150{ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 56.22 ; \mathrm{H}, 7.86 ;-\mathrm{N}, 10.93$. Found: C, $56.22 ; \mathrm{H}, 7.76 ; \mathrm{N}$, 10.76.
$\mathrm{Me}_{2} \mathrm{SO}$ (J. T. Baker) was dried over molecular sieves bzfore use, except as noted. All other reagents and solvents were reagent grade and were used as received.
Diazonium salts were made according to the general procedure reported here for 1 a . A solution of $5.3 \mathrm{~g}(20.7 \mathrm{mmol})$ of $N, N-\mathrm{di}-n$ -propyl-2-aminobenzenesulfonamide in 10 mL of isopropyl alcohol and 4 mL of $48 \% \mathrm{HBF}_{4}(28 \mathrm{mmol})$ was cooled and stirred at $0-5{ }^{\circ} \mathrm{C}$ while adding 3.1 mL ( 23 mmol ) of isoamyl nitrite. When crystallization was essentially complete, generally $10-40 \mathrm{~min}, 100 \mathrm{~mL}$ of ether was added, and the crystalline salt was collected and washed with ether. After drying in vacuo at $\sim 23^{\circ} \mathrm{C}$, the salt weighed $6.9 \mathrm{~g}(19.4$ mmol, 94\%).

All yields were uniformly high. The ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right)$ were as expected; decomposition in the solvent without catalyst was shown to occur, but at an inconsequential rate compared to the catalyzed reactions (see below).
Dediazoniations were performed according to the general procedure, except as noted, reported Y.ere for 1 lb . A solution of 190 mg ( 0.58 mmol ) of 1 b in 0.5 mL of $\mathrm{Me}_{2} \mathrm{SC}^{\prime}$ was added dropwise with stirring to 2.5 mL of $\mathrm{Me}_{2} \mathrm{SO}$ containing $422^{3} \mathrm{mg}$ of $\mathrm{CuBr}_{2}$ at $17-23^{\circ} \mathrm{C}$. Gas evolution was apparent and instantaneous. After $8-10 \mathrm{~min}$, the mixture was diluted with methylene chloride, poured into ice and water, and worked up in the usual way.

Products. In each case the crude product mixture from a decomposition was studied by NMR spectroscopy, GLC, TLC, and sometimes GC-MS. Most yields reported in the text, tables, and Experimental Section were obtained either from silica gel chromatography on preparative plates or from GLC. They are accurate to ca. $3 \%$. Some (e.g., the ethers) are obviously approximations. The individual sections below describe in brief the examination of each product mixture and the characterization for each product which was identified.
Dipropyl Sulfonamide 1a. Preparative plate chromatography (95:5 hexane-ethyl acetate) of 205 mg of mixture gave four bands, which are described in order of increasing polarity.

Band A: 10.2 mg of 5 ; mass spectrum, m/e 239 ( $\mathrm{M}^{+}, 25$ ), 210 (30), 198 (15), 141 (75), $77(85), 70(100)$; the ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) spectrum showed vinylic protons at $\delta 4.9 \mathrm{~m}$ ) and $6.5(\mathrm{~d})$.

Band B: 142 mg ; contained nearly equal amounts of 2 a and 4 a and $\sim 3 \%$ of 7a. Rechromatography (benzene) allowed separation of the major constituents. 2a: mass spectrum, m/e $321\left(\mathrm{M}^{+}\right), 319(4)$, 292, 290 (100), 250, 248 (13), 221, 219 '63), 157, 155 (78). 4a: mass spectrum, $\mathrm{m} / \mathrm{e} 321\left(\mathrm{M}^{+}\right), 319(0.4), 292,29 \mathrm{(4)}, 240(3), 212$ (100), 170 (15), 141 (58), 77 (69); the ${ }^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDC}_{-3}\right)}$ ) spectrum showed a methyl doublet at $\delta 1.75$ and a methine multiplet at $\delta 4.35$; the ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum showed the methine carbon at $\delta_{c} 46.75$.

The small amount of 7 a was identified by GC comparison (mixed injection) with an authentic sample; GC-MS, $m / e 241\left(\mathrm{M}^{+}\right)$.

Band C: 16.5 mg of 6 ; mass spectrum, $m / e 321\left(\mathrm{M}^{+}\right), 319(3), 292$, $290(55), 212(82), 141(100), 77(64)$; the ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) spectrum showed a triplet at $\delta 3.40$ for $-\mathrm{CH}_{2} \mathrm{Br}$; the ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed this carbon at $\delta_{\mathrm{c}} 30.42$.

Band D: 26.8 mg of 3 a; identified by GC comparison (mixed injection) with an authentic sample. Mass spectrum, m/e $199\left(\mathrm{M}^{+}, 5\right)$, 170 (53), 141(59), 77 (100).

Diethyl Sulfonamide 1b. Preparative plate chromatography (99:1 benzene-methanol) of 154 mg gave the following in order of :ncreasing polarity.

Band A: $2.9 \mathrm{mg}(\sim 1.5 \%)$ of $N$-( $\beta$-bromovinyl) $N$-ethylbenzenesulfonamide (5d); mass spectrum, m/e 291 ( $\mathrm{M}^{+}, 10$ ), 289 ( $\mathrm{M}^{+}$, 8), $146\left[\mathrm{M}^{+}-\left(\mathrm{Br}+\mathrm{SO}_{2}\right), 48\right], 141$ (23), 125 (52), 77 (100). 69 (32).

Band B: 11.3 mg , which upon reexamination by GLC was a gross mixture containing all the known products as well as some which were not identified.

Band C: $92.6 \mathrm{mg}(52 \%)$; contained $2 \mathbf{b}$ and $\mathbf{4 b}$ in ca. 4.5:1 ratio, respectively. Rechromatography gave substantially pure samples of each. 2b: mass spectrum, $m / e 293\left(\mathrm{M}^{+}\right), 291(10), 278(100), 276$ (97), 221 (58), 219 (56), 157 (52), 155 (53); the ${ }^{1} \mathrm{H}$ NMR ( $\left(\mathrm{CDCl}_{3}\right)$ spectrum showed the aromatic, methylene and methyl protons in the ratio 4:4:6. 4b: mass spectrum, $m / e 293\left(\mathrm{M}^{-}, 5\right), 292(3), 291\left(\mathrm{M}^{+}, 5\right), 290(2), 278$ (16), 276 (18), 228 (16), 212 (4), 198 (100), 141 (65), 77 ( 98 ); in the ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) spectrum the $\mathrm{BrCH}_{2} \mathrm{CH}_{2}$ - signal was found as a single line at $\delta 3.45$.

Band D: 5.2 mg , most of which was nonvolatile. A small amount of $7 \mathbf{b}$ was identified by GLC comparisen with an authentic sample.

Band E: 24.8 mg (24\%) of $N$-ethylbenzenesulfonamide (3b); identified by comparison with an authentic sample.

The enamide $5 \mathbf{b}$ was clearly identified by GC-MS and ${ }^{13} \mathrm{C}$ NMR spectra of the original crude mixture (mass spectrum, $m / e 211\left(\mathrm{M}^{+}\right.$, 0.2 ), 185 (9), 170 (31), 141 (46), 77 (100), 51 (off scale); the ${ }^{13} \mathrm{C}$ NMR spectrum showed the terminal methylene at $\delta_{c} 92.6$ ), but it was not found after silica gel chromatography. Its yield $3 \%$ ) was estimated from GLC area (\%) only.

When the same reaction was repeated identically, except that undried $\mathrm{Me}_{2} \mathrm{SO}$ was used $\left(\mathrm{H}_{2} \mathrm{O}, 1.13 \mathrm{mg} / \mathrm{mL}\right.$ by Fisher titration), the unsaturated compounds $\mathbf{5 b}$ and $5 \mathbf{d}$ were undetectable (see Table II). The inverse addition reaction, performed by slowly adding 2.5 mL of dry $\mathrm{Me}_{2} \mathrm{SO}$ saturated with $\mathrm{CuBr}_{2}$ to 190 mg of 1 b in 1 mL of dry $\mathrm{Me}_{2} \mathrm{SO}$, gave the full spectrum of products, but in different proportions (Table II).

Dimethyl Sulfonamide 1c. An aliquot of a preparative scale reaction mixture was crystallized from methanol to give 2c, mp 59-61 ${ }^{\circ} \mathrm{C}$, in $60 \%$ direct yield; mass spectrum, $m / e 265\left(\mathrm{M}^{+}\right), 263$ (42), 221 (18), 219 (14), 184 (13), 157 (53), 155 (55), 44 ( 100 ; ; ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 2.86$ (s, 6, $\mathrm{CH}_{3}$ ), 7.3-8.2 (m, 4, aromatic).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{BrNO}_{2} \mathrm{~S}: \mathrm{C}, 36.37 ; \mathrm{H}, 3.82 ; \mathrm{N}, 5.30 ; \mathrm{Br}, 30.25$. Found: C, $36.71 ; \mathrm{H}, 3.64 ; \mathrm{N}, 5.31 ; \mathrm{Br}, 30.17$. Chromatography of the mother liquors ( $9: 1$ benzene-methanol) gave an additional $15 \%$ of 2c.

Another experiment was assayed by GLC using octadecane as an internal standard. It showed yields of 71,11 , and $4.5 \%$ for $2 \mathrm{c}, 3 \mathrm{c}$, and 7 c , respectively. After warming a portior of the total reaction mixture at $60^{\circ} \mathrm{C}$ in methanol and aqueous HCl for 60 h , the amount of 3 c increased. The increase was attributed to hydrolysis of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, evidence for which was a ${ }^{13} \mathrm{C}$ NMR signal at $\delta_{c} 74.3$, which was a triplet according to an off-resonance decoupling experiment. The fact that 3 c was undetectable in the ${ }^{13} \mathrm{C}$ NMR spectrum of the reaction before hydrolysis suggests that its observation by GLC represents thermal decomposition on the column.

Dipropyl Carboxamide 8a. Distillation of $\varepsilon$ preparative-sized reaction mixture gave pure 11 , bp $132-134^{\circ} \mathrm{C}(4 \mathrm{~mm})$ |lit. ${ }^{18} \mathrm{bp}$ $\left.155-159{ }^{\circ} \mathrm{C}(13 \mathrm{~mm})\right]$; mass spectrum, m/e $203\left(\mathrm{M}^{+}, 11\right) .188(4), 105$ (100). 77 (4); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.9\left(\mathrm{t}, 3, \mathrm{CH}_{3}\right), 1.6$ (d, $3, \mathrm{CH}_{3} \mathrm{CH}=$ ), $\sim 1.6\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right), 3.65\left(\mathrm{t}, 2, \mathrm{CH}_{2}\right), 5.0\left(\mathrm{~d}\right.$ of $\left.\mathrm{q}, 1 . \mathrm{CHCH}_{3}\right), 6.5$ (brd d, 1. NCH), 7.4 (brd s, 5 , aromatic).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 76.81$; $\mathrm{H}, 8.43$; 6.89. Found: C, 76.61; H, 8.19; N, 6.59.

Recoveries from preparative thin-layer chromatography were $65 \%$ of 11 and $17 \%$ of 10 a [mass spectrum, $m,^{\prime} e 163\left(\mathbf{M}^{+}, 29\right), 105(100), 77$ (33)], which behaved identically (GLC, TLC. NMR) with an authentic sample. A trace of $N, N$-dipropylbenzamide was visible by GLC. No other products of significance were detectible ty ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ NMR spectroscopy of the mixture. When the reaction was run by adding solid 3 a to the $\mathrm{CuBr}_{2}$ solution, a number of other minor products were formed in addition to 10 a and 11 .

Dimethyl Carboxamide 8c. Quantitative GLC showed 2-3\% of 10 c and traces of $\mathrm{N}, \mathrm{N}$-dimethylbenzamide, botr. identical with authentic samples, and an $11 \%$ yield of bromocarboxamide 9 c , identical in all respects with a sample prepared from $o$-bromobenzoyl chloride and dimethylamine: bp $144{ }^{\circ} \mathrm{C}(3.6 \mathrm{~mm})$; mass spectrum, m/e 229 ( $\mathrm{M}^{+}$), 227 (23), 228, 226 (30), 185, 183 (100), 157, 155 (43), 148 (25), 76 (81), 75 (70); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.8$ (s. $3, \mathrm{CH}_{3}$ ), 3.1 (s, 3, $\mathrm{CH}_{3}$ ), 7.0-7.7 (m, 4, aromatic).

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}: \mathrm{C}, 47.3 \mathrm{C}$; $\mathrm{H}, 4.42$; N. 6.14. Found: C , 47.20; H, 4.48; N, 6.03.

The ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the entire crude reaction mixture showed signals attributable to 12: $\delta 2.95$ (brd s, 3, $\mathrm{CH}_{3}$ ). 4.65 (brd $\mathrm{s}, 2, \mathrm{CH}_{2}$ ), 7.35 (brd s, 5, aromatic); ${ }^{13} \mathrm{C}$ NMR signals for the methyl and methylene groups were broad and centered at $\dot{\delta}_{\mathrm{c}} 34$ and 77 , respectively; mass spectrum (chemical ionization, isobutane), m/e 313 $\left(M^{+}+1\right)$.

A small portion of the reaction mixture containing an internal GLC standard was heated over the weekend at $60^{\circ} \mathrm{C}$ in methanol containing a few drops of HCl . GLC analysis showed $85.5 \%$ of 10 c and $11 \%$ of 9 c . A sample of this hydrolysis taken after $\sim \mathcal{L} \mathrm{h}$ of reaction time showed a product whose mass spectrum identified it as 13 ; mass spectrum, m/e 179 ( $\mathrm{M}^{+}, 12$ ), 164 (20), 148 (4), 165 (100), 77 (35). 13 was absent at the end of the hydrolysis. Decomposition carried out in dry acetone instead of $\mathrm{Me}_{2} \mathrm{SO}$ gave ${ }^{7} 8 \%$ of 9 c and $14 \%$ of 10 c , as measured by quantitative GLC. Bromoacetone was also formed.

Ester 14a. The product consisted of $11 \% n$-propyl benzoate and 89\% . 2-propyl o-bromobenzoate (15a), as measured by GLC. Au-
thentic 15a was prepared from the corresponding acid chloride: bp $123{ }^{\circ} \mathrm{C}(4 \mathrm{~mm})$; mass spectrum, m/e $244\left(\mathrm{M}^{+}\right), 242(7), 202,200(58)$, 185, 183 (100), 157, 155 (42), 104 (14), 76 (83), 75 (79).
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{2}: \mathrm{C}, 49.41 ; \mathrm{H}, 4.56$. Found C, 49.46: H , 4.83.

Ester 14b. GLC measured yields of $6 \%$ isopropyl benzoate and $94 \%$ isopropyl $o$-bromobenzoate ( $\mathbf{1 5 b}$ ) were obtained from reaction in the usual way. Authentic 15 b was made from the cor:esponding acid chloride: $\mathrm{bp} 92{ }^{\circ} \mathrm{C}(4 \mathrm{~mm})$; mass spectrum, $m / e 244\left(\mathrm{M}^{+}\right), 242(21)$, 202, 200 (42), 185, 183 (100), 157. 155 (26), 104 (11), 76 (46), 75 (39).

Acknowledgment. It is with great pleasure that we dedicate this paper to Dr. John M. Chemerda in appreciation for his stimulating, provocative, and skillful research leadership. We also acknowledge the stimulating discussion with Professor T. Cohen of the University of Pittsburgh and Drs. A. W. Douglas and R. A. Firestone of these laboratories.

Registry No.-Ia, 65000-08-0: 1b, 65000-09-1: 1c, 65000-10-4; 2a, 65000-11-5; 2b, 65000-12-6; 2c, 65000-13-7; 3a, 23705-37-5; 3c, 5183-78-8; 3c, 65000-14-8; 4a, 65000-15-9; 4b, 55000-16-0; 5a, 65000-17-1; 5b, 65000-18-2: 5d, 65000-19-3; 6a, 65000-26-2; 8a, 65000-20-6; 8c, 22396-44-7; 9c, 54616-47-6; 10a, 10546-70-0; 11, 19326-67-1; 12, 65000-21-7; 13, 65000-22-8; 14a, 65000-23-9; 14b, 65000-24-0; 15a, 65000-25-1; 15b, 592-47-52-8; N.N-dipropyl-2aminobenzenesulfonamide, 65000-27-3; o-bromobenzoyl chloride, 7154-66-7; Me_SO, 67-68-5; $\mathrm{CuBr}_{2}, 7789-45-9$.

## References and Notes

(1) D. H. Hey and D. G. Turpin, J. Chem. Soc., 2471-2481(1954).
(2) For leading references, see: (a) A. H. Lewin, A. H. Dinwoodie. and T. Cohen, Tetrahedron. 22. 1527-1537 (1966): (b) D. H. Hey. G. H. Jones. and M. J. Perkins. J. Chem. Soc., Perkin Trans. 1. 1170-1171 (1972); (c) T. Cohen K. W. Smith. and M. D. Swerdloff, J. Am. Chem. Soc., 93, 4303-4304 (1971).
(3) (a) D. H. Hev. G. H. Jones, and M. J. Perkins, J. Chem. Soc., Perkin Trans. 1, 1155-1161 (1972); (b) D. M. Collington, D. H. Hey. C. W. Rees, and E. le R Bradley (nee Wessels). J. Chem. Soc. C. 1021-1025 (1968); (c) the "ortho-subs-ituent effect" was first shown to be unnecessary by the results of ref 3d; (d) D. H. Hey, C. W. Rees, and A. R. Todd. J. Chem. Soc C. 1518-1525 (1967).
(4) M. Kobayashi, E. Yamada. M. Matsui. and N Kobori. Org Prep. Proced. 1, 221-224 (1969).
(5) The value of $\mathrm{Me}_{2} \mathrm{SO}$ as a solvent for the formation of aryl radicals from diazonium tetrafluoroborates was reported by M. Kobayaski, H. Minato. N. Koburi, and E. Yamada, Bull. Chem. Soc. Jpn., 43, 1131-1135(1970). In the absence of some catalytic agents, the question of homolytic vs. heterolytic oecomposition is still not completely answered; see H . Zollinger, Acc. Cherr. Res.. 6, 335-341 (1973), for a review and leading references.
(6) C. L. Jenkins and J. K. Kochi, J. Am. Chem. Soc., 94, 856-865 (1972).
(7) (a) We shall henceforth refer to this process and product without the "-like" limitation, even though the "true" Sandmeyer reaction uses $\mathrm{Cu}^{\prime}$ ' salts in aqueous media. For leading references, see "The Merck Index". 9th ed, 1976. p ONR 79. (b) Radical transfer and hydrogen transfer are synonymous in the context of this paper and will be used interchangeably.
(8) (a) A 1,6 attack may have occurred with an Nethylbenzanilide; ${ }^{39, \mathrm{~d}}$ however, no product specifically characteristic of this process was reported. (b) Breslow anc his co-workers have capitalized on steric proximity, employing hydrogen abstraction by aryl-bound functional groups well beyond 7 -bond distances. For a leading reference, see R. Breslow, R. J. Corcoran, B. B. Snider, R. J. Doll, P. L. Khanna, and R. Kalega, J. Am. Chem. Soc., 99, 905-915 (1977).
(9) Faster than carbonyl-nitrogen bond rotation. slower than nitrogen-methyl bond rotation [T. Cohen, C. H. McMullen, and K. Smith, J. Am. Chem. Soc., 90, 6866-6867 (1968)], and faster than ring-carbonyl bond rotation (ref 2c).
(10) R. F. Bridger and G. A. Russell, J. Am. Chem. Soc. 85, 3754-3765 (1963).
(11) J. K. Kochi. Acc. Chem. Res., 7, 351-360 (1974).
(12) S. D. Ross, M. Finkelstein, and R. C. Peterson, J. Am. Chem. Soc., 88, 4657-4660 (1966).
(13) G. A. Russell, Free Radicals, 1, Chapter 7 (1973).
(14) A referee has suggested that attribution of the results with 8 a to a steric effect "igncres the real possibility that $\alpha$ abstraction may be far more favorable in the carboxamide than in the sulfonamide due to the greater electron dor ation in the former." thereby effectively eliminating competitive $\gamma$ abstraction in that substrate. No doubt that is a factor, but if it was a significant cr controlling one we would be hard pressed to explain why no $\gamma$ (or indeed, $\alpha$ or $(\beta$ ) abstraction occurs in the case of the esters 14a and 14b. We be ieve that an effect which fits all the experimental results, i.e., the steric effect. should not be minimized. Furthermore, we have not ignored the possible role of the greater basicity of the carboxamide $\mathbf{N}$ in the discussion of the enamide formation (see below in text).
(15) Y. Hirose, G H. Wahl, Jr., and H. Zinnger, Helv. Chim. Acta. 59. 1427-1437 (1976).
(16) (a) The NMR spectra also showed that the amount of $N$-methylbenzamide
(10c) was at the lower end of the $2-10 \%$ range observed by GLC, suggesting that some of it was a thermal product. (t) We are indebted to Mr. R. Zerfing for this experiment.
(17) Boiling points and melting points are uncorrected. Elemental analyses were performed under the direction of J. P. Gilbert of these laboratories. ${ }^{1}$ H NMR spectra were obtained with Jeol (USA) C-60 HL and Hitachi Perkin-Elmer R-24 spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were ottained with a Varian CFT-20 spectrometer. All chemical shifts are referred to tetramethylsilane. Mass spectra were obtained courtesy of Messrs. J. Smith and H. Flynn, and Patricia Cala, using LKB 9000, Varian MAT-371, and Finnegan 3200 spec-
trometers. For brevity, only parts of some spectra are reported. GLC analyses were performed on a Hewlett Packard 5830A gas chromatograph using thermal conductivity detection. Three columns, $6 \mathrm{ft} \times 1 / 8$ in. stainless steel, packed with $10 \%$ SP 2401, $10 \%$ SP 2340, and $10 \%$ OV-225, all on 80-100 mesh Supelcoport, were used with He as a carrier gas. The appropriate hydrocarbon was used as an internal standard in all chromatographies used for yield calculations. The "usual workup" involved washing organic solvent solutions with water, drying over magnesium sulfate, and evaporating to dryness in vacuo.
(18) H. Breederveld, Recl. Trav. Chim. Pays-Bas, 79, 1197-1202 (1960).

# Preparation of $\mathbf{6} \beta$-Imidopenicillinate $1(S)$-Oxides 

Jack E. Baldwin* and Stephen R. Herchen<br>Chemistry Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Jon C. Clardy and K. Hirotsu
Chemistry Department, Iowa State University, Ames, Iowa 50010
T. S. Chou

The Lilly Research Latoratories, Eli Lilly and Company, Indianapolis, Indiana 46206
Received September 21, 1977


#### Abstract

Examples of the as yet unknown $\epsilon \beta$-imidopenicillinate $1(S)$-oxides were prepared and the stereochemistry was proven unambiguously by x-ray diffraction. These substances were thermodynamically stable with respect to the corresponding $1(R)$-oxides as shown by equilibration via thermal ring opening. The possible significance of these results with respect to the biogenetic relationships of penicillins and cephalosporins is discussed.


The biogenesis of the $\beta$-lactam antibiotics, penicillins and cephalosporins, ${ }^{1}$ is now generally recognized to derive from Arnstein's tripeptide, L- $\alpha$-aminoadipyl-L-cysteinyl-D-valine (1), since the bioconversion of this substance so penicillins has been reported. ${ }^{2}$ The isolation of this substance from Ce phalosporium sp. has also been reported. ${ }^{3}$ The sequence of reactions involved in the conversion of 1 into penicillin N (2) and cephalosporin $\mathrm{C}(3)$ is still unknown; however, two sug-


gestions have been made. Thus, in one case, ${ }^{4}$ a priori formation of monocyclic species (4) is followed in a branched pathway by the formation of 2 and $3 .{ }^{5}$ An earlier alternative, suggested by Abraham, ${ }^{6}$ is the bioconversion of 2 to 3 , but, until re-

cently, ${ }^{7}$ this scheme has had little support. The latter is attractive, since the in vitro ring expansion of penicillin sulfoxides to deacetoxycephalosporins is the basis of a commercial production of these compounds. ${ }^{8}$ Thus, for example, refluxing methyl $6 \beta$-phenoxyacetamidopenicillinate $1(S)$ oxide (5) in xylene with a trace of acid gives the deacetoxycephalosporin (7) by way of the sulfenic acid (6). ${ }^{9}$


An immediate objection that could be raised to this hypothesis is that the relatively high temperatures (in the region of $100^{\circ} \mathrm{C}$ ) required to initiate the thermal ring opening (syn elimination) of 5 to 6 would hardly be available in vivo. An
answer to this problem must be sought in the various factors which control the thermal stability of penicillin sulfoxides. Oxidation of methyl $6 \beta$-phenoxyacetamidopenicillinate (8) gives only the $(S)$-sulfoxide 5 , whereas the similar oxidation of methyl $6 \beta$-phthalimidopenicillinate (9) yields only the


8, $\mathrm{R}=\mathrm{NHCOCH}_{2} \mathrm{OPh}$
9, R = Phthalimido


10
$(R)$-sulfoxide 10 ( $\mathrm{R}^{1}=$ phthalimid $\mathrm{O}, \mathrm{R}^{2}=$ methyl). ${ }^{10}$ Presumably, the NH group of 8 directs the reagent to the $\beta$ face, yielding the ( $S$ )-sulfoxide, whereas in 9 , with no such group, the sterically more accessible $\alpha$ face provides the epimeric ( $R$ )-oxide. ${ }^{11 .}$ Thus, the more readily accessible ( $S$ )-sulfoxides, at least with $6 \beta$-amido substituents, cf. 2 and 3 , are the more sterically hindered; however, the demonstrated presence of the hydrogen bond between the sulfoxide and the amide side chain has been suggested ${ }^{12}$ as stabilizing these species (5) toward the syn elimination to $6 .{ }^{13}$

Consequently, we argued that if penicillin $N$-(S)-sulfoxide 11 were a biointermediate for deacetoxycephalosporin C (13),


11



13
a suggestion which is in stereochemical accord with the derivation of both penicillins and cephalosporins from chiral methyl-labeled valine, ${ }^{14}$ then some means must exist for "switching off" this stabilizing H bond. Such a mechanism could involve the $\alpha$-aminoadipyl side chain, via cyclic amidine formation, as $12,{ }^{15}$ in which the steric overcrowding of the sulfoxide might accelerate the ring-opening elimination sufficiently to allow its occurrence under physiological conditions. To test this hypothesis, it was necessary to prepare a penicillin (S)-oxide with a $6 \beta$ side chain containing no NH group and to study the facility of ring opening. To date there is no report of such compounds.

Condensation of benzyl $6 \beta$-amincpenicillinate $1(S)$-oxide with phthalic anhydride cleanly afforded the phthalamic acid $14 \mathrm{a}(\mathrm{R} \doteq \mathrm{H}$ ) which with DCC gave the $6 \alpha$-isoimidopenicillin $1(S)$-oxide (15) instead of the expected $6 \beta$-isoimide $16 \mathrm{a}(\mathrm{R}=$


$\begin{aligned} 14 \mathrm{a}, \mathrm{R} & =\mathrm{H} \\ \mathrm{b}, \mathrm{R} & =\mathrm{Me}\end{aligned}$
H). Interestingly, a similar sequence conducted on the parent benzyl $6 \beta$-aminopenicillinate gave the $6 \beta$-isoimido product 18 via the phthalamic acid 17. Clearly, the epimerization of

17

18

C-6 during denydration of the phthalamic acid $14 \mathrm{a}(\mathrm{R}=\mathrm{H})$ is consequent on the presence of the $1(S)$-oxide function in 14a $(R=H)$, although it is not clear whether this effect is steric or the result of an inductive acidification of the $6 \alpha$ hydrogen.

$-9$


22

In order to avoid this unwanted epimerizatior., we replaced the $6 \alpha$-hydrogen by a methyl group. Thus, the known benzyl $6 \beta$-amino- $6 \alpha$-methylpenicillinate ${ }^{16}$ was oxidized to the $(S)$ sulfoxide 19 ar.d converted sequentially to the phthalamic acid 14b ( $R=M e$ ) and the $6 \beta$-isoimide $16 \mathrm{~b}(\mathrm{R}=\mathrm{Me})$. Unfortunately, the spectral properties of $16 b(R=M e)$ did not allow

unambiguous assignment of sulfoxide stereochemistry, which was critical since if the proposed hypothesis of instability of such $6 \beta$-imido $1(S)$-oxides were correct then thermal ring opening at the ambient temperature of the dehydration could possibly have inverted this sulfoxide stereochemistry. If this were true, it would require a sulfenic acid intermediate, cf. 6, which should be detectable by its known chemistry. Consequently, the phthalamic acid $14 \mathrm{~b}(\mathrm{R}=\mathrm{Me})$ was treated with DCC in the presence of excess norbornadiene, a reagent known to intercept sulfenic acids. ${ }^{17}$ However, no adduct was found


Figure 1. A computer-generated drawing of 23.
and, interestingly, the presence of diene effected a change in the mode of ring closure to the imide 20 . The origin of this effect is unknown. That the sulfoxide 20 is the thermodynamically more stable was shown by its reisolation, unchanged, after prolonged refluxing in toluene. Treatment of 20 with 2 -mercaptobenzthiazole in refluxing benzene gave, via trapping of the sulfenic acid, the $\beta$-lactam 21. Reduction


21
of 20 with phosphorus tribromide gave the corresponding sulfide 22 which was reoxidized with peracid to the same sulfoxide 20. From this chemical evidence. one would infer that the configuration of the sulfoxide in 20 is $R$ based on analogy with the known oxidation chemistry of $6 \beta$-phthalimidopenicillin esters. ${ }^{18}$

Removal of the benzyl ester of 20 by catalytic hydrogenolysis gave the derived acid, which with $p$-bromoaniline gave the amide 23 via the mixed anhydride synth $\in$ sis. The structure


23
and configuration of 23 was determined by an x -ray diffraction analysis, proving the sulfoxide to be in the $S$ configuration. Figure 1 is a perspective drawing of the final x -ray model of 23. All bond distances and angles agree well with generally accepted values and no abnormally short intermolecular contacts were observed save one intermolecular NH...O-S distance of $2.87 \AA$. Thus, 23 and therefore 20 and 16 b ( $\mathrm{R}=$ Me ) are first examples of $6 \beta$-imidopenicill:n ( $S$ )-sulfoxides. They are also the more stable of the epimers at sulfur as shown by the equilibration experiments.

In the course of some other work, it was found that prolonged refluxing of $p$-nitrobenzyl $6 \beta$-phthalimidopenicillinate $1(R)$-oxide ( $10, \mathrm{R}^{1}=$ phthalimido, $\mathrm{R}^{2}=p$-nitrobenzyl) in toluene gave a highly insoluble substance ( $93 \%$ ) which proved to be the corresponding $1(S)$-oxide 24 , whose NMR spectrum showed the presence of two cis-oriented protons at C-5 and $\mathrm{C}-6$. This supports the idea that the $6 \beta$-imidopenicillinate
$1(S)$-oxides are the more stable isomers both in the $6 \alpha$-methyl and the $6 \alpha$-hydrogen series. The same order of stability apparently is also true in the $6 \alpha$-imidopenicillinates as was shown in the work of Spry, ${ }^{19}$ who demonstrated that the equilibrium between the $(R)$ - and ( $S$ )-sulfoxides of methyl 6 -epiphthalimidopenicillinate favors the ( $S$ )-sulfoxide. An extrapolation of this finding is that the order of stability of the sulfoxides, $1(S)>1(R)$, is not the result of steric factors, since particularly with a $6 \beta$-imido function of the $1(S)$ series is far more hindered, nor is it the result of hydrogen bonding since these species contain no such H bond.

With respect to our original hypothesis concerning the possible in vivo conversion of 11 to 13 via 12, it is evident from the results presented above that a $1(S)$-oxide such as 12 is not, at least on chemical grounds, a likely, labile, intermediate in this hypothetical transformation. In view of the known facility ${ }^{20}$ of conversion of $\beta$-chloromethylpenams into cephems, it therefore seems reasonable to consider the $\beta$-hydroxymethylpenicillin $\mathrm{N}(25)$ as an alternative chemically reasonable precursor to deacetoxycephalosporin C in vivo. ${ }^{21}$


25

## Experimental Section

General Procedures. Melting points were taken on a ThomasHoover capillary melting point apparatus or on a Kofler Micro Hot Stage block and are uncorrected.
Infrared spectra were recorded on a Perkin-Elmer Model 700 infrared spectrophotometer and were calibrated against polystyrene. Nuclear magnetic resonance spectra were obtained on a Varian Associates T-60 or a Perkin-Elmer R-20B or R-22 spectrometer. Chemical shifts are reported in parts per million (ppm) relative to internal tetramethylsilane with the notations giving the multiplicity of the signal, the coupling constant if applicable, and the rumber of protons. Spin multiplicity is given by s, singlet; d, doublet; t , triplet; q , quartet; and m , multiplet. Mass spectra were determined on a Hi tachi Perkin-Elmer RMU-6E spectrometer.
Silica gel for column chromatography was Merck silica gel 60, no. 7734. Analytical thin-layer chromatography was performed on Baker-flex silica gel IB-F or Merck precoated silica gel TLC plates 60 F-254. Preparative thin-layer separations were carried out on Merck silica gel GF 254 (type 60), no. 7730, on $200 \times 200 \times 1.25 \mathrm{~mm}$ layers.
Benzyl 6 $\beta$-(o-Carboxybenzamido)penam- $3 \alpha$-carboxylate $1 \beta$-Oxide ( 14 a ). To a solution of benzyl $6 \beta$-aminopenam- $3 \alpha$-carboxylate $1 \beta$-oxide ( $223 \mathrm{mg}, 0.69 \mathrm{mmol}$ ) in dichloromethane ( 4 mL ) was added a solution of phthalic anhydride ( $103 \mathrm{mg}, 0.69 \mathrm{mmol}$ ) in tetrahydrofuran ( 4 mL ). After stirring for 2 h , the solutior: was concentrated in vacuo leaving 14a in quantitative yield ( 320 mg ) as a white foam: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H})$, $5.21(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=4,10 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (s, 5 H ), 7.40-8.05 (m, 5 H ), 10.28 (br s, 1 H ); IR ( $\mathrm{CDCl}_{3}$ ) 3450-2950, $1780,1740,1720(\mathrm{br}) \mathrm{cm}^{-1}$.
Benzyl $6 \alpha$-Isophthalimidopenam- $3 \alpha$-carboxylate $1 \beta$-Oxide (15). To a solution of $\operatorname{DCC}(14 \AA \mathrm{mg}, 0.69 \mathrm{mmol})$ in tetrahydrofuran $(4 \mathrm{~mL})$ was added a solution of $14 \mathrm{a}(320 \mathrm{mg}, 0.69 \mathrm{mmol})$ in tetrahydrofuran $(3 \mathrm{~mL})$, and the resulting solution was stirred at room temperature for 18 h and then concentrated to dryness in vacuo. Ethyl acetate $(5 \mathrm{~mL})$ was added to the residue and the suspended solid removed by filtration. The filtrate was concentrated in vacuo and the residue was purified by preparative TLC on silica gel (using $1: 1$ ben-zene-ethyl acetate as eluant; $R_{j} 0.4$ ), affording 15 in $67 \%$ yield ( 210 $\mathrm{mg})$ as a yellow syrup: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 4.55$ (s, 1 H$), 5.05(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=1 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{~d}, J=$ $1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (s, 5 H ), 7.45-7.92 (m. 4 H ); IR $\left(\mathrm{CHCl}_{3}\right) 1810,1780$, 1740, $17101695 \mathrm{~cm}^{-1}$.

Benzyl 6 $\beta$-(o-Carboxybenzamido)penam-3 $\alpha$-carboxylate (17). To a solution of 6-APA benzyl ester ( $61 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) in tetrahy-
drofu:an ( 2 mL ) was added a solution of phthalic anhydride ( 30 mg , 0.2 mmol ) in tetrahydrofuran ( 2 mL ). Ȧter stirring for 105 min , the solution was concentrated in vacuo, leaving 17 in quantitative yield $(90 \mathrm{mg})$ as a white foam: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, 4.43 (s, 1 H ), 5.20 (s, 2 H ), $5.5-5.92$ (m, 2 H), $7.00(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{~s}, 5 \mathrm{H}), 7.40-8.00(\mathrm{~m}, 4 \mathrm{H}), 8.77$ (br s, 1 H); IR $\left(\mathrm{CHCl}_{3}\right) 3500-$ $2950,1780,1740,1700 \mathrm{~cm}^{-1}$.

Benzyl 6 $\beta$-Isophthalimidopenam-3 $\alpha$-carboxylate (18). To a solution of DCC ( $41 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) in tetrahydrofuran 15 mL ) was added a solution of $17(90 \mathrm{mg}, 0.2 \mathrm{mmol})$, and the resulting mixture was stirred at room temperature for 18 h and then concentrated in vacuo. Ethyl acetate ( 5 mL ) was added $\varepsilon$ nd the suspended solid was removed by filtration. The filtrate was concentrated to dryness in vacuo. leaving a syrup. Purification by preparative TLC on silica gel (using 1:1 benzene-ethyl acetate as eluar.t; $R_{f} 0.5$ ) afforded 18 in $84 \%$ yield 173 mg ) as a yellow syrup: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.67$ (s, $3 \mathrm{H}), \leqslant .53(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}) .5 .60,5.73 \mathrm{AB}$ q, $\left.J_{\mathrm{AB}}=4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.40$ (s, 5 H ), $7.65-8.05(\mathrm{~m}, 4 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) 1805,1780,1735,1700$ $\mathrm{cm}^{-1}$.

Benzyl 68-Amino-6 $\alpha$-methylpenam- $3 \alpha$-carboxylate $1 \beta$-Oxide (19). Benzyl 6 $\beta$-amino- $6 \alpha$-methylpenicillinate ( $106 \mathrm{mg}, 1.32 \mathrm{mmol}$ ) was d.ssolved in dichloromethane ( 4 mL ) and cooled to $-15^{\circ} \mathrm{C}$. A solution of $m$-chloroperbenzoic acid ( $56 \mathrm{mg}, 0.32 \mathrm{mmol}$ ) in dichloromethane ( 2 mL ) was added dropwise, and the resulting solution was stirred in the cold for 90 min and at room temperature for 40 min . The mixture was concentrated in vacuo and the residue was redissolved in ethyl acetate. This solution was washed with saturated sodium bicarbonate and brine and was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. leaving $19 \mathrm{in} 94 \%$ yield ( 95 mg ) as a white foam: NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{H}-3$ and $\mathrm{H}-5), 5.10(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 7.3(\mathrm{~s}, 5 \mathrm{H}) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3500$, 3410, $1780,1740 \mathrm{~cm}^{-1}$.

Beazyl 6 $\beta$-(o-Carboxybenzamido)-6 $\alpha$-methylpenam-3 $\alpha$ carboxylate 18 -Oxide ( 14 b ). 19 ( $108 \mathrm{mg}, 0.32 \mathrm{mmol}$ ) was dissolved in dichloromethane ( 2 mL ) and to this solution was added a solution of phtralic anhydride ( $48 \mathrm{mg}, 0.32 \mathrm{mmol}$; in tetrahydrofuran ( 2 mL ). The resulting solution was stirred at ror $\cdot \mathrm{m}$ temperature :or 2 h and then concentrated in vacuo, leaving 14 b ir. quantitative vield ( 155 mg ) as a p\&le-yellow foam: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1 . \therefore 5(\mathrm{~s}, 3 \mathrm{H}), 1.65(\leqslant .3 \mathrm{H}) .1 .95$ $(\mathrm{s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 720(\mathrm{~s}, 5 \mathrm{H})$, $7.20-800(\mathrm{~m}, 4 \mathrm{H}), 9.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; IR ( $\mathrm{CHCl}_{3}$ ) $350(1-2900.1780,1735$, $1700 \mathrm{~cm}^{-1}$.

Benzyl 6 $\beta$-Isophthalimido- $6 \alpha$-methylpenam- $3 \alpha$-carboxylate $1 \beta$-Oxide ( 16 b ). 14 b ( $155 \mathrm{mg}, 0.32 \mathrm{mmol}$ ) was dissolved in tetrahydrofuran ( 12 mL ) and added dropwise to a stirring solution of DCC $(67 \mathrm{mg}, 0.32 \mathrm{mmol})$ in tetrahydrofuran ( 20 mL ), and the resulting mixture was stirred at room temperature for 18 h and then concentrated in vacuo to dryness. To the residue was added ethyl acetate (5 mL ) and a suspended solid was removed ty filtration. The filtrate was concertrated in vacuo. Purification of the residue by preparative TLC on silica gel (using $1: 1$ benzene-ethyl acetate as the eluant; $R_{f} 0.2$ ) afforded 16 b in $48 \%$ yield ( 72 mg ) as a pale-yellow foam: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 2.0(1(\mathrm{~s}, 3 \mathrm{H}), 4.60(\mathrm{~s}, 3 \mathrm{H}), 5.00$ (s, 1 H), 5.20 (d, $J=2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.20 (s, 5 H ), $7.40-8.00$ (m, 4 H ); IR $\left(\mathrm{CHCl}_{3}\right) 1790$ (br), $1740 \mathrm{~cm}^{-1}$.

Benzyl 6 $\beta$-Phthalimido-6 $\alpha$-methylpenam- $3 \alpha$-carboxylate $1 \beta$-Oxide (20) from $14 \mathrm{~b} .14 \mathrm{~b}(63 \mathrm{mg}, 0.13 \mathrm{mmol}$ was dissolved in tetrahydrofuran ( 4 mL ) and was added dropwise to a stirring solution containing DCC ( $27 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) and norbornadiene ( $240 \mu \mathrm{~L}, 2.6$ $\mathrm{mmol})$ in tetrahydrofuran $(7 \mathrm{~mL})$. The resulting sclution was stirred for 15 h and then concentrated in vacuo To the residue was added ethyl acetate ( 5 mL ), and the suspended solid was removed by filtration. The filtrate was concentrated in vacuo and the residue was purificd by preparative TLC on silica gel (using 1:1 benzene-ethyl acetate as the eluant; $R, 0.3$ ) affording 20 in $86 \%$;ield ( 52 mg ) as a white amorphous solid: $\mathrm{mp} 180-183^{\circ} \mathrm{C}$ (dec); NMR $\left(\mathrm{CDCl}_{3}\right)$ io 1.25 $(\mathrm{s}, 3 \mathrm{H}) .1 .65(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}) .5 .00(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~d}$, $J=2 \mathrm{~Hz} .2 \mathrm{H}$ ), $7.40(\mathrm{~s}, 5 \mathrm{H}), 7.60-7.90(\mathrm{~m} .4 \mathrm{H})$ : IR $\left(\mathrm{CHCl}_{3}\right) 1790.1735$ (br) $\mathrm{cm}^{-1}$
(3R,4R)-1-[(1R)-Benzoxycarbonyl-2-methyl-2-propenyl]-3-phthalimido-3-methyl-4-(benzthiazole-2-dithio)-2-azetidinone (21). A solution of $20(46 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 2 -mercaptobenzthiazole ( $17 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) in dry benzene ( 4 mL ) was refluxed under nitrogen for 3 h and then concentrated in vacuo. P-eparative TLC on silica gel (2:1 benzene-ethyl acetate as the eluant: $R, 0.6$ ) afforded 21 in $60 \%$ yield ( 37 mg ) as a clear. colorless syrup: NMR $\left(\mathrm{CDCl}_{3}\right) \AA 2.15(\mathrm{~s}, 3 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 5.25\left(\mathrm{brd}, 4 \mathrm{H},-\supset \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.50$ (s, 1 H ), 7.30 (s, 5 H ), $7.30-8.00(\mathrm{~m}, 8 \mathrm{H}) ;-\mathrm{R}\left(\mathrm{CHCl}_{3}\right) 1770.1735$, (br) $\mathrm{cm}^{-1}$. The starting sulfoxide was also isolated in $30 \%$ yield ( 14 mg ).

Benzyl 6 $\beta$-Phthalimido-6 $\alpha$-methylpenam- $3 \alpha$-carboxylate (22).

The sulfoxide $\mathbf{2 0}$ ( $40 \mathrm{mg}, 0.086 \mathrm{mmol}$ ) was dissolved in dry DMF (1 mL ) and cooled under $\mathrm{N}_{2}$ to $-5^{\circ} \mathrm{C}$. Phosphorus tribromide ( $40 \mu \mathrm{~L}$. 5 equiv) was added, and the resulting solution was stirred in the cold for 10 min and then poured into saturated sodium bicarbonate ( 10 mL ). This was extracted with ethyl acetate, and the organic phase was washed with 1 N HCl and saline and dried $\left(\mathrm{MgSO}_{4}\right)$ Concentration in vacuo left a s:rup ( 43 mg ). Purification by preparative TLC on silica gel (using $1: 1$ tenzene-ethyl acetate as the eluant: $R_{f} 0.5$ ) afforded 22 in $65 \%$ yield 25 mg ) as a clear, colorless syrup: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33$ (s, 3 H ), 1.47 ( s 3 H ), 1.95 (s, 3 H ), 4.53 ( $\mathrm{s}, 1 \mathrm{H}$ ). 5.13 (s, 2 H ). 5.50 (s, $1 \mathrm{H}), 7.30(\mathrm{~s}, 5 \mathrm{H}), 7.68(\mathrm{~m}, 4 \mathrm{H})$.

Benzyl 6 $\beta$-Phthalimido-6 $\alpha$-methylpenam-3 $\alpha$-carboxylate $1 \beta$-Oxide (20) from Oxidation of 22 . To a $-15^{\circ} \mathrm{C}$ solution of $22(22$ $\mathrm{mg}, 0.049 \mathrm{mmol}$ ) in dichloromethane ( 1 mL ) was added a solution of $m$-chloroperbe $n z o i c$ acid ( $8 \mathrm{mg}, 0.049 \mathrm{mmol}$ ) in dichloromethane $(2$ $\mathrm{mL})$. The resulting solution was stirred in the cold for 1 h and then at room temperature for 45 min . The solution was washed with saturated sodium bicarbonate and saline and then was dried ( $\mathrm{MgSO}_{4}$ ) and concentrated in vacuo, leaving a foam. Purification by preparative TLC on silica gel (using $1: 1$ benzene-ethyl acetate as the eluant; $R_{f}$ 0.3 ) afforded the sulfoxide 20 in $67 \%$ yield ( 15 mg ) as a foam. NMR and IR spectra were identical to those for 20 obtained from the phthalamic acid 14 b .

6 $\beta$-Phthalimido- $6 \alpha$-methylpenam- $3 \alpha$-p-bromocarboxanilide $1 \beta$-Oxide (23). To a solution of $20(255 \mathrm{mg}, 0.546 \mathrm{mmol})$ in glacial acetic acid ( 10 mL ) and chloroform ( 10 mL ) was added 255 mg of palladium on charcoal. This mixture was shaken mecianically under 1 atm of $\mathrm{H}_{2}$ at room temperature for 4 h and then filtered. Chloroform was removed from the filtrate in vacuo and the remaining acetic acid solution was freeze-dried, leaving the acid as a white solid.

To a solution of the acid ( $75 \mathrm{mg}, 0.199 \mathrm{mmol}$ ) in d:y THF ( 6 mL ) was added triethylamine ( $28 \mu \mathrm{~L}, 0.199 \mathrm{mmol}$ ) and the resulting so lution wes cooled to $-5^{\circ} \mathrm{C}$. Ethyl chloroformate ( $16 \mu \mathrm{~L} .0 .199 \mathrm{mmol}$ ) was added dropwise to the stirring cold solution. and the resulting mixture was stirred in the cold for 15 min and then for 20 min while warming to room temperature. The turbid solution was recooled to $0^{\circ} \mathrm{C}$ and $p$-bronoaniline ( $34 \mathrm{mg}, 0.199 \mathrm{mmol}$ ) in THF 10.5 mL ) was added dropwise. The reaction was stirred at room temperature for 85 min and then was concentrated in vacuo, leaving a foam. A chloroform solutior of this product was washed with water, saturated sodium bicarbonate, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to dryness. Preparative thin-layer chromatography on silica gel ( $1: 1$ benzene-ethyl acetate as eluant) afforded 23 as an amorphous solid ( $76 \mathrm{mg}, 72 \mathrm{a}^{\circ}$ ): NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.55 \mathrm{~s}, 3 \mathrm{H}$ ), 2.13 (s, $3 \mathrm{H}), 4.5(\mathrm{~s}, 1 \mathrm{~F}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 7.40$ and $7.62\left(\mathrm{AB}\right.$ q. $\left.J_{\wedge B}=7 \mathrm{~Hz}, 4 \mathrm{H}\right)$, $7.75(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{I}$ ( $\left(\mathrm{CHCl}_{3}\right) 3400,1805,1715 \mathrm{~cm}^{-1}$. Cr $\because$ stals for x-ray were obtained ( $\mathrm{mp} 210-212^{\circ} \mathrm{C}$ ) (corrected) from acet $n$ ne-petroleum ether by the "vapor diffusion" method.

X-Ray Analysis of $6 \beta$-Phthalimido- $6 \alpha$-methylpenam- $3 \alpha-p$ bromocarboxanilide $1 \beta$-Oxide (23). The crystals of 23 belonged to the unambiguously determined space group $P_{\mathrm{c}} 2_{1} 2_{1} 2_{1}$. Accurate lattice dimensions were obtained from a least-squares fit of $152 \theta$ values between $35.0^{\circ}$ end $45.0^{\circ}$. The cell constants are $a=9.342$ (4), $b=$ 13.750 ( 7 ), and $c=18.635 \AA$. A calculated ( $Z=4$ ) and observed density of $1.46 \mathrm{~g} / \mathrm{cm}^{3}$ indicated one molecule of composition $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{SBr}$ per asymmetric unit. All unique diffraction maxima with $2 \theta \leq 114.1^{\circ}$ were recorded in the $\theta$ scan mode using a computer-c ontrolled fourcircle diffractometer and graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ x-rays ( 1.54178 A). Of the 1855 reflections surveyed, 1628 ( $88 \%$ ) were judged observed $[I \geq \delta \pi(\mathrm{I})]$ after correction for Lorentz pclarization and background effects.

A sharpened three-dimensional Patterson ${ }^{22}$ was readily deconvoluted to yield the bromine and sulfur position. A subsequent Fo synthesis revealed the rest of the nonhydrogen atoms. Full-matrix, least-squares refinements with anisotropic temperature factors for all nonhydrogen atoms have converged to a standard crystallographic residual of 1.050 for the observed reflections. Additional crystallographic details such as the positional and thermal parameters, bond distances and angles. and observed and calculated structure factors are presented in Tables I-IV (Supplementary Material).
p-Nitrobenzyl 6 $\boldsymbol{\beta}$-Phthalimidopenicillinate $1(S)$-Oxide (24). Toluene 150 mL ) was dried by binary distillation for 2 h . Heat was removed temporarily and $p$-nitrobenzyl $6 \beta$-phthalimidopenicillinate $1(R)$-oxide ( $10, \mathrm{R}^{1}=$ phthalimido; $\mathrm{R}^{2}=p$-nitrobenzyl, $2.0 \mathrm{~g}(5 \mathrm{mM})$, was added. The solution was refluxed for 6 h. during which time a crystalline and highly insoluble solid was formed. It was filtered and rinsed with acet one and vacuum dried to give the $1(S)$-oxide $24, \mathrm{mp}$ $204{ }^{\circ} \mathrm{C}$ (dec), in $90 \%$ vield. Proton NMR ( $100 \mathrm{MHz}, \mathrm{Me}_{2} \mathrm{SO}-d_{6}$ ) $\delta 1.20$ (s, 3 H ), 1.51 ( $\mathrm{s}, 3 \mathrm{H}$ ). 4.63 ( $\mathrm{s}, 1 \mathrm{H}, 5.41$ (s, 2 H ), 5.68 ( $4 \mathrm{~B} \mathrm{q}, 2 \mathrm{H}, J=$ 4.5 and 8.1$) \mathrm{Hz}), 7.72(\mathrm{~d}, 2 \mathrm{H} . J=9.5 \mathrm{~Hz}), 8.27\left(\mathrm{~d}, 2 \mathrm{H}, e^{-}=9.5 \mathrm{~Hz}\right)$ and
7.88 (ms, 4 H); IR (mull) 1790, 1780, 1720, 1515, 146'), 1380, 1345, 1270 $\mathrm{cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$, ref $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 17.8,19.0\left(2-\mathrm{CH}_{3}\right), 72.1$ (C-2), 65.9 (C-3), 72.7 (C-5), 56.1 (C-6). ${ }^{23}$

In the combined solution of the toluene filtrate and acetone rinse, a $2-3 \%$ solid was recovered, which was identical to an authentic sample of the $p$-nitrobenzyl ester of 3 -hydroxyl-3-methyl- $7 \beta$-phthalimido-cephalospo-in.
Acknowledgments. We thank the National Science Foundation and the National Institutes of Health for financial support.

Registry No.-10 ( $\mathrm{R}^{1}=$ phthalimido; $\mathrm{R}^{2}=p$-nitrobenzyl, 35160-70-4; 14a, 65102-78-5; 14b, 65102-79-6; 15. 65102-80-9; 16b, 65102-81-0: 17, 65102-82-1; 18, 65102-83-2; 19, 65102-84-3; 20, 65102-85-4: 21, 65102-86-5; 22, 65102-87-6; 23, 65102-88-7; 24, 65165-49-3; benzyl $6 \beta$-aminopenam- $3 \alpha$-carboxylate $\beta$-oxide, 65165-50-6: phthalic anhydride, 85-44-9; benzyl $6 \beta$-aminopenam$3 \alpha$-carboxyiate, 3956-31-8; benzyl $6 \beta$-amino- $6 \alpha$-methylpenicillinate, 26273-78-6 2-mercaptobenzthiazole, 149-30-4.

Supplementary Material Available. Tables of atomic coordinates, temperature factors, bond angles, and bond cistances (3 pages). Ordering information is given on any current masthead page.

## References and Notes

(1) P. A. Lemke and D. R. Brannon, in "Cephalosporins and Penicillins"' E. H. Flynn, Ed., Academic Press, New York, N.Y., 1972, p 370.
(2) P. A. Fawcett. J. J. Usher, and E. P. Abraham, in Proc. Int. Symp. Genet. Ind. Microorg., 2nd, 1974, 129-138 (1976).
(3) E. P. Atraham, G. G. F. Newton and S. C. Warren, I.A.M. Symp. AppI. Microbiol. Tokyo, 6, 79 (1964).
(4) A. L. Demain, Lloydia, 37, 147 (1974).
(5) There is yet no evidence pertaining to the timing of the inversion at $\mathrm{C}-2$ in the $\alpha$-a ninoadipyl portion of 1.
(6) E. P. Abraham and G. G. F. Newton, Adv. Chemother., 2, 33 (1965)
(7) An apparent in vivo conversion of penicillin $N$ to cep ralosporins has been reporteJ; cf. A. L. Demain and M. Kohsaka, Biochem. Biophys. Res. Commun., 70, 1896 (1976).
(8) R. B. Morin, B. G. Jackson, R. A. Mueller, E. R. Lavagnino, W. B. Scanlon, and S. L. Andrews, J. Am. Chem. Soc., 85, 1896 (1963).
(9) Such sulfenic acid intermediates, such as 6 , have in some cases been isolated in protected form from these reactions; cf. T. S. Chou, Tetrahedron Lett., 9, 725 (1974).
(10) R. D. G. Cooper, P. V. Demarco, C. F. Murphy, and L. A. Spangle, J. Am. Chem. Soc., 91, 1528 (1969).
(11) The directing effects of hydrogen bonding functions is well established in the epoxidation of olefins; cf. P. Chamberlain, M. L. Roberts, and G. H. Whitham, J. Chem. Soc. B, 1374 (1970), and references therein.
(12) D. H. R. Barton. F. Comer, and P. G. ammes, J. Am. Chem. Soc., 91, 1529 (1969).
(13) Another example of reduction of syn elimination rates by H bonding is seen in the amine N -oxide elimination. where use of aprotic solvents reduces the temperature necessary for this reaction; cf. A. C. Cope, M. Brown, and H. H. Lee. J. Am Chem. Soc., 80, 2855 (1958).
(14) (a) J. E. Baldwin, J. Loliger, W. Restetter, N. Neuss, L. L. Huckstep, and N. De La Higuera, J. Am. Chem. Scc., 95, 3796 (1973); (b) N. Neuss, C. H. Nash, J. E. Baldwin, P. A. Lemke, and J. B. Grutzner, ibid., 95, 3797 (1973).
(15) The facile interconversion of the endocyclic and exocyclic imino tautomers of cyclic amidines has been observed; cf. D. M. Brown and M. J. E. Hewlins. J. Chem. Soc. C., 2050 (1968)
(16) R. A. Firestone, N. Schelechow. D. B. R. Johnston, and B. G. Christensen, Tetrahedron Lett., 375 (1972).
(17) D. H. R. Barton, D. G. T. Greig, G. Lucente, P. G. Sammes, M. V. Taylor, C. M. Cooper, G. Hewitt, and W. G. E. Underwood, J. Chem. Soc. D, 1683 (1970).
(18) R. D. G. Cooper, L. D. Hatfield, and D. O. Spry, Acc. Chem. Res., 6, 32 (1973).
(19) D. O. Spry, in "Cephalosporins and Penicillins," E. H. Flynn, Ed., Academic Press, New York, N.Y., 1972, p 214.
(20) (a) S. Kukolja and S. R. Lammert, J. Am. Chem. Soc., 94, 7169 (1972); (b) T. Kamiya, T. Teraji, Y. Saito, M Hashimoto. O. Nakaguchi, and T. Oku, Tetrahedron Lett., 32, 3001 (1973).
(21) This conversion has been realized in a synthetic model; G. Stork and $H$. T. Cheung, J. Am. Chem. Soc., 87, 3784 1965).
(22) The following library of crystallographic programs was used: C. R. Hubbard C. O. Quicksall, and R. A. Jacobson, "The Fast Fourier Algorithm and the Programs ALFF, ALFFDP, ALFFT and FRIEDELL", USAEC Report IS-2625, lowa State University Institute for Atomic Research, Ames, lowa, 1971; W. R. Busin, K. O. Martin, and H. S. Levy, "A Fortran Crystallographic Least Square Program", USAEC Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge. Tenn.; 1965; C. Johnson, "ORTEP. A Fortran Thermal-Ellipsoid Plot Program''. U.S. Atomic Energy Commission Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965.
(23) The analysis and interpretation of the ${ }^{13} \mathrm{C}$ NMR by Dr . D. E. Dorman and Mr. J. W. Paschal is deeply appreciated.

# Haloaziridines. 2. Synthesis and Pyrolysis of Some gem-Dichloroaziridines ${ }^{1,2}$ 

Marcus K. Meilahn,* David K. Olsen, ${ }^{3 a}$ William J. Brittain, ${ }^{3 \mathrm{~b}}$ and Ralph T. Anders ${ }^{3 \mathrm{~b}}$<br>Department of Chemistry, University of Northern Colorado, Greeley, Colorado 80639

Received September 16, 1977

An improved synthesis of gem-diciloroaziridines from imines and dichlorocarbene is reported using chloroform, sodium hydroxide, and triethylbenzylammonium chloride to generate the dichlorocarbene. The preparation of some gem-dichloroaziridines from phenyl(trihalomethyl)mercury reagents is reported and the previous reports are examined. The gem-dichlo:oaziridines prepared under these latter conditions are subject to a phenylmercuric halide catalyzed ring-opening reaction. A pyrolysis study delineated the factors controlling the ring-opening reaction and demonstrated the synthetic utility of this reaction.

The preparation of gem-dichloroaziridines has been accomplished by the addition of dichlorocarbene to the car-bon-nitrcgen double bond of an imine. The dichlorocarbene in this reaction has been generated from the reaction of chloroform, hexachloroacetone, or ethyl trichloroacetate with the apprcpriate base. ${ }^{4}$ Recently, Seyferth has reported the preparation of 1,3 -diphenyl-2,2-dichloroaziridine in low yield using $\mathrm{PhHgCBrCl}_{2}$ to generate the dichlorocarbene. ${ }^{5}$ Makosza has repor-ed the generation of dichlorocarbene from chloroform and aqueous sodium hydroxide using a phase-transfer agent. ${ }^{6}$ T-ese phase-transfer catalyzed two-phase reactions have been used in a variety of reactions in addition to generating dichlorocarbene. The chemistry of these types of reaczions has been recently reviewed. ${ }^{7}$

Phase-Transfer Preparations. We have examined the preparation of gem-dichloroaziridines from imines (1) using

aqueous sodium hydroxide, chloroform, and triethylbenzylammonium chloride (TEBA) as the phase-transfer agent. The isolated yields for this catalytic method are contrasted to the best yield obtained from the other reported methods

Table I. Preparation of gem-Dichloroaziridines

| Registry no. | Compd | R | $\mathrm{R}^{\prime}$ | Catalytic $^{a}$ | O-her | Time $^{b}$ | Solvent $^{c}$ | Lit. $^{d}$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3543-98-4 | 2a | Hydrogen | Phenyl | 74 | $80^{e}$ | 40 | Hexane | $f$ |
| $31528-97-9$ | 2b | Ethy: | Phenyl | 76 | 56 | 30 | Hexane | 1 |
| 972-14-5 | 2c | Phenyl | Phenyl | $72^{g}$ | 63 | 40 | Hexane-EtOAc | $h$ |
| $31528-96-8$ | 2d | Phenyl | Benzyl | 72 | $65^{i}$ | 40 | EtOAc | 1 |
| $31528-95-7$ | 2e | Hydrogen | 1-Naphthyl | 72 | $\leq 4$ | 40 | Hexane-EtOAc | 1 |
| 65016-16-2 | 2f | Methyl | 1-Naphthyl | 74 | 45 | 50 | EtOAc | $a$ |
| $25252-58-8$ | $\mathbf{9}$ |  |  |  | 88 | $53^{j}$ | 180 | Hexane $^{a}$ |

${ }^{a}$ See Experimental Section. ${ }^{b}$ Reaction time in minutes. ${ }^{c}$ Solvent for crystallization. ${ }^{d}$ Literature reference for the best reported preparation of the aziridine by other methods. ${ }^{e}$ Normal yields are $\sim 50-60 \%$; see ref $1 . /$ R. E. Brooks, J. O. Edwards, G. Levey, and F. Smyth, Tetrahedron, 22, 1279 (1966). ${ }^{\boldsymbol{E}}$ Yield of the $\alpha$-chloroimidoyl chloride 3c. ${ }^{h}$ K. Ichimura and M. Ohta, Buli. Chem. Soc. $J p n ., 40,1933$ (1967). ${ }^{i}$ Normal yields are $\sim 4 \%$; see ref $1 .{ }^{j}$ This yield is based on the carbene.
for the preparation of gem-dichloroaziridines in Table I. In all cases the yields are about equal to or superior to the best previously reported preparations of gem-dichloroaziridines. In addition, the catalytic method has the advantage of being quick, convenient, and inexpensive. The reaction is exothermic and precautions should be taken to maintain the temperature at $40^{\circ} \mathrm{C}$ in large-scale preparations. ${ }^{\hat{6}}$ Graefe has reported high yields of phenyl substituted 1,3-diphenyl-2,2dichloroaziridines (2a) using the catalytic method at temperatures between 0 and $20^{\circ} \mathrm{C} .8^{8}$

Longer reaction times failed to significantly improve the yields reported in Table I and resulted in lower isolated yields of $\mathbf{2 b}$ and $\mathbf{2 f}$ due to the instability of these aziridines to longer reaction times. Aziridine 2c was no: stable to the reaction conditions and rearranged to the $\alpha$-chloroimidoyl chloride 3 c which was isolated in $72 \%$ yield. This aziridine could be prepared in $71 \%$ yield via the catalytic method using lower temperatures and a longer reaction period.


Pyrolysis Studies. In our investigations of the synthetic utility of gem-dichloroaziridines, it was necessary to determine the thermal stability of some of these compounds. There were two isolated reports of pyrolysis reactions in the literature; aziridine 2a afforded 3 a in hot toluene (no reported yield) ${ }^{9}$ and 2 c was converted to $3 \mathrm{c}(71 \%$ yield) after 1 h in hot xylene. ${ }^{10}$ Of the aziridines in Table I, the pyrolysis of 2 a and 2e were conveniently monitored via NMR spectrometry by following the loss of the aziridinyl proton at $\delta 3.6$ and the appearence of the benyzlic proton of 3 near $\delta 5.8$. Aziridine 2 e was quantitatively converted in 4 h while 2 a was $8: 3 \%$ rearranged after $24 \mathrm{~h} .{ }^{11}$ Longer reaction times in the latter reaction resulted in significant decomposition. These pyrolysis reactions have synthetic utility since quenching the reaction with piperidine afforded high yields of the a-chloroamidines $4 a$ and 4 e.


4a and 4e
The toluene pyrolysis of 2 c for 1 h afforded a $78 \%$ yield of 3c. The pyrolysis of 2 d and 2 f was monitored via NMR spectrometry by following the loss of the aziridinyl methylene and
methyl signals, respectively. Aziridine 2d was quantatively converted in 8 h while 2 f required 3 h and afforded a $1: 3$ mixture of 5 and $6 .{ }^{11}$ In pyridine, a more polar solvent, the pyrolysis of 2 f required 1 h ard a $45: 55$ mixture of 5 to 6 was observed while a $2: 3$ mixture of the amides corresponding to the hydrolysis of 5 and 6 was obtained in water after 15 $\min .^{11}$


The order of decreasing pyrolysis rates for the 1 -aryl substituted gem-dichloroaziridines is $2 \mathrm{c}>2 \mathrm{f}>2 \mathrm{e}>2 \mathrm{a}$ and roughly correlates with decreasing strain anc decreasing carbonium ion stability. The difference in reactivity between $2 \mathbf{a}$ and $2 \mathbf{e}$ is attributed to the geeater electron-donating ability of naphthyl in stabilizing the transition state since both aziridines give rise to the same carbonium ion. These data are consistent witk. transition state 7 which is also supported by recently reported observations. ${ }^{12}$


Phenyl(trihalomethyl)mercury Preparations. We have also examined the synthetic utility of some phenyl(trihalomethyl)mercury reagents as the carbene source in the preparation of gem-dichloroaziridines. These thoroughly studied Seyferth reagents undergo pyrolysis to yield dihalocarbene and the phenylmercuric halide.

$$
\mathrm{PhHgCX}_{3} \rightarrow \mathrm{PhHgX}+\mathrm{XCX}
$$

They have been used to prepart gem-dihalocyclopropanes and have the advantage of not requiring basic reaction conditions. ${ }^{13}$ Recently, Seyferth et al. have reported the use of these reagents for the addition of dichlorocarbene to the $\mathrm{C}=\mathrm{N}$, $\mathrm{C}=\mathrm{S}, \mathrm{C}=\mathrm{O}$, and $\mathrm{N}=\mathrm{N} .{ }^{14}$ Seyferth reported the reaction of benzylideneaniline ( $\mathbf{l a}$ ) with phenyl(bromodichloromethyl)mercury lead to tar formation in benzene ${ }^{15}$ and a trace of 2 a and tar in carbon tetrachloride. ${ }^{5}$ The inability of this reagent to convert the imine to the gem-dichloroaziricine was attributed by Sevferth to nucleophilic attack of the imine ni-

Table II. Stability Studies of 1,3-Diphenyl-2,2-dichloroaziridine (2a)

| Reactant(s) | Conditions | Time ${ }^{\text {a }}$ | NMR analysis |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | \% aziridine | \% imidoyl chloride |
| Benzene ${ }^{\text {b }}$ | Refluz | 48 | $100^{c}$ | d |
| $\mathrm{CCl}_{4} / \mathrm{PhHgCl}{ }^{\text {e.f }}$ | r.t. ${ }^{\text {b }}$ | 48 | $100^{\text {c }}$ | d |
| Benzene $/ \mathrm{PhHgCl}$ | Refluz | 24 | 36 | 64 |
| DME/PhHgCl | r.t.E | 48 | $98{ }^{\text {c }}$ | 2 |
| Benzene/PhHgBr | Refluz | 2 | 100 | $d$ |
| DME/NaI | r.t. ${ }^{\text {E }}$ | 48 | 100 | $d$ |

${ }^{a}$ Reaction time in hours. ${ }^{b}$ Similar results were obtained for $\mathrm{CCl}_{4}(48 \mathrm{~h})$ and DME ( 18 h ). ${ }^{c}$ Recovered $>85 \%$. ${ }^{d}$ The imidoyl chloride could not be detected. ${ }^{e}$ A saturated solution. ${ }^{f}$ Comparable results were obtained for PhHgBr . ${ }^{8}$ Room temperature.
trogen at mercury giving rise to tar formation. Using a less nucleophilic imine such as phenylcarbonimidoyl dichloride (8), Seyferth obtained the tetrachloroaziridine 9 in $53 \%$ yield

based on the mercurial. ${ }^{5}$ We obtained the same aziridine in $88 \%$ yield using the phase-transfer reaction. ${ }^{11}$
Our initial attempts to prepare gem-dichloroaziridines from the Seyferth reagents involved the pyrolys $s$ of a $1: 1$ mixture of la and phenyl(trichloromethyl)mercury in benzene for 48 $h$. The product was a red oil which was identified as the imidoyl chloride 3a by its NMR spectrum anc by conversion to the amide 10 a in $22 \%$ yield. Using a fouriold excess of the mercurial afforded the amide in $68 \%$ yield. The isolation of the amide strongly suggested the intermediacy of 2a since the pyrolysis of 2a to 3a has been established. In hot benzene, 2a was stable for 48 h ; however, in the presence of phenylmercuric chloride, 2a was quantitatively converted to 3 a (via NMR) establishing the phenylmercuric chloride catalyzed ring opening reaction. Consequently, the use of phenyl(trihalomethyl)mercury reagents should be limited by the thermal stability of the gem-dichloroaziridine and i-s stability toward the phenylmercuric halide produced in the reaction and/or the phenyl(trihalomethyl)mercury reager:t. The results of some stability studies with the rather stable aziridine 2 a are presented in Table II. These results tend to rule out the pyrolysis of phenyl(trichloromethyl)mercury for the preparation of these gem-dichloroaziridines.


Treatment of phenyl(trichloromethyl)mercury with sodium iodide and dry dimethoxyethane (DME) at room temperature affords dichlorocarbene ${ }^{16}$ and circumverts the pyrolytic ring opening reaction. Under these conditions, Id was converted to 2 d in $98 \%$ yield, the highest yield ever $\mathrm{r} \in$ ported for a gemdichloroaziridine preparation. Application of this reaction to la and le failed to yield the aziridine; however, NMR analysis established the presence of the rearrangement products 3 a and $\mathbf{3 e}$. Chromatography over alumina afforded the amide 10a
in $59 \%$ yield. Aziridines $2 \mathbf{a}$ and $2 \mathbf{e}$ were stable to phenylmercuric chloride under these conditions; however, it was established that the phenylmercuric iodide formed in the reaction catalyzed the ring opening.

Seyferth's attempted preparation of gem-dichloroaziridines using phenyl(bromodichloromethyl)mercury required even milder conditions than those for phenyl(trichloromethyl)mercury, albeit he reported tar formation and only a trace of 2a. ${ }^{5}$ Based on our high percent conversions of imines la, 1d, and $1 e$ to the corresponding aziridine or their rearrangement products with phenyl(trichloromethyl)mercury and the stability studies (Table II), we felt that these earlier reports should be examined. Duplicating this experimental by pyrolysis of a $1: 1$ mixture of phenyl(bromodichloromethyl)mercury and la in benzene for 2 h afforded phenylmercuric bromide $(87 \%)$ and a dark oil. NMR analysis of this oil detected a strong aziridinyl proton signal at $\delta 3.58$ and the impure aziridine was isolated in $40 \%$ yield after several recrystallizations from hexane. ${ }^{17}$ Doubling the concentration of the mercurial failed to increase the aziridine yield. Using phenyl (bromodichloromethyl)mercury and NaI at 0 to $-10^{\circ} \mathrm{C}$ in DME also afforded 2a in low yield. Consequently, phenyl(bromodichloromethyl)mercury can be used to prepare gem-dichloroaziridines from imines, although the yields are relatively low and the isolation and purification of the aziridine is considerably more difficult than the conventional methods.

## Experimental Section

All melting points are uncorrected and were determined on a Mel-Temp melting point apparatus. The nuclear magnetic resonance spectra were recorded on a Varian Associates A-60A or T-60A spectrometer using tetramethylsilane as an internal standard. Infrared spectra were determined in potassium bromide on a Perkin-Elmer 137 spectrophotometer. The microanalyses were performed by Midwest Microlab, Ltd., Indianapolis, Ind. Toluene, $p$-xylene, and DME were purified by distillation from $\mathrm{LiAlH}_{4}$, while pyridine and piperidine were distilled from potassium hydroxide pellets prior to use.
Preparation of gem-Dichloroaziridines. General Procedure. The basic procedure of Makosza and Wawrzyniewicz was used. ${ }^{6}$ To a mixture of imine ( 0.01 mol ). chloroform ${ }^{18}(8 \mathrm{~mL}, 0.10 \mathrm{~mol})$ and triethylbenzylammonium chloride $(0.1 \mathrm{~g})$ is added a $50 \%$ solution of sodium hydroxide ( 20 mL ). The mixture is vigorously stirred via a magnetic stirrer for $\sim 30$ to 60 min at $40^{\circ} \mathrm{C}$. The mixture is extracted with $3 \times 20 \mathrm{~mL}$ portions of methylene chloride; the combined extracts are washed once with water $(20 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The mixture is filtered and the solvent removed in vacuo to afford the crude aziridine. The aziridines are purified by crystallization and the reaction times, yields, and solvents for crystallization are summarized in Table I.

1-Phenyl-2,2,3,3-tetrachloroaziridine (9). The above catalytic procedure was adapted for larger scale preparations by replacing the magnetic stirrer with a high speed mechanical stirrer and the temperature was maintained at $30^{\circ} \mathrm{C}$ by external cooling. To a mixture of $10.24 \mathrm{~g}(0.0588 \mathrm{~mol})$ of phenylcarbonimidoyl dichloride, chloroform ( 100 mL ), and $\sim 0.1 \mathrm{~g}$ of TEBA was added a $50 \%$ solution of sodium hydroxide ( 200 mL ). The reaction was vigorously stirred and the
temperature maintained at $30^{\circ} \mathrm{C}$ for 3 h . The mixture was extracted with $4 \times 30 \mathrm{~mL}$ of methylene chloride; the combined extracts were washed with water ( $3 \times 30 \mathrm{~mL}$ ) and dried $\left(\mathrm{MgSO}_{4}\right)$. The mixture was filtered and the solvent removed in vaccio. 1-Phenyl-2,2,3,3-tetrachloroaziridine crystallized on standing overnight to afford 13.25 g ( $87 \%$ ), $\mathrm{mp} 3 ?-40^{\circ} \mathrm{C}$. Recrystallization from hexane afforded the pure aziridine, $m p 39-40^{\circ} \mathrm{C}$ (lit. ${ }^{5} 38-40^{\circ} \mathrm{C}$ ).

1-(1-Naphthyl)-3-methyl-3-phenyl-2,2-dichloroaziridine (2f). Using the above general procedure, 2 f was obtained in $74 \%$ yield, while the yield from the sodium methoxide-chloroform method ${ }^{1}$ was $45 \%$ : $\mathrm{mp} 109-110^{\circ} \mathrm{C}$; NMR $\left(\mathrm{DCCl}_{3}\right) \delta 8.3-7.1(\mathrm{~m}, 12$, aromatic) and $1.8(\mathrm{~s}$, $3, \mathrm{CH}_{3}$ ).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}: \mathrm{C}, 69.52 ; \mathrm{H}, 4.62 ; \mathrm{N}, 4.27$. Found: C, 69.57; H, 4.69; N, 4.19.

Pyrolysis Reactions. General Procedure. The aziridines ( $0.1-0.5$ g) were placed in a two-necked flask fitted with condenser and septum or stopper. The condenser was connected to a nitrogen-vacuum double manifold and a nitrogen atmosphere was introduced by the standard method. ${ }^{19}$ The solvent was introduced via syringe through the septum or by removing the stopper while maintaining a positive nitrogen pressure. The magnetically stirred solution was heated at the reflux temperature of the solvent and samples were removed for analysis by syringe. The solvent was removed from the reaction mixture via the vacuum manifold to obtain the products. The imidoyl chlorides exhibited the $\mathrm{C}=\mathrm{N}$ (neat) stretch near $1670 \mathrm{~cm}^{-1}$ in the infrared spectrum.

2-Chloro- $\mathbf{N}, 2,2$-triphenylacetimidoyl Chloride (3c). Using the above procedure, 271 mg ( 0.797 mmol ) of 2 c was pyrolyzed for 1 h in toluere. The solvent was removed in vacuo and crystallization of the residue from hexane afforded $211 \mathrm{mg}(78 \%)$ of the crude product, mp $68-71^{\circ} \mathrm{C}$. Recrystallization gave $201 \mathrm{mg}(74 \%)$ of the pure imidoyl chloride: mp 69.5-71 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{10} 67-70^{\circ} \mathrm{C}$ ); NMR $\left(\mathrm{CDDl}_{3}\right) \delta 7.3(\mathrm{~m}$, aromatic); IR (KBr) $1660 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$.

1-(N,2-Diphenyl-2-chloroacetimidoyl)piperidine (4a). Pyrolysis of $0.503 \mathrm{~g}(0.0019 \mathrm{~mol})$ of 2 a in hot toluene for 24 h followed by a piperidine ( 2 mL ) quench afforded the crude product. The reactior. mixture was poured into a $10 \%$ potassium hydroxide solution $(20 \mathrm{~mL})$ and extracted once with ether $(20 \mathrm{~mL})$. The ether extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered and the solvent removed in vacuo. Chromatography of the residue over alumina ( $2 \%$ EtOAc-hexane) afforded $0.365 \mathrm{~g}(61 \%)$ of the amidine $\mathbf{4 a}$ (via NMR). Crystallization from hexane afforded 0.205 g (34\%) of the crystalline amidine: $\mathrm{mp} 93.5-95$ ${ }^{\circ} \mathrm{C}$; IR (KBr) $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.4-6.5 \mathrm{~m} .10$, aromatic), $6.04(\mathrm{~s}, 1, \mathrm{PhCH}), 3.3\left(\mathrm{~m}, 4, \mathrm{CH}_{\varepsilon} \mathrm{N}\right)$, and $1.4\left(\mathrm{~m}, 6, \mathrm{CH}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Cl}$ : C, 72.93; $\mathrm{H}, 6.78$; $\mathrm{N}, 8.96$. Found: C , 72.88; H, 6.69; N, 8.74.

1-[.N-(1-Naphthyl)-2-chloro-2-phenylacetimidoyl]piperidine (4e). Pyrolysis of 2 e in hot toluene ( 4 h ) with piperidine quench afforded the crude amidine in $63 \%$ yield (via NMR) via the above procedure. Crystallization of the amidine from hexane afforded the pure product in $39 \%$ yield: $\mathrm{mp} 106-107.5^{\circ} \mathrm{C}$; IR ( KBr ) $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; NMR ( $\mathrm{CDCl}_{3}$ ) ì 8.7-7.2 ( $\mathrm{m}, 12$, aromatic), $6.16(\mathrm{~s}, 1, \mathrm{PhCH}), 3.5(\mathrm{~m}$, $4, \mathrm{CH}_{2} \mathrm{~N}$ ), and $1.5\left(\mathrm{~m}, 6, \mathrm{CH}_{2}\right)$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{Cl}$ : C, 76.11; H. 6.40; $\mathrm{N}, 7.72$. Found: C, 76.04; H, 6.57; N, 7.40.

Pyrolysis of 2 f . Pyrolysis of $0.487 \mathrm{~g}(0.0015 \mathrm{~mol})$ of 2 f in hot toluene for 4 h followed by a water quench afforded 0.457 g of the crude amides corresponding to the hydrolysis of 5 anc 6 . Chromatography of this material over alumina afforded $0.319 \mathrm{~g}(69 \%)$ of the $\alpha$-chloroamide (via NMR) in the fractions eluted with hexane and $10 \%$ EtOAchexane. The unsaturated amide, $0.102 \mathrm{~g}(25 \%)$, was obtained in the $\mathrm{EtOA}=$ fractions. Crystallization of the appropriate fractions from hexane-EtOAc afforded $0.055 \mathrm{~g}(14 \%)$ of the crude unsaturated amide and $0.172 \mathrm{~g}(37 \%)$ of the crude $\alpha$-chloroamide. Recrystallization afforded the following analytically pure samples.
$\boldsymbol{N}$-(1-Naphthyl)-2-chloro-2-phenylpropanamide: mp 131-131.5 ${ }^{\circ} \mathrm{C}$; IR (KBr) $3300(\mathrm{~N}-\mathrm{H})$ and $1650 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta$ 8.2-7.2 (m, 12, aromatic), $8.8\left(\mathrm{~m}, 1, \mathrm{NH}_{冫}\right.$, and $2.2\left(\mathrm{~s}, 3, \mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ClNO}: \mathrm{C}, 73.67$; $\mathrm{H}, 5.21$; $\mathrm{N}, 4.52$. Found: C, 73.79; H, 5.21; N, 4.46.

N-(1-Naphthyl)-2-phenylpropenamide: mp $145-146{ }^{\circ} \mathrm{C}$; IR ( KBr ) $3300(\mathrm{~N}-\mathrm{H}), 1650(\mathrm{C}=\mathrm{O})$, and $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$; NMR $\left(\mathrm{CCl}_{4}, \mathrm{CDCl}_{3}\right) \delta 8.3-7.2(\mathrm{~m}, 13$, aromatic and $\mathrm{N}-\mathrm{H}), 5.70$ and $6.38(2$, $\mathrm{d}, \mathrm{CH}_{2}=, J=1 \mathrm{~Hz}$ ).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 83.49 ; \mathrm{H}, 5.53 ; \mathrm{N}, 5.12$. Found: C, 83.20; H, 5.36; N, 5.01.

Hydrolysis of 2 f . The aziridine and water ( 10 mL ) were heated on a steam bath for 15 min and cooled and the mixture was extracted with ether. The ether was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered and the solvent was removed in vacuo to afford the NMR sample.

Reaction of la with Phenyl(trichloromethyl)mercury. A magnetically stirred solution of $1.0 \mathrm{~g}(0.00552 \mathrm{~mol})$ of $1 \mathrm{a}, 2.41 \mathrm{~g}$ ( 0.00608 mol ) cf phenyl(trichloromethyl)mercury, and dry benzene $(35 \mathrm{~mL})$ was heated at the reflux temperature for 48 h under a nitrogen atmosphere. Filtration of the cooled solution througa a medium porous sintered-glass funnel afforded $1.66 \mathrm{~g}(87 \%)$ of phenylmercuric chloride, $\mathrm{mp} 227-246^{\circ} \mathrm{C}$. The solvent was removed in vacuo to yield a red oil; the NMR spectrum of the oil exhibited a peak at $\delta 5.8$ assigned to 3 a $(\mathrm{PhCH})$. Several drops of water were added to the red oil and the resulting material was chromatographed over alumina. Elution with 2-10\% EtOAc-hexane afforded $0.302 \mathrm{~g}(22 \%)$ of the crude amide. Crystallization from ethanol after several teeatments with decolorizing carbon afforded 0.286 g ( $21 \%$ ) of the amide $10 \mathrm{a}, \mathrm{mp}$ $147-150^{\circ} \mathrm{C}$ (lit. ${ }^{20} \mathrm{mp} \mathrm{146-148}{ }^{\circ} \mathrm{C}$ ).

Using the above procedure, $0.183 \mathrm{~g}(1.01 \mathrm{mmol})$ of $1 \mathrm{a}, 1.58 \mathrm{~g}(3.99$ mmol ) of phenyl(trichloromethyl)mercury, and dry jenzene ( 7 mL ) afforded $0.167 \mathrm{~g}(62 \%)$ of the crude amide (via NMR) and 0.131 g (53\%) of pure amide, $\mathrm{mp} 148-150^{\circ} \mathrm{C}$.

Preparation of 1-Benzyl-2,2-dichloro-3,3-diphenylaziridine (2d) from Phenyl(trichloromethyl)mercury and Sodium Iodide. To $0.200 \mathrm{~g}(0.738 \mathrm{mmol})$ of $1 \mathbf{d}, 1.164 \mathrm{~g}(2.94 \mathrm{mmol})$ of phenyl(trichloromethyl)mercury, and $0.488 \mathrm{~g}(2.29 \mathrm{mmol})$ of sodium iodide in a two-necked flask fitted with condenser, septum, ard a maintained nitrogen atmosphere was added freshly distilled DME ( 7 mL ) via syringe. The sclution was stirred for 8 h at room temperature. The DME was removed in vacuo, benzene ( 20 mL ) was added, and the mixture was filtered through a sintered-glass funnel to remove the inorganic products ( 1.274 g ). The filtrate was concertrated in vacuo to $\sim 5 \mathrm{~mL}$ and filtered to remove the last traces of the inorganic products. Crys-allization from hexane-ethyl acetate afforded 0.256 $\mathrm{g}(98 \%)$ of the aziridine, $\mathrm{mp} 118-134^{\circ} \mathrm{C}$. Recrystallization afforded $0.241 \mathrm{~g}(92 \%)$ of the aziridine, $\mathrm{mp} 135-137{ }^{\circ} \mathrm{C}$ (lic. ${ }^{1} \mathrm{mp} 136-137$ ${ }^{\circ} \mathrm{C}$ ).

Reaction of la with Phenyl(trichloromethyl)mercury and Sodium Iodide. A solution of $133 \mathrm{mg}(0.735 \mathrm{mmol})$ of $1 \mathrm{a}, 1.165 \mathrm{~g}(2.94$ mmol ) of phen l (trichloromethyl)mercury, 0.458 ( 3.06 mmol ) of sodium iodide, and dry DME ( 7 mL ) was magnetically stirred under a nitrogen atmosyhere for 48 h . Using the above procedure $1.06 \mathrm{~g}(89 \%)$ of phenvlmercuric iodide, mp $260-280^{\circ} \mathrm{C}$, was obtained. NMR analysis of the filterate $\left(\mathrm{CDCl}_{3}\right)$ failed to detected the aziridine; however the presence of the imidoyl chloride was established. Addition of moist benzene and chromatography of the residue over alumina affordəd 115 mg (64\%) 10a via NMR. Crystallization from ethanol afforded $41 \mathrm{mg}(23 \%)$ of the pure amide, $\mathrm{mp} \mathrm{148-150}{ }^{\circ} \mathrm{C}$ (lit. ${ }^{20}$ mp 146-148 ${ }^{\circ} \mathrm{C}$ ).

Preparation of 1,3-Diphenyl-2,2-dichloroaziridine (1a) from Phenyl(bromodichloromethyl)mercury. A magnetically stirred solution of $0.424 \mathrm{~g}(2.34 \mathrm{mmol})$ of $1 \mathrm{a}, 1.283 \mathrm{~g}(2.91 \mathrm{mmol})$ of phenyl(bromodichloromethyl)mercury, and dry benzene ( 5 mL ) was heated at the reflux temperature for 2 h under a nitrogen atmosphere. The cooled reaction mixture was filtered to remove the crude phenylmercuric brom de ( $0.925 \mathrm{~g}, 89 \%, \mathrm{mp} 274-282^{\circ} \mathrm{C}$ ). The filtrate was treated with decolorizing carbon and filtered and the solvent was removed in vacuo to afford 0.598 g of a dark oil. This material was triturated with several small portions of chloroform leaving a residue of 0.106 g . The chloroform was removed in vacuo end the residue triturated with $3 \times 10 \mathrm{~mL}$ portions of hot hexane leaving a residue of 0.125 g . The combined hexane fractions were treated with decolorizing carbon and filtered and crystallization afforded $0.247 \mathrm{~g}(40 \%)$ of the crude azridine $2 \mathrm{a}, \mathrm{mp} 87-96^{\circ} \mathrm{C}$. Recrystallization from hexane afforded $0.193 \mathrm{~g}(31 \%)$ of the purified aziridine, $\mathrm{mp} 98-100^{\circ} \mathrm{C}$ (lit. ${ }^{20} \mathrm{mp}$ $99-100^{\circ} \mathrm{C}$ ). Several additional recrystallizations were needed to remove the light yellow color from this material.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research and to The University of Northern Colorado Faculty Research and Publication Committee for partial support.

Registry No.-1a, 538-51-2; 1b, 14752-72-8; 1c, 574-45-8; 1d, 7699-79-3; 1е, 8э0-51-7; 1f, 5307-40-4; 3a, 10295-39-3; 1c, 17205-55-9; 4a, 65016-17-3; 4d, 65016-18-4; 8, 622-44-6; 10a, 5110-77-0; chloroform, 67-66-3; $N$-(1-naphthyl)-2-chloro-2-phenylpropanamide, 65036-36-4; $N$-(1-naphthyl)-2-phenylpropenamide, 65016-19-5; $\mathrm{PhHgCCl}_{3}, 3294-57-3 ; \mathrm{PhHgCl}, 100-56-1$.

## References and Notes

(1) Part I: M. K. Meilahn, L. L. Augenstein and J. L. McManaman, J. Org. Chem. 36, 3627 (1971)
(2) (a) M. K. Meilahn, M. Ramanujam, J. L. McManamaา, and J. C. Jepsen, Abstracts of the 166th Na:ional Meeting of the American Chemical Society, Chicago, III., Aug. 1973. (b) M. K. Meilahn and D. K. Olsen, presented in part at the 46th Meeting cf the Colorado-Wyominc Academy of Sciences, Denver. Colo., May 3, 1975.
13) (a) Boettcher Fellow 1974-1975. (b) American Chemical Society-Petroleum Research Fund Scholars. 1975.
14) See ref 1 , Table I and references cited there $n$, for a summary of these reactions.
15) D. Seyferth, W. Tronich, and H. Shih, J. Org. Chem., 39, 158 (1974).
16) M. Makosza and M. Wawryniewicz, Tetrahedron Lett., 4659 (1969).
17) (a) J. Dockx, Synthesis, 441 (1973); (b) E. V. Dehmiow, Angew. Chem. Int. Ed. Engl., 13, 170 (1974). (c) E. V. Dehmlow, ibid., 16, 493 (1977). 18) J. Fraefe, Z. Chem., 14, 469 (1974).
19) H. W. Heine and A. B. Smith, Angew. Chem., 2, 40 (1963)
(10) K. Ichimura and M. Ohta. Bull. Chem. Soc. Jpn., 40, 1933 (1967).
(11) Average of duplicate runs.
(12) H. Yamanaka. J. Kikui, and K. Teramura, J. Org. Chem., 41, 3794 (1976).
(13) D. Seyferth. Acc. Chem. Res., 5, 65 (1972).
(14) D. Seyferth and Houng-min Shih, J. Am. Chem. Soc., 94, 2508 (1972), and references cited therein.
(15) D. Seyferth and W. Tronich. J. Organomet. Chem., 21, P3 (1970).
(16) D. Seyferth. M. E. Gordon, J. Y.-P. Mui, and J. M. Burlitch. J. Am. Chem. Soc. 89, 959 (1967).
(17) Similar results were obtained by running the reaction in $\mathrm{CCl}_{4}$.
(18) Alcohol free chloroform.
(19) D. F. Shriver, "Manipulation of Air-sensitive Compounds". McGraw-Hill. New York, N.Y.. 1969. Chapter 7.
(20) E. K. Fields and J. M. Sandri, Chem. Ind. (London), 1216 (1959).

# Carbon-13 Nuclear Magnetic Resonance Study of Representative transand cis-1-Alkyl-2-aryl(alkyl)-3-aroylaziridines 

Philip Tarburton, Charles A. Kingsbury, ${ }^{1}$ Alan E. Sopchik, and Norman H. Cromwell*1<br>Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

Received August 2, 1977


#### Abstract

Twenty-two trans- and cis-1-alk:yl-2-aryl(alkyl)-3-aroylaziridines have been studied by use of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The ${ }^{13} \mathrm{C}$ chemical shifts of the ring carbons have been tabulated, as well as those for the $\alpha-N$-alkyl carbons (see Table I). Selected coupling constants are reported. The chemical shifts of the ring carbons are correlated with the phenomenon of three-ring to carbonvl hyperconjugation. ${ }^{2}$ In addition, the effect of the nitrogen lone pair upon ${ }^{1} J$ ( ${ }^{13} \mathrm{C}-\mathrm{H}$ ) values and the carbonyl carbon chemical shifts is discussed, while the $\alpha-N$-alkyl carbon values are rationalized in terms of steric compression effects.


A ${ }^{13} \mathrm{C}$ NMR study of representative trans- and cis- 1 -alkyl-2-aryl(alkyl)-3-aroylaziridines has been undertaken. While systematic ${ }^{13} \mathrm{C}$ NMR studies of N -unsubstituted alkyland phenylaziridines have appeared earlier in the literature, ${ }^{3,4}$ no desirable ${ }^{13} \mathrm{C}$ NMR study of the title compounds has been published to date. Work pertaining to the effect of the nitrogen heteroatom in cyclic systems has appeared in the literature,,${ }^{5-9}$ as well as that of representative 1 -azirines. ${ }^{10}$ Here we have studied the effect of three-ring to carbonyl hyperconjugation, ${ }^{2}$ the effect of the nitrogen lone pair on selected coupling constants and the carbonyl group, and the steric compression effect (where applicable) in these systems.
The assignments made are based on chemical shift considerations; signal multiplicities from off-resonance decoupling experiments or from coupled spectra; and qualitative considerations of long-range ${ }^{13} \mathrm{C}-\mathrm{H}$ couplings; that is to say, the $\mathrm{C}_{2}$ line width is greater than the line width of $\mathrm{C}_{3}$ due to three-bond coupling of the $\mathrm{C}_{2}$ to the adjacent (ortho) protons of the $\mathrm{C}_{2}-\mathrm{H}$ aryl substituent (see Table I and the Experimental Section for assignments).
Three-Ring to Carbonyl Hyperconjugation. As revealed in Table I, the ${ }^{13} \mathrm{C}$ NMR studies show tha: the trans isomers of arylaroylaziridines (except 11a and 12a) enjoy substantial conjugation through their three-membered rings. This is borne out by the fact that $\mathrm{C}_{2}$ appears further downfield than $\mathrm{C}_{3}$ for la-8a and 10a by $0.5,1.2,0.7,1.3,1.2,1.3,0.9,0.9$, and 1.0 ppm , respectively. The strength of this statement is not so much the $\sim 1$-ppm difference in the values of $\mathrm{C}_{3}$ and $\mathrm{C}_{2}$ but the fact that the trend is uniform; i.e., $\Delta \delta\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$ is always greater than zero. (A similar trend is found in the IR and UV data. ${ }^{2}$ ) In marked contrast, the opposite trend is found in the ${ }^{1} \mathrm{H}$ NMR data (see again Table I), such that the ring proton attached to $\mathrm{C}_{3}$ is always further downfield in both the trans and cis isomers. One plausible explanation for this trend in the trans compounds might be the greater anisotropic effect by the phenyl group upon the hydrogen cis to it. ${ }^{11 a-c}$ Of course,

Chart I. Bond Polarization along the $\sigma$ Skeleton of Arylaroylaziridines Assuming Carbonyl to be the Only Electronegative Substituent

an alternating polarization effect, such as was invoked in six-membered N -heterocyclic compounds by Morishima, ${ }^{11}$ c appears applicable here (Chart I). That is to say, Pople, ${ }^{11 \mathrm{~d}}$ using the CNDO-SCF molecular orbital calculations, suggested that the inductive effect induced by an electronegative substituent (here, carbonyl) alternates and attenuates along to $\sigma$ skeleton of the arylaroylaziridine three ring. This theory appears to be well correlated with the $\mathrm{H}_{2}$ and $\mathrm{H}_{3}$ ring proton values in both the trans- and cis-aziridines (Table I), wherein $\mathrm{H}_{3}\left(\hat{\partial} \hat{o}^{-}\right)$is always further downfield than $\mathrm{H}_{2}\left(\delta \delta \delta^{+}\right)$. Moreover, the fact that the ring hydrogens of trans are further downfield than those of the cis can clearly be attributed to the anisotropic effect of the phenyl and carbonyl groups lying cis to their hydrogens in the trans-aziridines. ${ }^{11 a}$ Finally, one cannot ignore the bond polarization effect of the phenyl group since the trans- and cis-1-cyclohexyl-2-methyl-3-( $p$-phenylbenzoyl)aziridines ( $16 \mathrm{a}, \mathrm{b}$ ) have their $\mathrm{C}_{2}$ protons significantly upfield, i.e., $\sim 1 \mathrm{ppm}$, from their respective trans and cis analogues, $11 \mathbf{a}, \mathbf{b} .^{11 a, d}$
With respect to three-ring to carbonyl hyperconjugation, a brief explanation of the stereochemical requirements is warranted. Basically, following the established corollary ${ }^{11 a .13}$ that the $N$-alkyl group in the trans series exists preferentially syn to the carbonyl moiety, the following conformer may be drawn to represent 1a-8a, 10a, and 11a (see Chart II). In es-

Table I. Proton and Carbon-13 NMR Parameters ${ }^{d}$ of Selected trans- and cis-1-Alkyl-2-aryl(alkyl)-3-aroylaziridines


| $\mathrm{R}_{1}$ | $\mathrm{R}_{2}$ | Ar | Trans (cis) | Proton, ppm from $\mathrm{Me}_{4} \mathrm{Si}^{\text {a }}$ |  |  | Carbon-13, ppm from $\mathrm{Me}_{4} \mathrm{Si}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | Carbonyl |
|  |  |  |  | $\mathrm{H}_{2}$ | $\mathrm{H}_{3}$ | $\mathrm{H}_{\alpha}{ }^{\text {b }}$ | $\mathrm{C}_{2}$ | $\mathrm{C}_{3}$ | $\mathrm{C}_{\alpha}{ }^{\text {b }}$ | $\mathrm{C}=\mathrm{O}$ |
| H | Ph | $\begin{gathered} p-\mathrm{Ph}- \\ \mathrm{C}_{6} \mathrm{H}_{4} \end{gathered}$ | 1 a | 3.13 | 3.55 | 2.72 ( $\mathrm{N}-\mathrm{H}$ ) | 43.9 | 43.4 |  | 194.8 |
| Me | Ph | $\begin{gathered} p-\mathrm{Ph}_{-} \\ \mathrm{C}_{6} \mathrm{H}_{4} \end{gathered}$ | 2a (2b) | 3.37 (3.05) | 3.55 (3.22) | 2.67 (2.60) | 49.6 (46.9) | 48.4 (49.8) | 38.8 (49.8) | -93.7 (190.5) |
| Et | $\begin{gathered} p-\mathrm{Ph}- \\ \mathrm{C}_{6} \mathrm{H}_{4} \end{gathered}$ | Ph | 3a (3b) | 3.52 (3.07) | 3.62 (3.23) | 2.88 (2.60) | 48.7 (49.8) | 48.0 (51.2) | 45.8 (55.4) | -94.2 (193.1) |
| Bz | Ph | Ph | 4a (4b) | 3.62 (3.2) | 3.62 (3.32) | $\begin{gathered} 4.02\left(3.6{ }^{7}-\right. \\ 3.92 i \end{gathered}$ | 49.3 (49.6) | 48.0 (51.0) | 54.8 (63.7) | $\leq 94.8$ (192.8) |
| $i-\mathrm{Pr}$ | $\begin{gathered} p-\mathrm{Ph}- \\ \mathrm{C}_{6} \mathrm{H}_{4} \end{gathered}$ | Ph | 5a (5b) | 3.58 (3.13) | 3.67 (3.28) | 3.02 (1.85) | 48.5 (49.5) | 47.3 (50.5) | 50.3 (61.6) | -94.7 (193.1) |
| c- $\mathrm{C}_{6} \mathrm{H}_{11}$ | Ph | Ph | 6 a (6b) | 3.57 (3.12) | 3.63 (3.28) | 2.12 (1-2) | 48.4 (49.1) | 47.1 (49.8) | 57.7 (68.9) | -94.5 (193.2) |
| endo-Norbornyl ${ }^{c}$ | Ph | Ph | $7 \mathrm{a}(7 \mathrm{~b})$ | 3.50 (3.0) | 3.55 (3.07) | 3.03 (2.25) | 49.0 (49.5) | 48.1 (50.6) | 60.7 (72.3) | -94.6 (193.2) |
| exo-Norhornyl ${ }^{c}$ | Ph | Ph | 8a (8b) | 3.35 (3.02) | 3.49 (3.06) | 2.75 (2.33) | 48.3 (49.8) | 47.4 (50.5) | 64.1 (74.1) | -94.6 (193.4) |
| $t-\mathrm{Bu}$ | Ph | Ph | (9b) | (3.41) | (3.41) | (-) | (43.2) | (44.3) | (53.7) | (194.0) |
| $c-\mathrm{C}_{6} \mathrm{H}_{11}$ | Ph | $\begin{gathered} p-\mathrm{Me}- \\ \mathrm{Ph} \end{gathered}$ | 10a (10b) | 3.57 (3.12) | 3.69 (3.28) | 2.12 (1-2) | 48.1 (49.0) | 47.1 (49.8) | 57.8 (69.0) | -94.0 (192.7) |
| $\mathrm{c}-\mathrm{C}_{6} \mathrm{~F}_{11}$ | Me | $\begin{gathered} p-\mathrm{Ph}- \\ \mathrm{C}_{6} \mathrm{H}_{4} \end{gathered}$ | 11a (11b) | 2.68 (2.11) | 3.32 (2.94) | 2.12 (-) | 42.1 (42.7) | 44.3 (46.5) | 58.0 (69.4) | -94.9 (194.6) |
| Me | $\begin{gathered} p-\mathrm{NO}_{2}- \\ \mathrm{Ph} \end{gathered}$ | Ph | 12a | 3.52 | 3.60 | 2.62 | 48.0 | 49.3 | 38.6 | 193.2 |
| $\mathrm{c}-\mathrm{C}_{6} \mathrm{~F}_{11}$ | H | $\underset{\mathrm{C}_{6} \mathrm{H}_{4}}{p-\mathrm{Ph}}$ | 13 | 2.29 | 2.93 | 1.77 | 35.7 | 39.8 | 69.5 | 195.6 |

[^1]Chart II. Conformation of Trans Isomers in $N$-Alkylarylaroylaz-ridines ${ }^{a}$

${ }^{a} \mathrm{Ar}=\mathrm{Ph}$ or $p-\mathrm{Ph}-\mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{R}=\mathrm{H}, \mathrm{M} e$, Et, $i \cdot \mathrm{Pr}, \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$, etc. (alky-).
sence the steric requirements demand that the nodal plane of the phenyl and carbonyl groups be orthogonal to the plane of the aziridine ring. ${ }^{2}$ Hence, the $\pi$ orbitals of the attached groups have to be free to orient themselves so that their nodal planes approach a perpendicular relationship to the plane of the three ring and a symmetrical arrangement with respect to the bent bonds. ${ }^{2,14,15}$ Furthermore, it appears that the conjugative behavior of the three ring is due to the $\mathrm{C}-\mathrm{C}$ bond and can well be rationalized by drawing canonical structures of the type shown in Chart III.

It is worth noting that the ability of the aryl ring (attached to $\mathrm{C}_{2}$ ) to support a partial positive charge is most crucial. When trans-1-methyl-2-( $p$-nitrophenyl)-3-benzoylaziridine (12a) was examined by ${ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{C}_{2}$ was found $1.3 \mathrm{ppm} u p$ field from $\mathrm{C}_{3}$. Another model for comparison in support of three-ring to carbonyl hyperconjugation is to look at the transand cis-methyl 1-isopropyl-2-(p-biphenyl)aziridinecarbox-

Chart III. Representation of Canonical Structures Which Serve to Resonance Stabilize the C-C Bond Conjugation ${ }^{\text {a }}$

${ }^{a}$ If $\mathrm{Z}=\mathrm{H}$, ten structures are possible.
ylates ( $15 \mathbf{a}, \mathbf{b}$ ) spectroscopically and observe the net change in $\mathrm{C}_{2}$ and $\mathrm{C}_{3}$ values in going from trans to cis relative to the ketone analogues $\mathbf{5 a , b} .{ }^{16 \mathrm{a}}$ For the esters the $\delta \Delta \delta\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$ value was 1.3 ppm vs. a $\delta \Delta \delta\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$ value of 2.2 ppm for the ketone. As expected, the ketone shows a greater conjugative effect in the trans isomer, owing to its better ability to support a partial negative ( $\delta^{-}$) charge at $\mathrm{C}_{3}$ (Chart III). The apparent inference from these data is that in 12 a and 15 a the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond polarity is significantly diminished (Chart IV) ${ }^{16 \mathrm{~b}}$ with a resultant decrease in three-ring to carbonyl hyperconjugation. However, not only must electronic considerations be met, but also steric requirements must be fulfilled in order for three-ring to carbonyl hyperconjugation to occur; here the cis analogues are a prime example of this (see below).

In marked contrast to the trans isomers, the cis-1-alkyl-2-aryl-3-aroylaziridines ( $\mathbf{2 b} \mathbf{- 1 0 b}$ ) have their $\mathrm{C}_{2}$ carbons 2.9,

Chart IV. trans-Aziridines with Lowered Carbonyl Hyperconjugation

$\mathrm{R}_{1}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ when $\mathrm{R}_{3}=\mathrm{Ph}$
$\mathrm{R}_{2}=p-\mathrm{PhC}_{6} \mathrm{H}_{4}$ when $\mathrm{R}_{3}=\mathrm{OCH}_{3}$
Chart V. Gauche Conformer of cis-N-Alkylarylaroylaziridines;


$0.4,1.4,1.0,0.7,1.1,0.7 .1 .1$, and 0.8 ppm , respectively, upfield from $\mathrm{C}_{3}$ (Table I). Again the trend is uniform; however, now $\Delta \delta\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$ is always less than zero. This trend can be attributed, in part, to diminished three-ring to carbonyl hyperconjugation. Although a cisoid conformer of the cis isomer may je postulated, it is the gauche conformer (Chart V) which has jeen found to be the main, if not only, conformer present in polar solvent, as revealed by infrared studies, ${ }^{12,17-19}$ and it acks the ability to hyperconjugate. (Note: in the gauche conformer repulsion between the $C_{2}$-aryl group and $C_{3}$-carjonyl group will not allow for the orbital overlap needed for -hree-ring to carbonyl hyperconjugation.)

Effect of Nitrogen Lone Pair. An analyss of the chemical shifts of carbonyl carbons in the arylarolyaziridines (Table I) reveals that a consistent, substantial difference exists between the trans and cis isomers. In pairs 2-8 signals of the carbonyl carbons are downfield in the trans isomer compared to the cis by $1-4 \mathrm{ppm}$. In compounds $11 \mathrm{a}, \mathrm{b}$, which lack an aromatic group at $\mathrm{C}_{2}$, the carbonyl chemical shifts are rather similar, which suggest that an aromatic group at $C_{2}$ is a necessary ingredient to observe a substantial effect. The identity of the N-R substituent does not appear to have a sizable effect (compare 2,3, and 6-8), as long as $R$ is attached to the nitrogen with a primary, secondary, or tertiary carbon. The trans isomers 2a-8a appear rather similar to their carbocyclic analogue, trans-1-(p-phenylbenzoyl)-2-phenylcyclopropane (14) (Chart VI), except that 14 has an even more downfield carbonyl chemical shift. This similarity sugges's that the orientation of the lone pair is not of major importance. In particular, the trans-aziridines, which have the lone pair anti to carbonyl, show downfield carbonyl absorptions, compared to the cisaziridines, where carbonyl is syn to the nitrogen lone pair. The shielded nature of the chemical shifts in the cis isomers is presently believed to be due to anisotropic effect, whereby the circulation of electrors in the $\pi$ system of one substituent shields the other group, and is the case in the cis-aziridines because of the shielding effect of the aromatic group at $\mathrm{C}_{2}$. (In

Chart VI. Carbocyclic Analogue of trans-Arylaroylaziridines


Table II. Stereochemical Dependence of ${ }^{13} \mathrm{C}-\mathrm{H}$ Coupling Constants ${ }^{a}$ in Selected Aroylaziridines

trans
cis

| Compd |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Trans | Cis | $J_{\sigma}$ | $J_{\beta}$ | $J_{\alpha^{\prime}}$ | $J_{\beta^{\prime}}$ |
|  | $\mathbf{4 b}$ |  |  | 164 | 166 |
| $\mathbf{5 a}$ | $\mathbf{5 b}$ | 172 | 167 | 162 | 163 |
| $\mathbf{6 a}$ | $\mathbf{6 b}$ | 177 | 166 | 162 | 164 |
| $\mathbf{1 0 a}$ |  | 176 | 166 |  |  |
| 11a |  | 174 | 164 |  |  |
| 12a |  | 171 | 167 |  |  |
| 15a | $\mathbf{1 5 b}$ | 181 | 167 | 170 | 167 |
| $J$ values in hertz. |  |  |  |  |  |

Table III. Calculated vs. Experimental Values ${ }^{a}$ for the $\alpha-N$-Alkyl Carbon in trans- and cis-Arylaroylaziridines

| Trans | Cis | N substituent | Exptl | Calcd |
| :---: | :---: | :---: | :---: | :---: |
| 2a | 2b | $-\mathrm{CH}_{*}$ | 38.8 (49.8) | 38.8 (49.2) |
| 3a | 3b | $-{ }_{*} \mathrm{CH}_{2} \mathrm{CH}_{3}$ | 45.8 (55.4) | 45.0 (55.4) |
| 4a | 4b | $-{ }_{*}^{\text {C }} \mathrm{H}\left(\mathrm{CH}_{3}\right)_{2}$ | 50.3 (61.6) | 51.2 (61.6) |
| 5a | 5b | $-{ }_{*} \mathrm{CH}_{2} \mathrm{Ph}$ | 54.8 (63.7) | 52.3 (62.7) |
| 6 a | 6 b | $-\stackrel{C H}{*}$ | 57.7 (68.9) | 58.5 (68.9) |
| 7 a | 7b |  | 60.7 (72.3) | 63.2 (73.6) |
| 8a | 8b |  | 64.1 (74.1) | 63.2 (73.6) |

${ }^{1} \mathrm{H}$ NMR, the mutual shielding of aromatic groups near in space is rather common, but in ${ }^{13} \mathrm{C}$ NMR such observations are less frequent. ${ }^{20-22}$ )

Jennings and co-workers ${ }^{23}$ have observed a stereochemical dependence of ${ }^{13} \mathrm{C}-\mathrm{H}$ coupling constants in diastereomeric (Z)-cis- and (E)-trans-oxaziridines. Similarly, ${ }^{1} J\left({ }^{13} \mathrm{C}-\mathrm{H}\right)$ coupling constants in selected trans- and cis- N -alkylarlaroylaziridines show such a dependence (see Table II) on the orientation of the nitrogen lone pair such that a positive increment is imparted to the coupling constant of nearby ${ }^{13} \mathrm{C}-\mathrm{H}$ for a C-H bond cis to the lone pair. For 5a, 6a, and 10a-12a (all trans) the difference is in agreement with these findings and the supposition that the preferred conformation is the lone pair syn to phenyl. On the other hand, for $\mathbf{4 b} \mathbf{6 b}$ (all cis) the ${ }^{1} J\left({ }^{13} \mathrm{C}-\mathrm{H}\right)$ coupling constants are similar, as expected, and this indicates that the nitrogen lone pair is anti in orientation to both ring protons.

Steric Compression Effect. The value of the chemical shifts of the $\alpha-N$-alkyl carbon increases in both the trans and cis isomers as cited in Table III. Hence, a mean difference of 10.4 ppm is found in the chemical shift between the cis and trans isomers, and looking at the conformations of the isomers (Chart VII) one can postulate that the $\alpha-N$-alkyl carbon in the trans isomer is sterically perturbed by being syn to the carbonyl moiety. In the cis isomer no steric compression shift is

Chart VII. Effect of Steric Compression Shift


observed since the $\alpha-N$-alkyl carbon is anti to the benzoyl group. Since, in this steric perturbation, the carbon to hydrogen bond is shortened and the subsequent carbon electron density increases, it is not surprising that the $\alpha-N$-alkyl carbon in the trans isomer is found (on the average) 10.4 ppm upfield from its unperturbed cis analogue. As the magnitude of the shift is quite large, it appears that the proximity of the $\alpha$ -$N$-alkyl hydrogen(s) and the carbonyl group is an important factor in determining the chemical shift of the $\alpha$ carbon attached to nitrogen. ${ }^{24}$

Of importance also is the order in which the chemical shifts of the $\alpha-N$-alkyl carbon increase (gces downfield) relative to $\mathrm{Me}_{4} \mathrm{Si}$. This trend can be attributed to the fact that the presence of attached and nearby carbons has a profound effect upon ${ }^{13} \mathrm{C}$ NMR chemical shifts. In order that a quantitative grasp of the effect of the attached carbons can be understood, one can derive and employ the following empirical equation (1) for the ${ }^{13} \mathrm{C}$ chemical shift for the $N$-alkyl carbon $\alpha$ to nitrogen

$$
\begin{equation*}
\delta^{c}{ }_{\text {calcd }}=B c \alpha+\alpha N_{1}+\beta N_{2}+S \tag{1}
\end{equation*}
$$

where $B c \alpha$ is the base value, taken as $49.2 \mathrm{ppm}, N_{1}=$ number of $\alpha$ carbons to carbon $\alpha$ to nitrogen, $N_{2}=$ number of $\beta$ carbons to carbon $\alpha$ to nitrogen, $\alpha=6.2,6=3.65$, and $S=$ steric compression factor $=-10.4 \mathrm{ppm}$ (trans isomer only). Hence, by employing this equation one can calculate values for nontertiary $\alpha-N$-alkyl carbons that are quite close to those values found experimentally; in fact, the calculated ( $\delta^{c}$ calcd ) and experimental ( $\delta \delta^{c}$ exptl) values appear in close agreement (see Figure 1).

With respect to the chemical shif: of the ring carbons, the $N$-alkyl substituent appears to have little or no effect on the chemical shift values of the arylaziridine carbons since all appear within a few parts per million of one another (except in $\mathbf{9 b}$ when the $N$-alkyl group is tert-butyl; cf. discussion below). Ordinarily, the effect of a substituent $\gamma$ to the $\mathrm{C}_{2}$ and $\mathrm{C}_{3}$ would be substantial, according to Stothers; ${ }^{21}$ however, little effect is observed in this instance. One reason may be that the hydrogen of the $\alpha-N$-alkyl carbon is always extending toward the center of the three ring and impinging on the $\mathrm{C}_{2}$ and $\mathrm{C}_{3}$ substituents (Chart VIII). This argument is reinforced by the fact that the small $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle of the aziridine ring makes it difficult to accommodate any other group than hydrogen "inside" the three ring. Thus, it makes little difference what $\mathrm{N}-\mathrm{CH}-\mathrm{R}_{1} \mathrm{R}_{2}$ is because $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ are always extended away from the ring. Moreover, when tert-butyl is the $N$-alkyl substituent in the case of 9 b , both ring carbons show an upfield shift owing to a probable steric compression effect by a methyl group which must in this instance lie over the three ring. ${ }^{20.21}$

Another steric compression shift may be found in the
Chart VIII. Conformer of Arylaroylaziridine with the Hydrogen of the $N$-Alkyl Carbon Pointing toward the Center of the Aziridine Ring



Figure 1. Plot of $\alpha-N$-alkyl carbons [ $\delta^{c_{\text {calcd }}}$ (ppm) vs. $\delta^{\mathrm{c}}$ expul ( ppm )] with regression analysis used to get the best least-squares correlation of all the points, the best straight line of which is found to be $\delta^{c}$ calcd $=1.016, \delta^{\mathrm{c}}$ expt -1.021 , with the correlation coefficient $\left(r^{2}\right)=$ $0.993{ }^{25}$
chemical shifts of the $C_{2}$-methyl group in 11a and 11b. For 11a $\delta=18.7 \mathrm{ppm}$, while 11 b has a $13.5-\mathrm{ppm}$ shift. This is another case of a steric substituent shift wherein the $C_{2}$-methyl group cis to the carbcnyl is shifted 5.2 ppm upfield in the cis isomer, a considerably smaller value than what is observed in the case of the $\alpha-N$-alkyl carbon. The reason may be due to the fact that the $\mathrm{C}-\mathrm{N}$ bond length in aziridine is considerably shorter than the $\mathrm{C}-\mathrm{C}$ bond length, in this case approximately $0.10 \AA$ shorter. ${ }^{2.15}$ This places the substituent on N in closer proximity to a syn group than a substituent on $\mathrm{C}_{2}$, creating a worse steric situation for the former and, hence, a greater steric shift.

## Experimental Section ${ }^{26}$

These epimeric 1-alkyl-2-aryl(alkyl)-3-aroylaziridines were prepared by known procedures: la and $2 \mathbf{a},{ }^{27} 3 \mathbf{a}, \mathbf{b}$ and $5 \mathbf{a}, \mathbf{b},{ }^{11 \mathbf{a}} 4 \mathbf{4}, \mathbf{b}, 6 \mathbf{a}, \mathbf{b}$, $9 \mathrm{~b}, 10 \mathrm{a}, \mathrm{b}$, and $12 \mathrm{a},{ }^{28} \mathbf{7 a}, \mathrm{~b}$ and $8 \mathrm{a}, \mathrm{b},{ }^{1228} 11 \mathrm{a}, \mathrm{b},{ }^{29} 13,{ }^{30} 14,{ }^{31}$ and 15a,b. ${ }^{11 \mathrm{a}}$

The ${ }^{1} \mathrm{H}$ noise-decoupled and single-frequency off-resonance decoupled ${ }^{15} \mathrm{C}$ Fourier transform NMR spectra were determined from ca. 1 M CDCl 3 sclutions on a Varian XL-100-15 spectrometer. Digital resolution is 1.25 Hz /point. Chemical shifts are referenced to internal $\mathrm{CDCl}_{3}$, taken as 76.9 ppm from $\mathrm{Me}_{4} \mathrm{Si}$, and are accurate to $0.1 \mathrm{ppm} .{ }^{32}$ Listed below is the complete ${ }^{13} \mathrm{C}$ NMR data for the trans- and cisarylaroylaziridine systems.
trans-2-Phenyl-3-( $\boldsymbol{p}$-phenylbenzoyl)aziridine (la): $\delta 194.8$ (s, $\mathrm{C}=0$ ), 146.3, 1£8.1, 134.4 (s, aromatic ipso C's), 126.0-129.0 (m, aromatic C-H's), 43.9 (d, $\mathrm{C}_{2}$ ), 43.4 (d, $\mathrm{C}_{3}$ ).
trans-1-Methyl-2-phenyl-3-( $p$-phenylbenzoyl)aziridine (2a): $\delta 193.7$ (s, $\mathrm{C}=\mathrm{O}$ ), 145.9, 139.6, 139.5 ( s , aromatic ipso C's), 125.9-130.1 ( m , aromatic C-H's), 49.6 (d, $\mathrm{C}_{2}$ ), 48.4 (d, $\mathrm{C}_{3}$ ), 38.8 (q. $\mathrm{N}-\mathrm{CH}_{3}$ ).
trans-1-Ethyl-2-( p-biphenyl)-3-benzoylaziridine (3a): $\delta 194.2$ ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ), 140.6, 137.9, 133.1 ( s , aromatic ipso C`s), 126.9-128.5 (m, aromatic C-H's), 48.7 (d, $\mathrm{C}_{2}$ ), 48.0 (d. $\mathrm{C}_{3}$ ), 45.8 (t. $\mathrm{N}-\mathrm{CH}_{2}$ ), 14.8 (q, $\mathrm{CH}_{3}$ ).
trans-1-Benzyl-2-phenyl-3-benzoylaziridine (4a): $\delta 194.8$ (s, $\mathrm{C}=\mathrm{O}$ ), 134.6, 132.9. 132.7 ( s , aromatic ipso C's), 126.2-128.1 (m. aromatic C-H’s), 54.8 (t, $\mathrm{N}-\mathrm{CH}_{2}$ ), 49.3 (d. $\mathrm{C}_{2}$ ). 48.0 (d. $\mathrm{C}_{3}$ ).
trans-1-Isopropyl-2-(p-biphenyl)-3-benzoylaziridine (5a): $\delta 194.7$ ( $\mathrm{s} . \mathrm{C}=\mathbf{=}$ : $, 140.7,140.1,138.0$ (s, aromatic ipso C's), 126.2-132.9 (m, aromatic C-H's), $50.3(\mathrm{~d}, \mathrm{~N}-\mathrm{CH}), 48.5\left(\mathrm{~d}, \mathrm{C}_{2}\right), 47.3\left(\mathrm{~d}, \mathrm{C}_{3}\right) .22 .3$ (q, $\mathrm{CH}_{3}$ ), $22.1\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
trans-1-Cyclohexyl-2-phenyl-3-benzoylaziridine (6a): $\delta 194.5$ (s, $\mathrm{C}=\mathrm{O}$ ), 139.2. 138.0 ( s , aromatic ipso C's), 126.3-133.0 (m, aromatic C-H•s), 57.7 (d. N-CH), 48.4 (d, C 2 ), 47.1 (d, C ${ }_{3}$ ), 33.0 (t. cyclohexyl $\mathrm{C}_{2}$ ), 32.7 ( t , cyclohexyl $\mathrm{C}_{6}$ ), 26.0 ( t , cyclohexyl $\mathrm{C}_{4}$ ). $24.5(\mathrm{t}$, cyclohexyl $\mathrm{C}_{5}$ ), 24.2 ( t . cyc.ohexyl $\mathrm{C}_{3}$ ).
trans-1-(2-endo-Norbornyl)-2-phenyl-3-benzoylaziridine (7a): ${ }^{33.34} \delta 194.6(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 139.5. 138.0 ( s , aromatic ipso C's), 126.2-133.0 (m. aromatic C-H's), 60.7 (d, $\mathrm{N} \sim \mathrm{C}-\mathrm{H}$ or $\mathrm{nb} \mathrm{C}_{2}$ ). 49.0 (d. $\mathrm{C}_{2}$ ), $48.5\left(\mathrm{~d} . \mathrm{nb} \mathrm{C}_{1}\right), 48.1\left(\mathrm{~d}, \mathrm{C}_{3}\right), 41.0\left(\mathrm{t}, \mathrm{nb} \mathrm{C}_{3}\right), 38.4\left(\mathrm{t}, \mathrm{nb} \mathrm{C}_{7}\right), 37.3$ (d. $\mathrm{nb} \mathrm{C}_{4}$ ), $29.8\left(\mathrm{t}, \mathrm{nb} \mathrm{C}_{5}\right), 22.1\left(\mathrm{t}, \mathrm{nb} \mathrm{C}_{6}\right)$.
trans-1-(2-exo-Norbornyl)-2-phenyl-3-benzoylaziridine
(8a): ${ }^{33,34} \delta 194.6(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 139.4, 137.9 (s, aromatic ipso C's), 125.9-133.0 (m, aromatic C-H's), 64.1 (d, $\mathrm{N}^{-}-\mathrm{CH}$ or $\mathrm{nb}_{2}$ ), 50.2 (d, nb $\mathrm{C}_{1}$ ), 48.3 (d, $\mathrm{C}_{2}$ ), 47.4 (d, $\mathrm{C}_{3}$ ), 42.8 (t, nb C $\mathrm{C}_{3}$ ), 36.0 (d, nb C $\mathrm{C}_{4}$ ), 35.8 ( $\mathrm{t}, \mathrm{nb} \mathrm{C}_{7}$ ), $28.7\left(\mathrm{t}, \mathrm{nb} \mathrm{C}_{5}\right), 26.5\left(\mathrm{t}, \mathrm{nb} \mathrm{C}_{5}\right)$.
trans-1-Cyclohexyl-2-phenyl-3-(p-toluyl)aziridine (10a): $\delta$ $194.0(\mathrm{~s}, \mathrm{C}=0$ ), 143.8, 139.3, 135.6 (s, aromatic ips) C's), 126.3-129.1 (m, aromatic C-H's), 57.8 (d, N-CH), 48.1 (d, C 2 ), 47.1 (d, $\mathrm{C}_{3}$ ), 33.1 (t, cyclohexyl $\mathrm{C}_{2}$ ), 32.7 ( t , cyclohexyl $\mathrm{C}_{6}$ ), 26. ) ( t , cyclohexyl $\mathrm{C}_{4}$ ), 24.6 ( t , cycloheryl, $\mathrm{C}_{5}$ ), $24.2\left(\mathrm{t}\right.$, cyclohexyl, $\mathrm{C}_{3}$ ), $21.6\left(\mathrm{q}, \mathrm{Ar}_{\mathrm{r}}-\mathrm{CH}_{3}\right)$
trans-1-Cyclohexyl-2-methyl-3-(p-phenylbenzoyl)aziridine (11a): $\delta 194.9$ (s, $\mathrm{C}=0$ ), 145.5, 139.5, 136.9 (s, aromatic ipso C's), 127.0-128.7 (m, aromatic C-H's), 58.0 (d, N-CH), 44.3 (d, C ${ }_{3}$ ), 42.1 $\left(\mathrm{d}, \mathrm{C}_{2}\right), 33.2\left(\mathrm{t}\right.$, cyclohexyl $\left.\mathrm{C}_{2}\right), 33.0\left(\mathrm{t}\right.$, cyclohexyl $\left.\mathrm{C}_{6}\right), 25.9(\mathrm{t}$, cyclohexyl $\mathrm{C}_{4}$ ), $24.8\left(\mathrm{t}\right.$, cyclohexyl $\mathrm{C}_{5}$ ), 24.4 ( t , cyclohexyl $\mathrm{C}_{3}$ ), 18.7 ( q , $\mathrm{CH}_{3}$ ).
trans-1-Methyl-2-(p-nitrophenyl)-3-benzoylaziridine (12a): \& 192.3 ( $\mathrm{s}, \mathrm{C}=$ O), 147.1, 146.3, 137.4 (s, aromatic ipso C's), 123.1-133.5 (m, aromatic C-H's), 49.3 (d, $\mathrm{C}_{3}$ ), 48.0 (d, C 2 ), 38.6 ( $\mathrm{q}, \mathrm{N}-\mathrm{CH}_{3}$ ).

1-Cyclohexyl-2-(p-phenylbenzoyl)aziridine (13): $\delta 195.6$ (s, $\mathrm{C}=\mathrm{O}$ ), 145.5, 139.6, 135.4 ( s , aromatic ipso C's), 127.0-128.7 (m, aromatic C-H's), 69.9 (d, N-CH), 39.8 ( $\mathrm{t}, \mathrm{C}_{2}$ ), $35.7 \mathrm{id}, \mathrm{C}_{3}$ ), 32.7 ( t , cyclohexyl $\mathrm{C}_{\mathrm{i}}$ ), $32.3\left(\mathrm{t}\right.$, cyclohexyl $\mathrm{C}_{6}$ ), $25.9\left(\mathrm{t}\right.$, cyclchexyl $\mathrm{C}_{4}$ ), $24.7(\mathrm{t}$, cyclohexyl $\mathrm{C}_{3}$ and $\mathrm{C}_{5}$ ).
trans-1-( $p$-Phenylbenzoyl)-2-phenylcyclopropane (14): ${ }^{31} \delta$ 197.7 (s, C=O), 145.4, 140.3, 139.7 (s, aromatic ips C 's), 126.1-128.7 (m, aromatic C-H's), 29.8. 29.3 (both d, $\mathrm{C}_{1}, \mathrm{C}_{2}$, or $\mathrm{C}_{2}, \mathrm{C}_{1}$ ), 19.2 (t, $\mathrm{C}_{3}$ ).

Methyl trans-1-Isopropyl-2-(p-biphenyl)-3-aziridinecarboxylate (15a): ${ }^{11 \mathrm{a}} \delta 169.2$ : $\mathrm{s}, \mathrm{C}=0$ ), 140.6, 14J.4 (s, aromatic ipso C's), 126.9-128.5 (m, aromatic C-H's), 51.6 (d, $\mathrm{N}-\mathrm{CH}$ ), 47.6 ( $\mathrm{d}, \mathrm{C}_{2}$ ), 44.1 (d, $\mathrm{C}_{3}$ ), 21.8 ( $\mathrm{q}, \mathrm{CH}_{3}$ ), 21.4 ( $\mathrm{q}, \mathrm{CH}_{3}$ ).
cis-1-Methyl-2-phenyl-3-(p-phenylbenzoyl)aziridine (2b): \& $190.5(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 146.8,139.4,138.1$ (s, aromatic ipso C's), 127.2-130.4 (m, aromatic C-H's), 49.8 ( $\mathrm{q}, \mathrm{N}-\mathrm{CH}_{3}$ ), 49.8 (d, $\mathrm{C}_{3}$ ), 46.9 (d, $\mathrm{C}_{2}$ ).
cis-1-Ethyl-2-(p-biphenyl)-3-benzolaziridine (3b): $\delta 193.1$ (s, $\mathrm{C}=\mathrm{O}$ ), 14C.0, 137.0, 134.3 ( s , aromatic ipso C's), 126.6-132.7 (m, aromatic C-H's), 55.4 (t, $\mathrm{N}-\mathrm{CH}_{2}$ ), 51.2 (d, $\mathrm{C}_{3}$ ), 49.8 (d, $\mathrm{C}_{2}$ ), 14.1 ( q , $\mathrm{CH}_{3}$ ).
cis-1-Benzyl-2-phenyl-3-benzoylaziridine (4b): $\delta 192.8$ (s, $\mathrm{C}=\mathrm{O}$ ), 137.6, 136.8, 134.8 ( s , aromatic ipso C's), 127.0-132.7 (m, aromatic C-H's), 63.7 (t, N-CH2), 51.0 (d, C ${ }_{3}$ ), 49.6 (d, C ${ }_{2}$ ).
cis-1-Isopropyl-2-(p-biphenyl)-3-benzoylaziridine (5b): $\delta 193.1$ (s, $\mathrm{C}=\mathrm{O}$ ), 134.4-140.6 (s, aromatic ipso C's), 126.4-128.3 (m, aromatic C-H's), 61.6 (d, N-CH), $50.5\left(\mathrm{~d}, \mathrm{C}_{3}\right), 49.5\left(\mathrm{~d}, \mathrm{C}_{2}\right), 21.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.5$ (q, $\mathrm{CH}_{3}$ ).
cis-1-Cyclohexyl-2-phenyl-3-benzoylaziridine (6b): $\delta 193.2$ (s, $\mathrm{C}=\mathrm{O}$ ), 137.0, 135.5 ( s , aromatic ipso C's), $127.0-35.5$ (m, aromatic C-H's), 68.9 (d, N-CH), 49.8 (d, C ${ }_{3}$ ), 49.1 (d, C 2 ), 32.2 ( t , cyclohexyl $\mathrm{C}_{2}$ ), 31.8 (t. cyclohexyl $\mathrm{C}_{6}$ ), 26.0 ( t , cyclohexyl $\mathrm{C}_{4}$ ), 24.5 ( t , cyclohexyl $\mathrm{C}_{3}$ and $\mathrm{C}_{5}$ )
cis-1-(2-endo-Norbornyl)-2-phenyl-3-benzoylaziridine (7b): ${ }^{32,33} \delta 193.2(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 137.2,135.3$ (s, aromatic ipso C's), 126.9-132.4 (m, aromatic C-H's), 72.3 (d, N-CH or nb $\mathrm{C}_{2}$ ), 52.5 (d, nb $\mathrm{C}_{1}$ ), 50.6 (d, $\mathrm{C}_{3}$ ), $49.5\left(\mathrm{~d}, \mathrm{C}_{2}\right), 40.9\left(\mathrm{t}, \mathrm{nb} \mathrm{C}_{5}\right), 38.3$ (t, nb C $\mathrm{C}_{7}$ ), 37.1 (d, nb $\mathrm{C}_{4}$ ), $29.8\left(\mathrm{t}, \mathrm{nb} \mathrm{C} 5\right.$ ), $22.6\left(\mathrm{t}, \mathrm{nb} \mathrm{C} \mathrm{C}_{6}\right.$ ).
cis-(2-exo-Norbornyl)-2-phenyl-3-benzoylaziridine (8b): ${ }^{32,33}$ © 193.4 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ), 137.2, 135.5 ( s , aromatic ipso C's), 126.9-132.4 (m, aromatic C-H's), 74.1 (d, N-CH or nb $\mathrm{C}_{2}$ ), 51.9 (d, nb C $\mathrm{C}_{1}$ ), 50.5 (d, $\mathrm{C}_{3}$ ), 49.8 (d, $\mathrm{C}_{2}$ ), 42.2 ( $\mathrm{t}, \mathrm{nb} \mathrm{C}_{3}$ ), 35.9 (d, nb C 4 ), 35.6 ( $\mathrm{t}, \mathrm{nb} \mathrm{C} \mathrm{C}_{7}$ ), 28.9 ( $\mathrm{t}, \mathrm{nb}$ $\mathrm{C}_{5}$ ), 26.4 ( $\mathrm{t} . \mathrm{nb} \mathrm{C}_{6}$ ).
cis-1-tert-Butyl-2-phenyl-3-benzoylaziridine (9b): $\delta 193.0$ (s, $\mathrm{C}=\mathrm{O}$ ), 132.4, 128.3 (s, aromatic ipso C's), 126.9-127.6 (m, aromatic C-H's), 53.7 (s, N-C), 44.2 (d, C 3 ), 43.2 (d, C 2 ), ז. $6.5,26.4,26.3$ (all quartets, $\mathrm{CH}_{3}$ ).
cis-1-Cyclohexyl-2-phenyl-3-(p-toluyl)aziricine (10b): $\delta 192.7$ ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ), $-43.3,135.7,134.6$ ( s , aromatic ipso $\mathrm{C}^{\prime} \mathrm{s}$ ), 126.9-128.8 (m, cromatic C-H's), 69.0 (d, N-CH), 49.8 (d, C ${ }_{3}$ ), 49.0 (d, C 2 ), 32.3 (t, (yclohexyl $\mathrm{C}_{2}$ ), $31.9\left(\mathrm{t}\right.$, cyclohexyl $\mathrm{C}_{6}$ ), $26.0\left(\mathrm{t}\right.$, cyclohexyl $\mathrm{C}_{4}$ ), $24.5(\mathrm{t}$, cyclohexyl $\mathrm{C}_{3}$ and $\mathrm{C}_{5}$ ), 21.6 (q, Ar- $\mathrm{CH}_{3}$ ).
cis-1-Cyclohexyl-2-methyl-3-(p-phenylbenzoyl)aziridine (11b): $\delta 194.6$ (s, $\mathrm{C}=0$ ), 145.4, 139.6, 136.0 (s, aromatic ipso C's), 127.0-128.7 (m, aromatic C-H's), 69.4 (d, N-CH) 46.5 (d, C 3 ), 42.7 $\left(\mathrm{d}, \mathrm{C}_{2}\right), 32.5\left(\mathrm{t}\right.$, cyclohexyl $\mathrm{C}_{2}$ ), $31.9\left(\mathrm{t}\right.$, cyclohexyl $\mathrm{C}_{6}$ ), $25.9(\mathrm{t}$, cyclohexyl, $\mathrm{C}_{4}$ ), 24.8 (t, cyclohexyl, $\mathrm{C}_{3}$ and $\mathrm{C}_{5}$ ), $13.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.

Methyl cis-1-Isopropyl-2-(p-biphenyl)-3-aziridinecarboxylate (15b): 1a $\delta 168.7$ ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ), 140.6, 140.4 (s, aromatic ipso C's), 126.5-128.5 (m, aromatic C-H's), 61.2 (d, N-CH) $47.4\left(\mathrm{~d}, \mathrm{C}_{2}\right), 45.2$ ( $\mathrm{d}, \mathrm{C}_{3}$ ), $21.8\left(\mathrm{q}, \mathrm{CH}_{3}\right), 21.4\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.

Acknowledgment. This work was supported in part by Grant CA-02931 from the National Cancer Institute of the U.S. Public Health Service.

Registry No. - la, 40208-64-8; 2a, 6372-52-7; 2b, 7570-82-3; 3a, 32044-34-1; 3b, 32044-33-0; 4a, 6476-12-6; 4b, 6372-57-2; 5a, 32044-36-3; 5b, 32044-35-2; 6a, 2211-61-2; 6b, 2211-65-6; 7/8, 64600-17-5; 9b, 20847-26-1; 10a, 6372-29-8; 10b, 6476-39-7; 11a, 32044-50-1; 11b, 6372-59-4; 12a, 64611-65-0; 13, 6372-55-0; 14, 64600-18-6; 15a, 23214-22-4; 15b, 23214-21-3.

## References and Notes

(1) To whom inquiries should be addressed.
(2) For further details on three-ring to carbonyl hyperconjugation as elucidated by infrared and ultraviolet spectroscopy, see N. H. Cromwell and M. A. Graff, J. Org. Chem., 17, 414 (1952).
(3) P. Mison, R. Chaabouni, Y. Diab R. Martino, A. Lopez, A. Lattes, F. W. Wehrli, and T. Wirthlin, Org. Magn. Reson., 8, 79 (1976).
(4) R. Martino, A. Lopez, and A. Lattes, Org. Magn. Reson., 8, 332 (1976).
(5) G. E. Maciel and G. B. Savitsky, J. Phys. Chem., 69, 3925 (1965).
(6) J. Coll, D. Crist, M. Barrio, and N. J. Leonard, J. Am. Chem. Soc., 94, 7092 (1972).
(7) E. L. Eliel, W. F. Bailey, L. D. Kopp, R. L. Willer, D. M. Grant, R. Bertrand, K. A. Christensen, D. K. Dalling, M. W. Duch, E. Wenkert, F. M. Schell, and D. W. Cochran, J. Am Chem. Soc., 97, 322 (1975).
(8) E. L. Eliel and F. W. Vierhapper, J. Am. Chem. Soc., 97, 2424 (1975).
(9) E. Wenkert, J. Bindra, C. J. Chang, D. W. Cochran, and F. Schell, Acc. Chem. Res., 7, 46 (1974), and references cited therein.
(10) V. Nair, Org. Magn. Reson., 6, 483 (1974).
(11) (a)D. L. Nagel, P. B. Woller, and N. H. Cromwell, J. Org. Chem., 36, 3911 (1971); (b) G. J. Karabatsos, G. C. Sonnichsen, N. Hsi, and D. J. Fenoglio, J. Am. Chem. Soc., 89, 5067 (1967); (c) I. Morishima, K. Yoshikawa, K. Okada, T. Yonezawa, and K. Goto, ibid., 95, 165 (1973); (d) J. A. Pople and M. S. Gordon, ibid., 89, 4253 ( $1 \subseteq 67$ ).
(12) In the nonpolar solvent, carbon tetrachloride, two carbonyl bands appear corresponding to the gauche anc cisoid conformers, while in more polar solvents (chloroform or acetonitrile) only the carbonyl band corresponding to the gauche conformer appears in the cis isomers. For more details, see P. Tarburton, L. J. Wolpa. R. K. Loerch. T. L. Folsom, and N. H. Cromwell, J. Heterocycl. Chem., 14, 1203 1977).
(13) The ${ }^{1} J\left({ }^{13} \mathrm{C}-H\right)$ coupling constant values for trans- and cis-aziridines in Table II prove beyond all question that the 1-alkyl substituent is syn to the carbonyl group (see ref 23 for details).
(14) N. H. Cromwell. Rec. Chem. Prog., 4, 215 (1958).
(15) Currently, x-ray crystallographic studies are underway to determine the exact conformational and configurational aspects of trans- and cis-Nalkylaroylaziridines.
(16) (a) It is a well-known fact that ester carbonyls offer less stabilization to an adjacent (or $\alpha$ ) carbanion than ketone carbonyls. (b) Other factors such as excitation energy should also affect the chemical shift; for more details, see J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, N.Y., 1972
(17) N. H. Cromwell, N. G. Barker, R. A. Wankel, P. J. Vanderhorst, F. W. Olson, and J. H. Anglin, Jr., J. Am. Chem. Soc., 73, 1044 (1951).
(18) N. H. Cromwell, R. E. Bambury, and J. L. Adelfang. J. Am. Chem. Soc., 82, 4241 (1960).
(19) N. H. Cromwell. J. Hetercycl Chem., 3, S-1 (1976)
(20) G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists"', Wiley, New York, N.Y., 1972, Chapter 2 and following.
(21) N. Wilson and J. B. Stothers, Top. Stereochem., 8, 1 (1973).
(22) F. A. Bovey, "Nuclear Magnetic Resonance Spectroscopy"', Academic Press, New York, N.Y., 1969, pp 64-71.
(23) W. B. Jennings, D. R. Boyd, C. G. Watson, E. D. Becker, R. B. Bradley, and D. M. Jerina, J. Am. Chem. Soc., 94, 8501 (1972).
(24) In attributing the chemical shift differences between the trans and cis isomers, the anisotropic effect of the carbonyl group has been included as a constant, but unspecified, quantity in the value for the steric compression factor, $S$.
(25) When $r^{2}>0.9$ it is indicative of excellent correlation between two variables: for further details, see C. E. Schwarz, "Used Math", Prentice-Hall, Englewood Cliffs, N.J., 1973, pp 101-106.
(26) For the UV, IR, and complete ${ }^{1} H$ NMR parameters of these aziridines, see ref 2, 11a, and 27.
(27) P. Tarburton, A. Chung, R. C. Badger. and N. H. Cromwell. J. Heterocycl. Chem., 13, 295 (1976).
(28) The synthetic method described by N. H. Cromwell and H. Hoeksema. J. Am. Chem. Soc., 71, 708 (1949), was employed for these compounds.
(29) N. H. Cromwell and R. J. Mohrbacher. J. Am. Chem. Soc., 75, 6252 (1953).
(30) N. H. Cromwell, N. G. Barker, R. A. Wankel, P. J. Vanderhoerst, F. W. Olson, and J. H. Anglin. J. Am. Chem. Soc., 73, 1044 (1951).
(31) R. J. Mohrbacher and N. H. Cromwell, J. Am. Chem. Soc., 79, 401 (1957).
(32) As a check for solvent effects by the $\mathrm{CDCl}_{3}$, selected samples were run with with $\mathrm{CDCl}_{3}$ and $\mathrm{Me}_{4} \mathrm{Si}$; however, the chemical shifts obtained [relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta=0.0)$ ] were identical in all respects with samples run with $\mathrm{CDCl}_{3}$ only.
(33) See ref 20, p 48, for details on how the norbornyl carbons were assigned; for the norbornylaziridines, very close ${ }^{13} \mathrm{C}$ signals were averaged as they were representative of different conformers present in solution.
(34) It is interesting to take note of tre fact that when F. M. Menger and T. E.

Thanos, J. Am. Chem. Soc., 98, 3267 (1976), studied amine quatemization rates in exo- and endo-2-dimethylaminonorborane, the endo amine quaternized 20 times slower than the exo. However, Menger considered this to be a small factor, which is to say that the endo-dimethylamino group is not subjected to unusual steric effects within the endo cavity. The ${ }^{13} \mathrm{C}$ data obtained on $\mathbf{7 a , b}$ and $\mathbf{8 a , b}$ indirectly slpport Menger's observations because the steric substituent effect, as well as the other chemical shift values for the norbornyl carbons, is about the same in both 7 and 8 . However, a
greater "freedom of motion" is observed in the exo case, owing to its greater ability to achieve minimum strain since there is some freedom of motion witr respect to the exo-norbornyl skeleton. On the other hand, for the endo there is less freedom of motion (its cavity is smaller); hence, the hydrogen on the endo- $\alpha-N$-alkyl carbon is more rigidly held in a specific orientation, thereby giving it a larger steric compression shift. Of course the difference in steric shift of the endo ( 11.6 ppm ) vs exo ( 10.0 ppm ) is quite moderate.

# Synthesis of the 2,3-Dihydro-6H-1,4-oxazin-2-ones Chiral at C(3) and Asymmetric Induction in Hydrogenation of the Azomethine Bond 

Vesna Čaplar, Adriana Lisini, Franjo Kajfež, Dragutin Kolbah, and Vitomir Šunjić*<br>Department of Bicmedical and Biochemical Research, Compagnic di Ricerca Chimica, CRC, 33048<br>San Giovani al Natisone (UD). Italy, and Department of Chemistry, Faculty of Pharmacy, University of Zagreb, Croatia, Yugoslavia

Received July 25, 1977

The 2,3-dihydro-6 $H$-1,4-oxazin-2-ones $17-26$ chiral at $\mathrm{C}(3)$ have been prepared, starting from various $\alpha$-halomethyl aryl ketones and N -protected $\alpha$-amino acids via intermediary $\alpha-\left(\mathrm{O}-\alpha^{\prime}-\mathrm{N}^{\prime}\right.$-protected aminoacyl) hydroxy ketones 1-8 and corresponding hydrobromides 9-16. 1,3-Asymmetric induction in hydrogeneration of the azomethine bond in 17-24 led to 1,3-disubstituted tetrahydrooxazin-2-ones 27-34. Their diastereomeric purity was estimated as $>98 \%$, based on the analysis of their LIS-NMR spectra, whereas their " 3,5 -cis" relative configuration was proposed on the grounds of the direction taken by the hydrogenation, based on the conformational analysis of the starting 2,3 -dihydro derivatives $\mathbf{1 7 - 2 4}$. Heterogeneously catalyzed hydrogenation of the chiral six-membered azomethine derivatives, investigated for the short series of ligands ( $\mathrm{Me}, i-\mathrm{Pr}, \mathrm{Bz}$ ) at the original chiral center, revealed that conformational rigidity around an azomethine bond ensures high diastereoselectivity of the process regardless of the spatial requirements of the larger group on the first center.

Hydrogenation of the azomethine double bond with concurrent asymmetric induction is the most widely used method for preparing chiral compounds with an amino group attached to an asymmetric carbon atom. Knowledge of the greatest significance in this field came mostly from studies by Hiskey and Northrop, ${ }^{1-3}$ Harada, ${ }^{4-6}$ and Corey. ${ }^{7,8}$ Conformational rigidity of the substrate, usually much higher in cyclic than in open-chain azomethine derivatives, signiñicantly enhances the diastereoselectivity of hydrogenation. Thus, reductions of the six- and seven-membered substrates I and II, as carried

out by Corey ${ }^{6,7}$ and Kagan, ${ }^{9}$ respectively, resulted in nearly $100 \%$ stereoselectivity. A recent report ${ }^{10}$ of another highly diastereoselective hydrogenation of 2-propyl-5-methyl-$\Delta^{1,2}$-octahydroquinolin in the last step of $d, l$-pumiliotoxin synthesis is also relevant.

Obviously, the high nonequivalence of the diastereotopic faces about the azomethine bond is largely accentuated in cyclic substrates like I and II, which enables a highly stereoselective approach of the reducing agent (diastereoface differentiating reaction ${ }^{11}$ ). As a part of a wider synthetic program encompassing the preparation of various chiral compounds by diastereoselective azomethine double-bond hydrogenation, we have embarked upon a more detailed study of the diastereoselectivity in 1,3 -asymmetric induction obtained with cyclic, six-membered azomethine substrates. Results from this study are the subject of this report.



III

iv

Asymmetric hydrogenation of the compounds characterized by the general formulas III, i.e., derivatives of 2,3-dihydro6 H -1,4-oxazin-2-ones, has been chosen as an appropriate model reaction (Scheme I).
The enviscged route leading to the azomethine substrates III is shown in Scheme II.
It consists of three steps and starts from easily available prochiral compounds, $\alpha$-halomethyl ketones, and their equally available chiral counterparts, $\alpha$-amino acids. This route should lead to $\mathrm{C}(3)$-chiral derivatives III possessing various groups at the inducing chiral center. This, in turn, should allow a study on the dependence of the diastereoselectivity of hydrogenation on the steric requirements of the larger groups $\mathrm{R}^{\prime}$ on the $\mathrm{C}(3)$ atom.

## Results and Discussion

To start the synthesis of III according to Scheme II, $\alpha$ halomethyl ketones and potassium salts of N -protected $\alpha$ -

Scheme II


Table I. Esters Prepared from $\alpha$-Halomethyl Ketones and $N$-Protected $\alpha$-Amino Acids


| Registry no. | Compd | R | $\mathrm{R}^{\prime}$ | $\mathrm{R}^{\prime \prime}$ | $\mathrm{R}^{\prime \prime \prime}$ | Recrystn solvent | $\mathrm{Mp},{ }^{\circ} \mathrm{C}$ | Yield, ${ }^{a}$ \% | $\begin{gathered} \text { Analyzed } \\ \text { for }^{b} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6479-48-7 | $1{ }^{\prime \prime}$ | Ph | H | H | $i-\mathrm{Pr}$ | Cyclohexane | 103-104 | 79.5 | $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5}$ |
| 6599-3¢-3 | 2 | Ph | H | H | Bz | MeOH | 92-94 | 74.0 | $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{5}$ |
| 64975-9¢-1 | 3 | $p-\mathrm{FPh}$ | H | H | $i-\mathrm{Pr}$ | Cyclohexane | 78-80 | 74.5 | $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{5}$ |
| 64976-0¢1-7 | 4 | 2,5-Di-OMePh | H | H | $i-\mathrm{Pr}$ | 96\% EtOH | 99-102 | 100 | $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NU}_{7}$ |
| 64976-01-8 | 5 | p-Biphenylyl | H | H | $i-\mathrm{Pr}$ | EtOH | 107-108 | 76.8 | $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{5}$ |
| 64976-0<-9 | 6 | $p$-Biphenylyl | H | H | Me | EtOAc | 181-183 | 87.0 | $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{5}$ |
| $64976-06-0$ | 7 | p-Biphenylyl | H | H | Bz | $i-\mathrm{PrOH}$ | 142-144 | 84.0 | $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NC}_{5}$ |
| 64976-04-1 | 8 | 2'-Naphthyl | H | H | $i-\operatorname{Pr}$ | MeOH | 98-99 | 78.9 | $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{5}$ |

${ }^{a}$ Yields ralate to the recrystallized substances. ${ }^{b}$ Satisfactory analytical data ( $\pm 0.3 \%$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ ) were obtained for all compounds listed in the table. ${ }^{c} \mathrm{~N}$ Protected with a tert-butoxy group (Boc.)

Table II. Preparation and Physical Properties of Various $\boldsymbol{x}$-( $O$-Aminoacyl) Hydroxy Ketone Hydrobromides


| Registry no. | Compd | R | $\mathrm{R}^{\prime}$ | $\mathrm{R}^{\prime \prime}$ | $\mathrm{R}^{\prime \prime \prime}$ | Recrystn solvent | Mp, ${ }^{\circ} \mathrm{C}$ | Yield, ${ }^{a}$ \% | Analyzed for ${ }^{b}$ | $[\alpha]_{\text {D }}$ | $\begin{gathered} c(i n \\ \mathrm{MeOH}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6479-54-\% | 9 | Ph | H | H | $i-\mathrm{Pr}$ | $i$ - PrOH | 182-184 | 95.9 | $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BrNO}_{3}$ | $+12.5{ }^{\circ}$ | 2.00 |
| 6479-55-6 | 10 | Ph | H | H | Bz | Acetone-ether | 159-162 | 90.0 | $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrNO}_{3}$ | $+5.3{ }^{\circ}$ | 1.42 |
| 64976-05-2 | 11 | p-FPh | H | H | $i-\mathrm{Pr}$ | $i$ - PrOH | 160-161 | 81.3 | $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrFNO}_{3}$ | $+11.5^{\circ}$ | 2.06 |
| 64976-06-3 | 12 | 2,5-Di-OMePh | H | H | $i-\mathrm{Pr}$ | $i$-PrOH | 161-163 | 82.0 | $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrNO}_{5}$ | $+12.5{ }^{\circ}$ | 2.07 |
| 64976-07-4 | 13 | $p$-Biphenylyl | H | H | $i$ - Pr | MeOH | 208-210 | 97.3 | $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ | $-6.5{ }^{\circ}$ | $1.02{ }^{\text {c }}$ |
| 64976-08-5 | 14 | $p$-Riphenylyl | H | H | Me | MeOH | 217-219 | 89.0 | $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrNO}_{3}$ | $-10.3^{\circ}$ | $1.50{ }^{\text {c }}$ |
| 64976-09-6 | 15 | $p$-Biphenylyl | H | H | Bz | $\mathrm{MeOH}-\mathrm{ether}$ (1:1) | 172-174 | 80.1 | $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ | $+2.0^{\circ}$ | 1.15 |
| 64976-10-9 | 16 | 2'-Naphthyl | H | H | $i-\mathrm{Pr}$ | EtOH | 188-190 | 98.9 | $\mathrm{C}_{17} 7 \mathrm{H}_{20} \mathrm{BrNO}_{3}$ | +20.8 ${ }^{\circ}$ | 2.02 |

${ }^{a}$ Yields are given for crude products. ${ }^{b}$ Satisfactory analytical data ( $\pm 0.3 \%$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ ) were obta:ned for all compounds listed in the table. ${ }^{c}$ Determined in dimethylformamide.
amino acids were condensed in solution at room temperature. DMF was the most favorable solvent. Intermediate esters 1-8 (Table I) have been isolated in yields usually above $90 \%$. (See, however, paragraph concerning supplementary material at the end of the paper.) The Cbz-protecting group was cleaved using $33 \%$ hydrobromic acid in acetic acid, as attempted hydrogenolytic cleavage of $1(10 \% \mathrm{Pd} / \mathrm{C}$ in acetone- $\mathrm{MeOH}, 1: 1$, bubbling hydrogen) led, within a few minutes, to hydrogenolysis of the ester group. One of the products was acetophenone in nearly quantitative yield.

The hydrobromides 9-16, obtained from 1-8, were isolated in $80-100 \%$ yields. Melting points, specific rotations, and other pertinent data of these compounds are summarized in Table II.

A number of trials was necessary to get acceptable yields cf the oxazinones $17-24$ in the cyclization step. The use of basic or acidic conditions, or of some organic solvents, led to extensive hydrolysis, whereby $\alpha$-hydroxyl ketones were formed, and concomitant precipitation of the free $\alpha$-amino acids occurred. Careful reaction control revealed that, on dissolution in water or methanol, the cyclization of some hycrobromides proceeded. indeed, in a clean fashion but was followed by a pH drop from 5 to about 2 . This low pH caused extensive jydrolysis and slowed down the cyclization. Therefore, cyclization in acetate buffer at pH 5.0 , at room temperature, led clearly to the formation of compounds 17-24 in $65-90 \%$ yields (Table III). ${ }^{12}$

On the basis of analysis of Dreiding models for compounds 17-24 conformational equilibria, according to Scheme III, may
be proposed.
Two quasi-boat conformations should correspond to the discrete energy minima. In these conformations the bulky $R$ group should markedly inhibit the approach of the reducing agent toward the " $\alpha$ face" of these molecules. This inhibition occurs because of the conically symmetric free-rotation space around the axis of local symmetry of the isopropyl, benzyl, and methyl groups in these compounds. Consequently, coplanar approach toward the " $\beta$ face", i.e., from above in Scheme III, should be encouraged and a proton on the new chiral center at C(5) should be " 1,3 -cis" with respect to protons on the $C(3)$ center. ${ }^{13}$

Hydrogenation of dihydrooxazinones was preferably performed by passing hydrogen through methanolic solutions and using $10 \% \mathrm{Pd} / \mathrm{C}$ as a catalyst. Some data characteristic of the compounds 27-34 are given in Table IV. Conditions and reagents used in other attempts at hydrogenation are briefly described in the Experimental Section.

Crude hydrogenation products 27-34 were purified by rapid filtration through silica gel to avoid their decomposition and to retain the original diastereomeric ratio. These samples, and those obtained by recrystallization to a constant rotation value

Scheme III

Table III. Preparation and Physical Properties of 2,3-Dihydro-6 H-1,4-oxazin-2-ones 17-26

| Registry no. | Compd | R | $\mathrm{R}^{\prime}$ | $\mathrm{R}^{\prime \prime}$ | Recrystn solvent | $\begin{gathered} \mathrm{Mp}, \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Yield, \% | $\begin{gathered} \mid \alpha]_{\mathrm{D}} / c \\ \left(\mathrm{CHCl}_{3}\right) \end{gathered}$ | Analyzed for $^{a}$ | NMR (in $\mathrm{CDCl}_{3}$ ) | IR, $\mathrm{cm}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64976-11-0 | 17 | Ph | H | $i-\mathrm{Pr}$ | Light petroleum | 72-74 | 67.8 | $-51.6^{\circ} / 5.00$ | $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ | 1.07 (dd, 6 H), 2.50 (m, 1 <br> H), 3.99 (m, i H), 5.23 <br> (ds, 2 II), 7.3-7.8 (m, 5 II) | $\begin{aligned} & 1738,1655,1390,1370 \\ & 690 \end{aligned}$ |
| 65085-99-6 | 18 | Ph | H | Bz | $\underset{(3: 1)^{2}}{\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}}$ | 58-60 | 66.2 | $+26.0^{\circ} / 2.00$ | $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ | $\begin{aligned} & 3.37(\mathrm{~d}, 2 \mathrm{H}), 4.0-5.15(\mathrm{~m}, \\ & 2+1 \mathrm{H}), 7.15-7.55(\mathrm{~m}, 10 \\ & \mathrm{H}) \end{aligned}$ | 1755, 1650, 1595, 700 |
| 64976-12-1 | 19 | $p-\mathrm{FPh}$ | H | $i-\operatorname{Pr}$ | Cyclohexane | 75-76 | 71.1 | $-45.8{ }^{\circ} / 2.08$ | $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FNO}_{2}$ | $\begin{aligned} & 1.05(\mathrm{dd}, 6 \mathrm{H}), 2.50(\mathrm{~m}, 1 \\ & \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 5.29 \\ & (\mathrm{ds}, 2 \mathrm{H}), 7.10(\mathrm{dd}, 2 \mathrm{H}), \\ & 7.78(\mathrm{dd}, 2 \mathrm{H}) \end{aligned}$ | $\begin{aligned} & 1745,1665,1610,1520, \\ & 850 \end{aligned}$ |
| 64976-13-2 | 20 | 2,5-di-OMePh | H | $i-\mathrm{Pr}$ | $\underset{(1: 1)^{2}}{\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}}$ | 95-97 | 81.4 | $\begin{gathered} -113.2^{\circ} / \\ 2.43 \end{gathered}$ | $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}$ | 1.12 (dd, 6 H ), 2.50 (ds, 2 <br> H), 3.7 and 3.8 ( $\mathrm{ss}, 2+3$ <br> H), 4.10 (m, 1 H$), 5.22$ <br> (ds, 2 H$), 6.87$ (d, 2 H ), <br> 7.21 (d, 1 H ) | $\begin{aligned} & 1752,1622,1608,1500, \\ & 826 \end{aligned}$ |
| 64976-14-3 | $2!$ | p-Biphenyly | H | $i-\operatorname{Pr}$ | $i-\mathrm{PrOH}$ | 130-132 | 83.0 | $-14.60 / 1.97$ | $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$ | $\begin{aligned} & 1.03(\mathrm{dd}, 6 \mathrm{H}), 2.47(\mathrm{~m}, 1 \\ & \text { H), } 4.15(\mathrm{~m}, 1 \mathrm{H}), 5.30 \\ & \text { (ds, } 2 \mathrm{H}), 7.28-7.9(\mathrm{~m}, 9 \\ & \text { H) } \end{aligned}$ | $\begin{aligned} & 1740,1625,1605,765 \text {, } \\ & 690 \end{aligned}$ |
| 64976-15-4 | 22 | p-Biphenylyl | H | Me |  |  | 72.3 | +20.5 $/ 1.87$ | $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ | $\begin{aligned} & 1.69(\mathrm{~d}, 3 \mathrm{H}), 4.30(\mathrm{q}, 1 \mathrm{H}), \\ & 3.32(\mathrm{~m}, 2 \mathrm{H}), 7.3-8.1(\mathrm{~m}, \\ & 9 \mathrm{H}) \end{aligned}$ | $\begin{gathered} 1760,1630,1605,1485, \\ 840,830,725,690 \end{gathered}$ |
| 64976-16-5 | 23 | p-Biphenylyl | H | Bz | 96\% EtOH | 160-162 | 92.5 | $\begin{gathered} +273.7^{\circ} / \\ 1.37 \end{gathered}$ | $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}$ | $\begin{aligned} & 3.38(\mathrm{~d}, 2 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), \\ & 4.85(\mathrm{~s}, 2 \mathrm{H}), 7.2-7.7(\mathrm{~m}, \\ & 14 \mathrm{H}) \end{aligned}$ | $\begin{aligned} & 1740,1630,1605,760 \\ & 698 \end{aligned}$ |
| 64976-17-6 | 24 | 2'-Naphthyi | H | $i-\mathrm{Pr}$ | MeOH | 91-92 | 88.2 | -49.5 ${ }^{\circ} / 2.06$ | $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ | 1.10 (dd, 6 H), 2.57 (m, 1 <br> H), $4.20(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~m}$, <br> 2 H ), 7.4-8.05 (m, 7 H ) | 1735, 1645, 825, 740 |
| 64976-18-7 | 25 | Ph | Ph | H | 96\% EtOH | 116-118 | 88.4 | $-9.0^{\circ} / 1.12$ | $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}$ | $\begin{aligned} & 5.37(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), \\ & 7.3-8.1(\mathrm{~m}, 10 \mathrm{H}) \end{aligned}$ | $\begin{gathered} 1735,(\nu \mathrm{C}=0), 1655, \\ (\nu \mathrm{C}=\mathrm{N}), 1600,1580, \\ 1499,698 \end{gathered}$ |
| 64975-85-5 | 26 | $p-\mathrm{BrPh}$ | Ph | H | Cyclohexane | 122-124 | 89.1 | $-0.4^{\circ} / 2.64$ | $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrNO}_{2}$ | $\begin{aligned} & 5.32(\mathrm{ds}, 2 \mathrm{H}), 5.62(\mathrm{~d}, 1 \mathrm{H}), \\ & 7.3-7.9(\mathrm{~m}, 9 \mathrm{H}) \end{aligned}$ | 1745, 1658, 1589, 826 |

Table IV. Preparation and Physical Properties of Tetrahydro-1,4-oxazin-2-ones 27-34


| $\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$ | Compd | R | $\mathrm{R}^{\prime}$ | $\mathrm{R}^{\prime \prime}$ | Recrystn soivent | $\underset{{ }^{\circ} \mathrm{C}}{\mathrm{Mp}}$ | $\begin{gathered} \text { Yield, }{ }^{a} \\ \% \end{gathered}$ | $\frac{\left[\left.\alpha\right\|_{\mathrm{D}} / c\right.}{\substack{\text { Chromatoo- } \\ \text { graphed }}}$ | $\frac{\left(\mathrm{CHCl}_{3}\right)}{-\begin{array}{l} \text { Recrys- } \\ \text { tallized } \end{array}}$ | Analyzed for ${ }^{b}$ | NMR (in $\mathrm{CDCl}_{3}$ ) | IR, $\mathrm{cm}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64975-86-6 | 27 | Ph | H | $i-\mathrm{Pr}$ | MeOH | 68-70 | 61.4 | $\begin{array}{r} -75.3^{\circ} / \\ 2.02^{c} \end{array}$ | $\begin{array}{r} -75.3^{\circ} / \\ 2.02^{\mathrm{c}} \end{array}$ | $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ | 1.02 and $1.06(\mathrm{dd}, 6 \mathrm{H})$, <br> 1.84 (br s, 1 H), 2.4 (m, 1 H), 3.03 (d, 1 H ), 4.15 ( s , $2+1 \mathrm{H}$ ) , 7.2-7.55 (m, 5 H) | $\begin{aligned} & 3340\left(\delta_{\mathrm{NH}}\right), 1730 \\ & (\nu \mathrm{C}=\mathrm{o}), 1385,1370 \\ & (\mathrm{gem} \text {-dimethyl), } \\ & 710,700 \end{aligned}$ |
| 64975-87-7 | 28 | Ph | H | $\mathrm{B} /$ | $n$-Hexane | 76-78 | 45.0 | $\begin{gathered} -157.9^{\circ} / \\ 2.09 \end{gathered}$ | $\begin{gathered} -169.0^{\circ} / \\ 2.28 \end{gathered}$ | $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ | $\begin{aligned} & 2.83(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}), 2.75,4.35 \\ & (\mathrm{~m}, 6 \mathrm{H}), 7.25-7.45(\mathrm{~m}, \\ & 10 \mathrm{H}) \end{aligned}$ | $3325\left(\delta_{\mathrm{NH}}\right), 1730$ ( $\nu_{\mathrm{C}}==0$ ), 1605 ( $\nu_{\mathrm{C}=-\mathrm{C}}$ ), 700 |
| 64975-88-8 | 29 | $p-\mathrm{FPh}$ | H | $i-\mathrm{Pr}$ |  | Oil | 34.7 | $\begin{array}{r} -65.0^{\circ} / \\ 1.56^{\mathrm{c}} \end{array}$ |  | $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FNO}_{2}$ | 1.05 and 1.09 (dd, 6 H ), 1.92 (br s, 1 H ), 2.4 (m, 1 H), 3.75 (d, 1 H ), 4.20 ( s , $2+1 \mathrm{H}$ ), 6.9-7.55 (m, 4 H) | ```(neat) 3350 (\deltaNH), 1740(\nu\textrm{C}=0 (gem-dimethyl), 840``` |
| 64975-89-9 | 30 | 2,5-diOMePh | H | $i-\operatorname{Pr}$ | MeOH | 125-126 | 45.0 | $\begin{gathered} -75.5^{\circ} / \\ 1.50^{c} \end{gathered}$ | $\begin{array}{r} -76.3^{\circ} / \\ 1.51^{c} \end{array}$ | $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}$ | 1.06 and $1.08(\mathrm{dd}, 6 \mathrm{H})$, 1.80 (br, s, 1 H ), 2.5 (m, 1 H ), 3.78 and 3.80 (ds, 6 H), 4.05-4.75 (m, $1+1$ $+2 \mathrm{H}), 6.80(\mathrm{~d}, 2 \mathrm{H})$, 7.10 (m, 1 H) | $3340\left(\delta_{\mathrm{NH}}\right), 298-2850$ $\left(\nu_{\mathrm{CH}_{3}}\right), 1735\left(\nu_{\mathrm{C}=0}\right)$, $1605,1500,860,820$ |
| 64975-90-2 | 31 | $p-\mathrm{Bi}-$ <br> phenylyl | H | $i-\mathrm{Pr}$ | MeOH | 142-143 | 68.9 | $\begin{gathered} -83.9^{\circ} / \\ 1.65 \end{gathered}$ | $\begin{gathered} -84.3^{\circ} / \\ 1.90 \end{gathered}$ | $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$ | $\begin{aligned} & 1.05 \text { and } 1.10(\mathrm{dd}, 6 \mathrm{H}), \\ & 2.00(\mathrm{brs}, 1 \mathrm{H}), 2.45(\mathrm{~m}, \\ & 1 \mathrm{H}), 3.77(\mathrm{~d}, 1 \mathrm{H}), 4.22 \\ & (\mathrm{~s}, 2+1 \mathrm{H}), 7.25-7.7 \\ & (\mathrm{~m}, 9 \mathrm{H}) \end{aligned}$ | $\begin{aligned} & 3350\left(\delta_{\mathrm{NH}}\right), 1740 \\ & (\nu \mathrm{C}=\mathrm{o}), 845,765, \\ & 700 \end{aligned}$ |
| 64975-91-3 | 32 | $\begin{aligned} & p-\mathrm{Bi}- \\ & \text { phenylyl } \end{aligned}$ | H | Me | 96\% EtOH | 164-166 | 30.6 | $\begin{gathered} -56.0^{\circ} / \\ 1.39 \end{gathered}$ | $\begin{gathered} -81.1^{\circ} / \\ 2.00 \end{gathered}$ | $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ | $\begin{aligned} & 1.52(\mathrm{~d}, 3 \mathrm{H}), 1.92(\mathrm{br} \mathrm{~s}, 1 \\ & \mathrm{H}), 3.88(\mathrm{q}, 1 \mathrm{H}), 4.30(\mathrm{~s}, \\ & 2+1 \mathrm{H}), 7.2-7.7(\mathrm{~m}, 9 \\ & \mathrm{H}) \end{aligned}$ | $\begin{aligned} & 3300\left(\delta_{\mathrm{NH}}\right), 1740 \\ & \left(\nu_{\mathrm{C}}=0\right), 1600.1490, \\ & 853,730,690 \end{aligned}$ |
| 64975-92-4 | 33 | $p-\mathrm{Bi}-$ <br> phenylyl | H | $\mathrm{B7}$. | $\begin{aligned} & 96 \% \\ & \text { EtOH } \end{aligned}$ | 158-160 | 80.1 | $\begin{gathered} -173.8^{\circ} / \\ 1.11 \end{gathered}$ | $\begin{gathered} -187.7^{\circ} / \\ 1.06 \end{gathered}$ | $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2}$ | $\begin{aligned} & 1.82(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}), 2.75-4.30 \\ & (\mathrm{~m}, 6 \mathrm{H}), 7.2-7.7(\mathrm{~m}, 14 \\ & \mathrm{H}) \end{aligned}$ | $\begin{aligned} & 3320\left(\delta_{\mathrm{NH}}\right), 1730 \\ & \left(\nu_{\mathrm{C}}=0\right), 1600,760, \\ & 700 \end{aligned}$ |
| 64975-93-5 | 34 | $2^{\prime}$-Naphthyl | H | $i-\mathrm{Pr}$ | MeOH | 78-80 | 50.6 | $\begin{gathered} -91.0^{\circ} / \\ 1.18 \end{gathered}$ | $\begin{gathered} -109.6^{\circ} / \\ 1.25 \end{gathered}$ | $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ | 1.03 and 1.06 (dd, 6 H ), 1.89 (br s, 1 H ), 2.45 (m, $1 \mathrm{H}), 3.83(\mathrm{~d}, 1 \mathrm{H}), 4.31$ (m, $2+1 \mathrm{H}$ ), 7.35-7.95 (m, 7 H ) | $\begin{aligned} & 33300\left(\delta_{\mathrm{NH}}\right), 1730 \\ & \left(\nu_{\mathrm{C}=0}\right), 1365,1368 \\ & (\mathrm{gem} \text {-dimethyl), } \\ & 1605,825,740,695 \end{aligned}$ |

${ }^{a}$ Yields are given for chromatographically pure products. ${ }^{b}$ Satisfactory analytical data ( $\pm 0.3 \%$ for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ ) were obtained for all compounds listed in the table. ${ }^{c}$ Determined in methanol.


Figure 1. Dependence of the LSR incuced shifts on the reagent/ substrate ratio for various groups of protons in compound 27.
(only one recrystallization was usually required), were carefully checked for diastereomeric composition using the LIS method. ${ }^{14,15}$ Generally, only one diastereomer was detected using $\mathrm{Eu}(\mathrm{fod})_{3}$ as an achiral reagent. In some cases, signals due to traces of the other diastereomer could be distinguished from the noise of the baseline, but integration of such signals was not possible. We concluded, therefore, that in all cases investigated asymmetric induction led to at least a $98-99 \%$ excess of one diastereomer, regardless of the group present on the $\mathrm{C}(3)$ chiral center.
Two typical examples of the plot of $\delta_{\text {meas }}$ vs. lanthanide/ substrate concentration ratio for the compounds 27 and 30 are given in Figures 1 and 2.

In all compounds investigated, t.e proton on $\mathrm{C}(3)$ and a proton of the two methyl groups turned out to be the nuclei most sensitive to the addition of LSR. This indicated that the coordination center for the shift reagent is probably the carbonyl oxygen of the lactone group but not the most basic center, i.e., the $\mathrm{N}(4)$ atom. Coordination of the lanthanide reagent to the weaker electron-donating center is caused entirely by steric conditions. Two bulky groups (Ar and R) flank the $\mathrm{N}(4)$ atom so that an approach of the lanthanide reagent is precluded.

Such selective coordination of the polyfunctional organic molecules, favoring a less nucleophilic center because of the sterical hindrances at the stronger one, was repeatedly observed. ${ }^{16,17}$
In conclusion, it may be stated that high diastereoselectivity of heterogeneously catalyzed hydrogenation of the azomethine double bond, as in compounds 17-24, was achieved. In these substrates, substituents of different bulkiness were present at the chiral center $\mathrm{C}(3)$ (methyl, benzyl, isopropyl). The diastereoselectivity achieved in hydrogenation indicates that in order to obtain high asymmetric induction it is of prime importance to ensure conformational rigidity of the substrate. A substanital difference in the spatial requirements of the ligands on the inducing chiral center is less important.

## Experimental Section

Melting points were determined on a Mettler 51 melting point apparatus. Infrared spectra were recorded on Perkin-Elmer M-257 and M-720 spectrometers and are for KBr pellets, unless stated oth-


Figure 2. Dependence of the LSR induced shifts on the reagent/ substrate ratio for various groups of protons in compound $\mathbf{3 0}$.
erwise. A Perk n-Elmer R 12 spectrometer was used to obtain ${ }^{1} \mathrm{H}$ NMR spectra. All ligand-induced shift (LIS) measurements were performed in $\mathrm{CDCl}_{3}$ solution using Merck Eu(fod) $)_{3}$ Uvasol grade without further purification. Usually, the investigated range of LSR/sutistrate concentration ratios was from 0.05 to 0.5 . Optical rotations were neasured on a Perkin-Elmer 141 polarimeter. Thinlayer chromatography (TLC) was performed on aluminum or glass plates precoated with Merck's silica gel 60F 254. Column chromatography was run over granular silica gel, 0.05-0.2 mm (Merck).

General Procedure for Preparation of Esters 1-8. N-Protected $\alpha$-amino acid ( 50.0 mmol ) was dissolved in methanol ( 50.0 mL ), and a solution of potassium hydroxide ( $2.80 \mathrm{~g}, 50.0 \mathrm{mmol}$ ) in methanol $(50.0 \mathrm{~mL}$ ) was added. Then the solvent was evaporat $\epsilon$ d in vacuo, and the resid sal potassium salt was dissolved in dimethylformamide ( 100 mL ). To this soution the desired $\alpha$-halomethyl aryl (or alkyl) ketone ( 50 mmol ) was added, and the reaction mxture was stirred at room temperature. The reaction was followed up by TLC using chloro-form-ether ( $9: 1$ ) as the eluant and was usually found to be completed within 20 h . After completion, the dimethylformamide was evaporated in vacuo at $80^{\circ} \mathrm{C}$, the residue was slurried in water ( 100 mL ), and undissolved crude esters were collected by suction, washed with water, and recrystallized from the solvents stated in Table I. The spectroscopic properties are briefly listed below.

Infrared spectra of all compounds extibited the following characteristic bands $\left(\mathrm{cm}^{-1}\right): 3340-3370\left(\delta_{N H}\right), 1740-1755\left(\nu_{\mathrm{COCH}_{2} \mathrm{OC}=O}\right)$, 1695-1710 ( $\left.\nu_{\mathrm{PHC}}=0\right), 1680-1690\left(\nu_{\mathrm{HNC}}=0\right), 1510-1540\left(\nu_{\mathrm{NH}}\right)$.
NMR spectra of all compounds (except 2) exhibited singlets at $5.05-5.15 \mathrm{ppm}(2 \mathrm{H})$ for benzylic protons within the N - Cbz group. All compounds exhibited double singlets between 5.20 and 5.60 ppm (which sometimes collapsed into one singlet) for geminal protons $\mathrm{COCH}_{2} \mathrm{O}$. All spectra were recorded in $\mathrm{CDCl}_{3}$ except those for 1 , which were recorded in acetone $d_{6}$.

General Procedure for the Preparation of Compounds 9-16. Compounds 1-8 ( 30 mmol ) were dissolved in $33 \%$ hycrogen bromide in acetic acid ( 100 mL ) and stirred until evolution of the gas ceased $(0.5-1 \mathrm{~h})$. The resulting solution was diluted by the addition of ether $(200 \mathrm{mLi}$, and light petroleum ( 100 mL ) was added to precipitate products. The pasty (sometimes oily) products were brought to crystallization by extended scratching. Crude hydrobromides were collected by suction, washed with ether, and recrystallized from the solvents specified in Table II.

Infrared spectra of all compounds exhibited the sollowing characteristic bands ( $\mathrm{cm}^{-1}$ ): $3000-3100,2500-2800,1900-2100\left(-\mathrm{NH}_{3}{ }^{+}\right.$), 1740-1765 ( $1 \mathrm{COCH}_{2} \mathrm{C}=0$ ), and a $\mathrm{PhC}=O$ band betweer. 1690 and 1705 $\mathrm{cm}^{-1}$.

NMR spectra were generally recorded in $\mathrm{MeOH} \cdot d_{4}$, but those of compounds 9 and 13 were recorded in $\mathrm{D}_{2} \mathrm{O}$ and those of 13 and 14 in
$\mathrm{Me}_{2} \mathrm{SO}-d_{6}$. The $S$-alanyl derivative 14 exhibited a characteristic doublet-quartet pattern ( $\mathrm{CH}_{3} \mathrm{CHCNCO}$ ) cen:ered between 1.60 and 1.73 ppm , and 4.2 and 4.38 ppm , respectively. The $S$-phenylalanyl derivatives 10 and 15 exhibited a simple pattern consisting of a douolet at $3.45 \mathrm{ppm}(1 \mathrm{H})$ and a multiplet centered $\mathrm{a} t 4.5 \mathrm{ppm}(2 \mathrm{H})$. The $S$-valyl derivatives $9,11,12$, and 13 exhibited a characteristic doublet tue to protons from the two superimposed diastereotopic methylenic groups, at 1.15-1.22 ppm 6 H ), and a multiplet for the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ proton at $2.30-2.50 \mathrm{ppm}$.

General Procedure for the Preparation of 3,5-Disubstituted 2,3-Dihydro-6 H-1,4-oxazin-2-ones 17-26. The hydrobromides 9-16 $: 10 \mathrm{mmol})$ were dissolved in 0.2 M acetate buffe- $(00 \mathrm{~mL}$, prepared from 70 parts of 0.2 M aqueous sodium acetate and 30 parts of 0.2 M acetic acid). The resulting solution was stirred fo: periods ranging From 2 to 24 h at room temperature, and completeness of the reaction was checked by TLC using chloroform-ether (9.1) or ether-acetone : $3: 1$ ) as eluting systems. During the reaction, cyc lic products precipitated and were separated by suction. Only compound 24 was cyclized for 48 h and. since it did not separate within this period, it was isolated by extraction of the aqueous buffer solution with chloroform ( $3 \times 30$ $\mathrm{mL})$. Extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated for srystallization., After recrystallization from the solveats listed in Table III, pure compounds 17-26 were obtained. Their spectroscopic and other characteristic data are given in Table III.

Attempts at Hydrogenation of the $\mathbf{C}=\mathbf{N}$ Bond in the 2,3-Di-hydro-6 $\boldsymbol{H}$-1,4-oxazin-2-ones. Various reducing agents or hydrogenation catalysts, or both, were tried to find isptimum conditions for the hydrogenation of the $\mathrm{C}=\mathrm{N}$ bond in compounds 17-26, e.g., sodium borohydride, diborane, Raney $\mathrm{Ni}, \mathrm{Pd} / \mathrm{BaSO}_{4}$. and $\mathrm{Pd} / \mathrm{C}$ (5 and $10 \%$, respectively, from Fluka). The following solvents wore used: dioxane, ethyl acetate, acetic anhydride, and methanol. Catalytic hydrogenation by a flow of hydrogen gave rise to a much less hydrogenolytic decomposition than a batch system under otherwise identical reaction conditions ( $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{m} \in$ thanol). Catalytic hydr.)genation proved to be of no use with the $C(3)$ phenyl derivatives 25 and 26 , however, since concomitant hydrogenolysis was inevitable. An attempt to quench the reduced product as the $N$-acetyl cerivative, starting from 503 mg ( 2 mmol ) of 25 and using acetic anhydride as the solvent ( 10.0 mL ) and $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst ( 100 mg ), led to compound 35 ( 508 mg , $81.7 \%$ ).


35


36
$\alpha-(R)-N$-Acetylphenylglycyloxyacetophencine (35): Recrystallized from $\mathrm{CCl}_{4} ; \mathrm{mp} \mathrm{131-133}{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right)$ \& 1.93 ( $\mathrm{s}, 3 \mathrm{H}$ ). 5.26 $(\mathrm{s}, 2 \mathrm{H}), 5.75\left(\mathrm{~d} .1 \mathrm{H}\right.$, degenerated into a singlet on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$, 6.67 ( $\mathrm{d}, 1 \mathrm{H}$, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$ ), 7.2-7.9 (m, 10 H ); IR 3325 ( $\delta_{\mathrm{NH}}$ ), 1748 ( $\nu_{\mathrm{CO}}$, ester), 1715 ( $\nu_{\mathrm{CO}}$, ketone), 1650 ( 1 CO, amine), $1551,698,690 \mathrm{~cm}^{-1} ;[\alpha]^{24} \mathrm{D}+1.0^{\circ}$ (c 2.02 in $\mathrm{CHCl}_{;}$).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}$ (311.34): C, 69.44; H, 5.50; N, 4.50. Found: C, 69.67; H, 5.30; N, 4.64.

When $\mathrm{NaBH}_{4}$ was used to reduce 25 and 26 , extensive hydrolytic decomposition took place, whereas the use of dibo:ane led to nonselective reduction of both functionalities in 2.5 to give the diol 36.

1, $1^{\prime}$-Diphenyldiethanolamine (36). The solution of freshly recrystallized sodium brohydride ( $182 \mathrm{mg}, 4.8 \mathrm{mmcl}$ ) in diglyme $(6.0$ mL . carefully dried over $\mathrm{CaH}_{2}$, and freshly distilled from $\mathrm{LiAlH}_{4}$ ) was added dropwise, during 1 h, to the solution of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~mL}, 9.6$ mmol , freshly distilled from $\mathrm{CaH}_{2}$ ) in dry dig.ym.e ( 2.0 mL ). Using an apparatus similar to the cne described in the literature, ${ }^{18}$ a st ream of nitrogen was introduced, which carried diborane into a flask containing dihydrooxazin-2-or.e, 25 ( $503 \mathrm{mg}, 2.0 \mathrm{~mm}$ ) ) dissolved in THF ( 5.0 mL . dried by a $3-\AA \AA$ molecular sieve). After stirring for 1 h at room temperature, the reaction mixture was heated fo: another hour at $70-80^{\circ} \mathrm{C}$. Then it was cocled and water $(2 \mathrm{~mL})$ and acetic acid $(0.5$ mL ) were added. After subsequent dilution with more water $(20 \mathrm{~mL})$, the mixture was extracted with ether $(3 \times 10 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The oily residue was purified on a column ( 15 g of silica gel, ether-light petroleum (1:1) as the eluant] to give $248 \mathrm{mg}(49 \%)$ of oily 36 , which decomposed on at tempted metal-block distillation. A pure sample was obtained by repeated chromatography and was dried for 24 h at 0.01 mmHg over $\mathrm{P}_{2} \mathrm{O}_{5}:$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2 . i-\left(\mathrm{s}, 2 \mathrm{H}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. $3.70(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 4 \mathrm{H}), 4.5-4.8(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.5(\mathrm{~m}, 10 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$ (257.33): C, 74.68; $\mathrm{H}, 5.74 ; \mathrm{N}, 5.44$.

Found: C, 74.39; H, 6.02; N, 5.33.
General Procedure for the Catalytic Hydrogenation of Compounds $17-24$. All compounds ( 5.0 mmol ) were dissolved in methanol ( 50.0 mL ), to which ethyl acetate was sometimes added in order to improve the solubility. Sabsequentialy, 100-150 mg of 1C \% $\mathrm{Pd} / \mathrm{C}$ was added and the reaction mixture was vigorously stirred while hydrogen was very slowly bubbled through the suspension. The hydrogenation was followed up by TLC using ether-light petroleum (1:1) as the eluant. The reduced products 27-34 appeared as new spots having somewhat smaller $R_{f}$ values, but exhibiting a much weaker fluorescence under the UV-254 lamp, so that their location with iodine vapors was sometimes required. Reactions were usually completed within $1-3 \mathrm{~h}$, after which the catalyst was filtered off, the filt rate was evaporated, and the crude products were purified. first by chromatography [ 25 g of silica gel, ether-light petroleum (1:1) as the eluant] and then by crystallization from the solvents listed in Table IV.

Both the chromatographically purified samples of compounds 27-34 and those recrystallized to constant rotations and melting points (usually two crystallizations were sufficient) were analyzed for diastereomeric composition using the LIS method in NMR, as described in the introductory section of this paper.

Note Added in Proof. After this manuscript was accepted for publication, a paper appeared [G. Schulz and W. Steglich, Chem. Ber., 110,3615 (1977)] where some of the title compounds were described. The authors explained the reactivity of $\mathrm{C}(5)$-alkyl-1,4-oxazin-2-ones as well.

Registry No.-35, 6495-94-6; 36, 64975-95-7; N-Cbz-S-Val, 1149-26-4; $N$-Cbz- $S$-Phe, 1161-13-3; $N$-Cbz- $S$-Ala, 1142-20-7; PhCOCH ${ }_{2} \mathrm{Br}, 70-11-1 ; p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2} \mathrm{Br}, 403-29-2 ; 2,5-\mathrm{di}-\mathrm{MeO}-$ $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COCH}_{2} \mathrm{Br}$, 1204-21-3; p- $\mathrm{PhC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2} \mathrm{Br}$, 135-73-9; 2-bromo-1-(2-naphthalenyl)ethanone. 613-54-7; $\mathrm{PhCOCH}_{2} \mathrm{O}$ $\mathrm{COCH}(\mathrm{Ph}) \mathrm{NH}_{2} \cdot \mathrm{HBr}, 64975-77-\varepsilon ; \mathrm{PhCOCH}_{2} \mathrm{OCOCH}(\mathrm{Ph}) \mathrm{NH} \cdot \mathrm{Cbz}$, 64975-96-8; $\mathrm{HO}_{2} \mathrm{CCH}(\mathrm{Ph}) \mathrm{NH} \cdot \mathrm{Cbz}$, $17609-52-8 ; p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CO}-$ $\mathrm{CH}_{2} \mathrm{OCOCH}(\mathrm{Ph}) \mathrm{NH}_{2} \cdot \mathrm{HBr}, \quad 649-5-79-7 ; \quad p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2} \mathrm{O}$ $\mathrm{COCH}(\mathrm{Ph}) \mathrm{NH} \cdot \mathrm{Cbz}, 64975-97-9 ;$ o- $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2} \mathrm{Br}, 99-73-0$.

Supplementary Material Available. Full spectroscopic (IR, NMR) and analytical data for other intermediary compounds prepared during this work ( 5 pages). Ordering information is given on any current masthead page.

## References and Notes

(1) C. G. Overberger. N. P. Marullo, and R. G. Hiskey. J. Am. Chem. Soc., 83, 1374 (1961).
(2) R. G. Hiskey and R. C. Northrop. J. Am. Chem. Soc.. 83, 4798 ।1961).
(3) R. G. Hiskey and R. C. Northrop. J. Am Chem Soc.. 87, 1753 (1965).
(4) K. Harada. J. Org Chem., 32, 1790 (1967).
(5) K. Harada and K. Matsumoto. Bu'l. Chem. Soc. Jpn. 44, 1068 (1971).
(6) K. Harada, T. Iwasaki, and T. Okawara, Bull. Chem. Soc. Jpn., 46, 1901 (1973).
(7) E. J. Corey. R. J. McCaully, and H. S. Sachdev, J. Am. Chem. Soc., 92, 2476 (1970).
(8) E. J. Corey. H. S. Sachdev, J. Z. Gougoutas, and W. Saenger, J. Am. Chem. Soc., 92, 2488 (1970)
(9) J. P. Vigneron, H. B. Kagan, and A. Horeau, Tetrahedron Lett., 5681 (1968).
(10) L. E. Overman and P. J. Jessup, Tetrahedron Lett., 1253 (1977).
(11) Y. Izumi and A. Tai, "Stereodifferentiating Reactions". Kodansha, Tokyo, 1975
(12) Note: All compounds in Table III possess a C(5)-aryl group, but no dihy-drooxazin-2-one derivatives bearing a $C(5)$-alkyl group could be isolated from corresponding reaction mixtures. (See paragraph on supplementary material at the end of the paper). Attempts to bring about cyclizations of such compounds failed. even when weak ion-exchange resins or $3-\AA$ molecular sieves were used as cyclization promotors, as well as when using conditions according to Vigneron et al. ${ }^{9}$ (dry benzene, presence of silver nitrate).
Failures of cyclization of $\mathrm{C}(5)$-alkyl 2.3 -dihydro- 6 H -1.4-oxazin-2-ones presumably reflect lower reactivity of the carbonyl group and higher vulnerability of the resulting ring sys:em. This system seems to be stabilized enough in the derivatives 17-24 by the conjugative interaction of the endocyclic azomethine double bond, so that these derivatives could be isolated.
(13) This implies an $S$ absolute configuration of the new chiral center $C(5)$, if the inducing center $\mathrm{C}(3)$ possesses an $S$ configuration. Detailed analysis of the CD spectra of these compounds will be published separately.
(14) A. F. Cockerill. G. F. L. Davies, R C. Harden, and D. M. Rockham, Chem. Rev.. 73, 553 (1973).
(15) R. E. Sievers, Ed., Nuclear Magnetic Resonance Shift Reagents. Academic Press. New York and London, 1973.
(16) J. Skolik, J. Barciszewski, A. J. Rafalski, and M. Wiewiorowski, Bull. Acad Pol. Sci., Ser. Sci. Chim., 19, 599 (1971).
(17) H. Wamhoff. C. Materne, and F. Knoll, Chem. Ber., 105, 753 (1972).
(18) R. Monson. 'Advanced Organic Synthesis"'. Academic Press, New York. N. Y., 1972, p 34

# Photolyses of 2-Azido-4-methoxy-6-(1-naphthyl)-1,3,5-triazines: Reactions of Singlet and Triplet 1,3,5-Triazinylnitrenes with Solvents 

Tsuruji Goka, Haruo Shizuka,* and Kohji Matsui<br>Department of Chemistry, Gunma University, Kiryu, Cunma 376, Japan

Received July 19, 1977


#### Abstract

Photochemical reactions of the title compounds with $\mathrm{Me}_{2} \mathrm{SO}$, acetone, and acetonitrile have been carried out. Photolyses of the triazinyl azides in acetone or acetonitrile gave the $1: 1$ cycloaddition products of the triazinylnitrene and the corresponding solvent molecule, aminotriazines, and unidentified polymeric products. In the case of $\mathrm{Me}_{2} \mathrm{SO}$, ylide, aminotriazine, and polymeric products were obtained. An electron-withdrawing substituent in the triazine nucleus accelerated the formation of addition product (or ylide) via the singlet nitrene. The chemical yields of the addition products varied depending upon solvents in the order of $\mathrm{Me}_{2} \mathrm{SO}>$ acetone $>$ acetonitrile. Aminotriazine is produced via the triplet nitrene.


Recently, nitrene chemistry has been extensively studied and well established. ${ }^{1}$ However, little is known about the triazinylnitrenes. Only the photocycloadditions of singlet triazinylnitrene with nitriles ${ }^{2}$ and acetone ${ }^{3}$ have been reported.

Triazine photochemistry involves interesting reactions: the photo-Smiles rearrangement, ${ }^{4}$ the photo-Fries rearrangement, ${ }^{5}$ the phototriazinilation, ${ }^{6}$ and the intramolecular proton transfer in the excited state. ${ }^{7}$ The 1,3,5-triazinyl group has an electron-withdrawing power, and formal charges at the nitrogen atoms of the triazine nucleus are very negative (ca. $-0.35 \sim-0.41),{ }^{7}$ especially in the excited state. In addition, lone-pair electrons exist in the nitrogen atoms of the triazine nucleus. These electronic features may contribute to the photochemical reactions of triazines.
During the course of our studies on the triazine photochemistry, we have carried out the photolyses of 2 -azido-4-methoxy-6-(1-naphthyl)-1,3,5-triazires in solution. This paper reports the reactions of singlet and triplet triazinylnitrenes with solvents ( $\mathrm{Me}_{2} \mathrm{SO}$, acetone, and acetonitrile).

## Results and Discussion

Preparation of $1,3,5-$ Triazine Derivatives. Azido-(1-naphthyl)-1,3,5-triazines employed are shown in Table I. Compounds $1,2,4$, and 5 were prefared by condensation of


1-Naphthylazido-1,3,5-triazines
the corresponding naphthalene cerivatives with 2,4 -di-chloro-6-methoxy-1,3,5-triazine in the presence of $\mathrm{AlCl}_{3}$ followed by treatment with sodium azide. ${ }^{8}$ Compounds $3,6,7$, and 8 were synthesized by reactions of the corresponding 2 or 4 -substituted 1-naphthylmagnesium bromide with cyanuric chloride followed by treatments with sodium methoxide and sodium azide.

Decomposition Quantum Yields of Azidotriazines. When the azidotriazines were irradiated with a high-pressure mercury lamp, a spectral change was observed with a lapse of time, suggesting that a clean photochemical reaction took place. The decomposition quantum yields of the azidotriazines were measured in cyclohexane at $25 \leqslant \mathrm{~nm}$ using a low-pressure mercury lamp (Table II). Dissolved oxygen did not affect the quantum yields.

Photochemical Reactions of Azido-1,3,5-triazines. Reactions with Acetone. Photolyses of azidotriazines in acetone gave the $1: 1$ cycloaddition product of triazinylnitrene and acetone, the corresponding aminotriazine, and unidentified polymeric products depending upon the substituent $Y$ in the naphthalene nucleus. These results are listed in Table III. The substituent in the naphthalene nucleus, especially the hydroxy group capable of forming an intramolecular hydrogen bond, was found to affect the photochemical reaction of azide. In the cases oz compounds 1 and 2 , aminonaphthyltriazines which would result from the hydrogen-abstraction reaction by triplet nitrene were the major products, while in the cases of other azidotriazines cycloaddition products, which are considered to be produced via the electrophilic attack of singlet nitrene upon the carbonyl oxygen of acetone, ${ }^{3}$ were the major product. It seems that the yield of the cycloaddition product increases with increasing the electron-withdrawing power of Y. That is, the electron-withdrawing substituent increases the electrophilic reactivity of singlet nitrene.

In the case of compound 1 , the reaction took place very selectively and tiee only product obtained was the corresponding amine resultirg from the triplet nitrene. It is well known that an intramolecular hydrogen bond is formed in 0 -hydroxyaryltriazines. Therefore, in compound 1 a good coplanarity between two nuclei (naphthalene and triazine) would be expected due to the formation of the intramolecular hydrogen bond. This structure is responsible for an electron migration from the naphthalene ring to the triazine nucleus, and consequently the electrophilic reactivity of the singlet nitrene may decrease. As a result, the intersystem crossing ${ }^{1} \mathrm{~N} \rightarrow{ }^{3} \mathrm{~N}$ is dominant compared with the reaction of singlet nitrene with solvents. ${ }^{9}$ Thus, instead of the photoproduct yielded from singlet nitrene, the product from triplet nitrene (aminotriazine) was obtained as the major product. In this case, however, an opposite effect which may decrease electron density at the proper nitrogen atom in the triazine nucleus through the intramolecular hydrogen bonding is also considered. However, the experimental results show that the former effect is predominant; the result described above may be one of a few examples of the remarkable effect of an intramolecular hydrogen bond upon photoreactivity.

The assumptions described above may be supported by the following facts that in the photolyses of azidotriazines in acetonitrile: (1) a cycloaddition product of triazinylnitrene and acetonitrile in a molar ratio of $1: 1$ is obtained when two substituents in the triazine nucleus are methoxyl groups; ${ }^{2}$ (2) however, in tie presence of benzophenone, which acts as a triplet sensitizer, only aminotriazine is obtained. ${ }^{10}$ Similarly, only aminotriazine is obtained in the direct photolysis of 2 -azido-4,6-bis(dimethylamino) triazine in acetonitrile, ${ }^{10}$ indicating that the presence of two strong electron-donating

Table I. Derivatives of Azido-1-naphthyl-1,3,5-triazine

| Registry no. | Compd | X | Y | $\mathrm{Mp},{ }^{\circ} \mathrm{C}$ | Anal., \% |  | UVe |  | NMR, ${ }^{( } \delta_{\text {ppm }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Found | Calcd | $\lambda_{\text {max }}, \mathrm{nm}$ | $6 \times 10^{-4}$ |  |
| 59336-44-6 | 1 | OH | $\mathrm{H}^{\text {a }}$ | 163-164 ${ }^{\text {b }}$ | C, 57.25 | 57.14 | 375 | 1.2 | 4.18 ( $\mathrm{s}, 3 \mathrm{H}$ ), $7.60(\mathrm{~m}, 5 \mathrm{H}), 9.57$ (d, 1 H ), 13.9 (br) |
|  |  |  |  |  | H, 3.44 | 3.43 |  |  |  |
|  |  |  |  |  | N, 28.45 | 28.56 |  |  |  |
| 59336-45-7 | 2 | H | $\mathrm{OH}^{a}$ | 198-199 ${ }^{\text {b }}$ | C, 57.24 | 57.14 | 346 | 1.7 | $4.07(\mathrm{~s}, 3 \mathrm{H}), 7.07(\mathrm{~d}, 2 \mathrm{H}) .7 .60(\mathrm{~m}, 2 \mathrm{H})$, 8.40 (m, 2 H ), 9.30 (m, 1 H ), 11.15 (br, 1 H ) |
|  |  |  |  |  | H, 3.44 | 3.43 |  |  |  |
|  |  |  |  |  | N, 28.62 | 28.56 |  |  |  |
| 59336-46-8 | 3 | H | $\mathrm{H}^{a}$ | 98-99 | C, 60.75 | 60.42 | 324 | 1.3 | $\begin{aligned} & 4.10(\mathrm{~s}, 3 \mathrm{H}), 7.57(\mathrm{~m}, 3 \mathrm{H}), 8.27(\mathrm{~m}, 2 \mathrm{H}), \\ & 8.40(\mathrm{~d}, 1 \mathrm{H}), 9.07(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 3.64 | 3.62 |  |  |  |
|  |  |  |  |  | N, 30.87 | 30.20 |  |  |  |
| 65103-10-8 | 4 | $\mathrm{OCH}_{3}$ | H | 136-137 ${ }^{\text {c }}$ | C, 58.26 | 58.44 | 337 | 0.55 | $\begin{aligned} & 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 7.42(\mathrm{~m}, 4 \mathrm{H}), \\ & \quad 7.88(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 3.92 | 3.62 |  |  |  |
|  |  |  |  |  | N, 27.41 | 27.26 |  |  |  |
| 65103-11-9 | 5 | H | $\mathrm{OCH}_{3}$ | 109-110 ${ }^{\text {d }}$ | C, 58.04 | 58.44 | 346 | 2.0 | $\begin{aligned} & 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 6.73(\mathrm{~d}, 1 \mathrm{H}) \\ & 7.50(\mathrm{~m}, 2 \mathrm{H}), 8.38(\mathrm{~m}, 2 \mathrm{H}), 9.29(\mathrm{~m}, 1 \\ & \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 3.91 | 3.92 |  |  |  |
|  |  |  |  |  | N, 27.48 | 27.26 |  |  |  |
| 65103-12-0 | 6 | $\mathrm{CH}_{3}$ | H | 88-89 ${ }^{\text {c }}$ | C, 61.33 | 61.63 | 308 | 0.39 | $\begin{aligned} & 2.40(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 7.47(\mathrm{~m}, 4 \mathrm{H}) \\ & \quad 7.87(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 4.13 | 4.14 |  |  |  |
|  |  |  |  |  | N, 28.51 | 28.76 |  |  |  |
| 65103-13-1 | 7 | H | $\mathrm{CH}_{3}$ | $131-132^{\text {d }}$ | C, 61.40 | 61.63 | 332 | 1.4 | $\begin{aligned} & 2.73(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 7.50(\mathrm{~m}, 3 \mathrm{H}), \\ & 8.03(\mathrm{~m}, 1 \mathrm{H}), 8.30(\mathrm{~d}, 1 \mathrm{H}), 9.12(\mathrm{~m}, 1 \\ & \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 4.12 | 4.14 |  |  |  |
|  |  |  |  |  | N, 28.46 | 28.76 |  |  |  |
| 65103-14-2 | 8 | H | Cl | $113-114^{\text {d }}$ | C, 53.60 | 53.77 | 327 | 1.4 | $\begin{aligned} & 4.17(\mathrm{~s}, 3 \mathrm{H}), 7.62(\mathrm{~m}, 3 \mathrm{H}), 8.33(\mathrm{~m}, 2 \mathrm{H}) \\ & 9.10(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 2.89 | 2.90 |  |  |  |
|  |  |  |  |  | N, 26.51 | 26.87 |  |  |  |

${ }^{a}$ Reference 8. ${ }^{b}$ Solvent for recrystallization benzene. ${ }^{c}$ Solvent for recrystallization ligroin. ${ }^{d}$ Solvent for recrystallization ben-zene-ligroin. ${ }^{e}$ Measured in cyclohexane. / Measured in $\mathrm{CDCl}_{3}$.

Table II. Decomposition Quantum Yields $\Phi_{\text {decomp }}$ of Azido-(1-naphthyl)-1,3,5-triazines in Cyclohexane at 254 nm and $25{ }^{\circ} \mathrm{C}^{a}$

|  | Substituent |  |  |
| :---: | :--- | :--- | :--- |
| Compd | $\mathbf{X}$ | $\mathbf{Y}$ | $\Phi_{\text {decomp }}$ |
| $\mathbf{1}$ | OH | H | $0.2 \pm 0.1$ |
| $\mathbf{2}$ | H | OH | $0.3 \pm 0.1$ |
| 3 | H | H | $0.2 \pm 0.1$ |
| $\mathbf{4}$ | $\mathrm{OCH}_{3}$ | H | $0.1 \pm 0.1$ |
| $\mathbf{5}$ | H | $\mathrm{OCH}_{3}$ | $0.4 \pm 0.1$ |
| $\mathbf{6}$ | $\mathrm{CH}_{3}$ | H | $0.7 \pm 0.1$ |
| $\mathbf{7}$ | H | $\mathrm{CH}_{3}$ | $0.4 \pm 0.1$ |
| $\mathbf{8}$ | H | Cl | $0.4 \pm 0.1$ |

${ }^{a}$ The quantum yields were measured in the initial stages of the photolyses (about 10\% decomposition). The initial concentration of azidotriazines was $1 \times 10^{-2} \mathrm{M}$ in cyclohexane.
groups in the triazine nucleus lowers the electrophilic reactivity of singlet nitrene very much. The cycloaddition product is known to result from the electrophilic attack of singlet triazinylnitrene upon the nitrogen atom of acetonitrile. ${ }^{2}$

From quenching experiments, phenyl azide in the excited singlet state decomposes to the singlet nitrene and nitrogen $\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right) .{ }^{11}$ By means of laser spectroscopy, it has been shown that the direct photodecomposition of 1 -azidopyrene occurs through ${ }^{1} \mathrm{~N}_{3} \rightarrow{ }^{1} \mathrm{~N} \rightarrow{ }^{\text {© }} \mathrm{N} .{ }^{12}$ In the photolysis of 2-azido-4,6-dimethoxy-1,3,5-triazine in nitriles, the singlet mechanism occuring through ${ }^{1} \mathrm{~N}_{3} \rightarrow{ }^{1} \mathrm{~N} \rightarrow$ adduct is also shown. ${ }^{2}$

Thus, the reaction pathway in the azidotriazine-acetone system is similarly accounted for by Scheme I, where ${ }^{1} \mathrm{~N}$ and ${ }^{3} \mathrm{~N}$ denote the singlet and triplet nitrenes, respectively. As for compound 1 , the intersystem crossing $k^{\prime}$ isc is faster than the reaction of ${ }^{1} \mathrm{~N}$ with acetone.

Photolyses of Azidotriazines in $\mathbf{M e}_{2} \mathbf{S O}$. In the photolyses of azido(1-naphthyl)triazines in $\mathrm{Me}_{2} \mathrm{SO}$, the corresponding


Figure 1. Spectral change of an acetonitrile solution of 2-azido-4-methoxy-6-(2-hydroxy-1-naphthyl)-1,3,5-triazine (1) by irradiation with a high-pressure mercury lamp. Numbers refer to time at a measurement in seconds.
ylide, aminotriazine, and unidentified polymeric products were obtained (Table IV).

In the cases of compounds 1 and 2 , both ylide and aminotriazine were obtained; however, in other cases no aminotriazine was detected. The photoproducts of ylide and aminotriazine seem to be yielded by the reactions of singlet and

Scheme I

triplet nitrenes with $\mathrm{Me}_{2} \mathrm{SO}$, respectively. On the whole, the results in Table IV show that the p.otolysis in $\mathrm{Me}_{2} \mathrm{SO}$ occurs in a pattern similar to that in acetone. However, the reaction of singlet nitrene with $\mathrm{Me}_{2} \mathrm{SO}$ may proceed more readily than that in acetone. In $\mathrm{Me}_{2} \mathrm{SO}$, the reaction stopped at the stage of ylide instead of the cycloaddition product. ${ }^{13}$ The combination between the ring nitrogen and oxygen atoms to give the cycloaddition product would be difficult because the ylides from $\mathrm{Me}_{2} \mathrm{SO}$ are considered to exist as sulfoximine derivatives. ${ }^{14}$


Photolyses of Azidotriazines in Acetonitrile. The photolyses of azidotriazines in acetonitrile also gave the $1: 1 \mathrm{cy}$ cloaddition product of triazinylnitrene and acetonitrile, aminotriazine, and unidentified polymeric products; however, the cycloaddition product was obtained only in the case of compound 4 as shown in Table V. In this case, two aromatic nuclei would be twisted toward each other very much by the steric hindrance due to the o-methoxyl group, resulting in a decrease in the electron migration from the naphthalene ring to the triazine nucleus; in addition this $-I$ effect of the naphthyl group would decrease the electron density of the triazine nucleus. Therefore, the main reaction product results from the singlet nitrene.

Table III. Photochemical Reactions of Azidotriazines in
Acetone $^{\alpha}$

${ }^{a}$ Solutions of azidotriazines in acetone $(0.1 \mathrm{~g}$ in 20 mL of acetone) were irradiated. Irradiation with a high-pressure mercury lamp was continued until the starting materials (azidotriazines) disappeared completely. It took about 2 days. ${ }^{b}$ Unidentified dark brown polymeric products were produced in large amounts. c Undetected.

Although in the photolyses of azido(1-naphthyl)triazines in acetone, $\mathrm{Me}_{2} \mathrm{SO}$, and acetonitrile the addition product and/or aminstriazine was obtained as the major product in every case, the yield of the major product varied depending upon the solvent employed. Overall, the highest yields of addition products were obtained with $\mathrm{Me}_{2} \mathrm{SO}$, while acetonitrile gave the highest yields of amines. This difference in reactivity among the solvents employed may be attributed to a difference in the electron-donating power of solvents; for example, the sulfur atom in $\mathrm{Me}_{2} \mathrm{SO}$ would be more electron donating than the oxygen atom in acetone (the 3 p lone pair electrons of the sulfur atom should be much more electron donating than the $2 p$ lone pair electrons of the oxygen atom). Thus, the electrophilic attack by singlet triazinylnitrene upon the sulfur atom of $\mathrm{Me}_{2} \mathrm{SO}$ would take place more readily than that upon the carbonyl oxygen atom of acetone. As for acetone and acetonitrile, the former would be more electron donating in accord with their ionization potentials; the ionization potential of acetonitrile is known to be $1.23 \mathrm{eV}^{15}$ and that of acetone is $9.69 \mathrm{eV} .{ }^{16}$ Tr.us, when compound 4 was irradiated in a mixture of $\mathrm{Me}_{2} \mathrm{SO}$, acetone, and acetonitrile, although all products obtained we:e resulted from the singlet triazinylnitrene, the yields of the addition products varied in the following order with respect to the solvents, supporting the assumption described above:

## $\mathrm{Me}_{2} \mathrm{SO}>$ acetone > acetonitrile

In conclusion, the reactions of singlet and triplet triazinylnitrenes produced by the photolyses of azido(1-naphthyl)triazines can be explained reasonably by Scheme II. where $\mathrm{T}-\mathrm{N}_{3}$ is the starting material, ${ }^{3} \mathrm{D}$ the triplet sensitizer

Table IV. Photochemical Reactions of Azidotriazines in $\mathrm{Me}_{2} \mathrm{SO}^{\boldsymbol{a}}$



| Compd | $\mathbf{X}$ | $\mathbf{Y}$ | \% ylide | \% $\mathrm{TrNH}_{2}$ |
| :---: | :--- | :--- | :---: | :---: |
| $\mathbf{1}$ | OH | H | 30 | 25 |
| $\mathbf{2}$ | H | OH | 25 | 27 |
| $\mathbf{3}$ | H | H | 55 | c |
| $\mathbf{4}$ | $\mathrm{OCH}_{3}$ | H | 4.3 | c |
| $\mathbf{5}$ | H | $\mathrm{CCH}_{3}$ | 54 | c |
| $\mathbf{6}$ | $\mathrm{CH}_{3}$ | H | 50 | c |
| $\mathbf{7}$ | H | $\mathrm{CH}_{3}$ | 54 | c |
| $\mathbf{8}$ | H | Cl | 63 | c |

${ }^{a}$ Solutions of azidotriazines in $\mathrm{Me}_{2} \mathrm{SO}(\underline{2} .0 \mathrm{~g}$ in 20 mL of $\mathrm{Me}_{2} \mathrm{SO}$ ) were irradiated with a high-pressure mercury lamp for 2 days; however $25-30 \%$ of the starting materials (azidotriazines) were recovered. ${ }^{b}$ Unident:fied polymeric products were produced in small amounts. ${ }^{c}$ Undetected.

(e.g., benzophenone), and ${ }^{1} \mathrm{~N}$ and ${ }^{3} \mathrm{~N}$ the singlet and triplet triazinylnitrenes, respectively.

The overall reaction is governed by the relative rate of the electrophilic attack ( $k_{\mathrm{r}}[$ solv $]$ ) to that of intersystem crossing $k^{\prime}{ }_{\text {isc, }}{ }^{9}$ which depends upon the electronic property of the substituent in the naphthalene nucleus on one hand and the electron-donating power of the solvent on the other hand.

Thus, when $k_{-r}\left[\right.$ solv] $>k_{\text {isc }}^{\prime}$, the cycloaddition product or ylide is the major product, while aminotriazire becomes the main product when $k_{\mathrm{r}}[$ solv $]<k_{\text {isc }}^{\prime}$.

## Experimental Section

All the melting points are uncorrected. The identification of the reaction products was performed by means of NMR, IR, UV, and MS spectra, by elemental analyses, and by a mixed meltirg point test with an authentic sample.

Materials. A typical preparation by the Friedel-Crafts reaction of chlorotriazines with naphthalene derivatives is shown in the case of compound 4 . Compounds 1,2 , and 5 were prepare 1 by treating the corresponding chlorotriazine derivatives with sodium azide. ${ }^{8}$

Table V. Photochemical Reactions of Azidotriazines in Acetonitrile ${ }^{a}$

${ }^{a}$ Solutions of azidotriazines in acetonitrile ( 2.0 g in 20 mL of acetonitrile) were irradiated with a high-pressure mercury lamp for 1 week; however 45-50\% of the starting materials (azidotriazines) were recovered. ${ }^{b}$ Unidentified dark brown polymeric products were produced in large amounts. ${ }^{c}$ Undetected.

2-Azido-4-methoxy-6-(2-methoxy-1-naphthyl)-1,3,5-triazine (4). A solution of $45.0 \mathrm{~g}(0.29 \mathrm{~mol})$ of $\beta$-methoxynaphthalene in 300 mL of chloroform was added drop by drop into a mixture oí 52.0 g ( 0.29 mol ) of 2,4-dichloro-6-methoxy-1,3,5-triazine, 38.8 g ( 0.29 mol ) of powdered aluminium chloride, and 800 mL of chloroform at room temperature. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h ; then the reaction mixture was poured into 1 L of ice water containing 250 mL of a concentrated hydrochloric acid solution. After the chloroform layer was washed with water, chloroform was distilled off, and the residue was purified by column chromatography on silica gel using a mixture of benzene and ligroin (10:1 by volume) to give an analytical sample of 2-chloro-4-methoxy-6-(2-methoxy-1-naphthyl)-1,3,5-triazine in a yield of $24 \%$ : $\mathrm{mp} 142-143^{\circ} \mathrm{C}$.

A solution of $7.8 \mathrm{~g}(0.116 \mathrm{~mol})$ of sodium azide in 60 mL of water was added drop by drop into a solution of $10 \mathrm{~g}(0.033 \mathrm{~mol})$ of 2-chloro-4-methoxy-6-(2-methoxy-1-naphthyl)-1,3,5-triazine in 300 mL of dioxane at room temperature. After stirring at $45^{\circ} \mathrm{C}$ for 7 h , the reaction mixture was poured into 1 L of water. The precipitate thus obtained was filtered, dried, and purified by recrystallization from lingoin to give an analytical sample of compound 4 in a yield of $98 \%$ : mp $136-137^{\circ} \mathrm{C}$.

A typical preparation by the Grignard reaction of 1-naphthylmagnesium halides with chlorotriczines is shown in the case of compound 6. A solution obtained by the reaction of $30.0 \mathrm{~g}(0.136 \mathrm{~mol})$ of 2-methyl-1-bromonaphthalene with $3.30 \mathrm{~g}(0.136 \mathrm{~mol})$ of magnesium in a mixture of 250 mL of diethyl ether and 150 mL of tetrahydrofuran was added drop by drop into a solction of $25.0 \mathrm{~g}(0.136 \mathrm{~mol})$ of cyanuric chloride in 350 mL of diethyl ether at room temperature. After stirring for 5 h at room temperature, the mixture was poured intol L of ice water containing 200 mL of concentrated hydrochloric acid. The ether layer was washed with water, then the solvent was removed by distillation and the residue was purified by column chromatography on silica gel using a mixture of tenzene and ligroin (2:1 by volume) to give 2,4-dichloro-6-(2-methyl-1-naphthyl)-1,3,5-triazine in a yield of $23 \%$ : mp $141-142^{\circ} \mathrm{C}$.

A solution obtained by dissolving $0.4 \mathrm{~g}(0.0174 \mathrm{~mol})$ of sodium in 50 mL of methanol was added drop by drop into a solution of 5.0 g ( 0.0174 mol ) of 2,4-dichloro-6-(2-methyl-1-naphthyl)-1,3,5-triazine in a mixture of methanol $(50 \mathrm{~mL})$ and dioxane $(100 \mathrm{~mL})$. The reaction mixture was stirred for 2 h at room temperature, then was poured into 500 mL of ice water and extracted with chloroform. After the solvent was removed by distillation, the reaction product was purified by

Table VI. Derivatives of Chloro(1-naphthyl)-1,3,5-triazine


| $\begin{aligned} & \text { Registry } \\ & \text { no. } \end{aligned}$ | A | B | X | Y | $\mathrm{Mp},{ }^{\circ} \mathrm{C}$ | Solvent for recrystallization | Anal., \% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Found |  |  | Calcd |  |  |
|  |  |  |  |  |  |  | C | H | N | C | H | N |
| 6510¢-15-3 | $\mathrm{OCH}_{3}$ | Cl | $\mathrm{OCH}_{3}$ | H | 142-143 | Ligroin | 59.95 | 4.03 | 13.75 | 59.70 | 3.98 | 13.93 |
| 6510¢-16-4 | $\mathrm{OCH}_{3}$ | Cl | H | $\mathrm{OCH}_{3}$ | 135-136 | Benzene-ligroin | 59.57 | 4.15 | 14.11 | 59.70 | 3.98 | 13.93 |
| 6510¢-17-5 | Cl | Cl | $\mathrm{CH}_{3}$ | H | 141-142 | Ligroin | 58.10 | 3.22 | 14.28 | 57.93 | 3.10 | 14.48 |
| 4446-43-9 | Cl | Cl | H | $\mathrm{CH}_{3}$ | 173-174 | Benzene-ligroin | 57.78 | 3.33 | 14.56 | 57.93 | 3.10 | 14.43 |
| 6510¢-18-6 | $\mathrm{OCH}_{3}$ | Cl | $\mathrm{CH}_{3}$ | H | 90-91 | Ligroin | 53.24 | 4.43 | 14.63 | 63.05 | 4.20 | 14.71 |
| 6510¢-19-7 | $\mathrm{OCH}_{3}$ | Cl | H | $\mathrm{CH}_{3}$ | 132-133 | Benzene-ligroin | 53.03 | 4.35 | 14.57 | 63.05 | 4.20 | 14.71 |
| 6510¢-20-0 | Cl | Cl | H | Cl | 135-136 | Benzene-ligroin | 50.43 | 2.05 | 13.66 | 50.24 | 1.93 | 13.53 |
| 65102-89-8 | $\mathrm{OCH}_{3}$ | Cl | H | Cl | 120-121 | Benzene-ligroin | 54.83 | 3.12 | 13.84 | 54.90 | 2.94 | 13.73 |

Table VII. 2-Amino-4-methoxy-6-(2- or 4-substituted-1-naphthyl)-1,3,5-triazines

| Registry no. | X | Y | $\mathrm{Mp},{ }^{\circ} \mathrm{C}$ | ```Solvent for recrystallization``` | Anal., \% |  |  |  |  |  | MS, <br> $m / e$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Found |  |  | Calcd. |  |  |  |
|  |  |  |  |  | C | H | N | C | H | N |  |
| 65102-90-1 | OH | H | 225-226 | Benzene | 62.80 | 4.67 | 20.78 | 62.68 | 4.51 | 20.89 | 268 |
| 65121-39-3 | H | OH | 215-216 | Benzene | 62.97 | 4.60 | 20.71 | 62.68 | 4.51 | 20.89 | 268 |
| 65102-91-2 | H | H | 220-221 | Benzene | 66.35 | 4.71 | 22.01 | 66.65 | 4.79 | 22.21 | 252 |
| 65102-92-3 | $\mathrm{OCH}_{3}$ | H | 221-222 | Benzene | 63.98 | 4.87 | 19.51 | 63.82 | 5.00 | 19.85 | 282 |
| 65102-93-4 | $\mathrm{CH}_{3}$ | H | 218-219 | Benzene | 67.98 | 5.31 | 20.96 | 67.65 | 5.30 | 21.04 | 266 |
| 65102-94-5 | H | $\mathrm{CH}_{3}$ | 220-221 | Benzene | 67.92 | 5.28 | 20.78 | 67.65 | 5.30 | 21.04 | 266 |

Table VIII. 1:1 Adducts of 4-Methoxy-6-(2- or 4-substituted-1-naphthyl)-1,3,5-triazin-2-ylnitreane and Acetone or Acetonitrile

| Acetonitrile |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Registry no. | $\frac{\text { Sub }}{\mathbf{X}}$ | $\frac{\text { ituent }}{\mathbf{Y}}$ | $\stackrel{\mathrm{M},}{\mathrm{M},}$ | Solvent for recrystallization | $\frac{\text { Anal. }}{}$ | Calcd | $\begin{aligned} & \mathrm{MS}, \\ & m / \epsilon \end{aligned}$ | NMR, $\delta_{\text {ppm }}$ |
| 65102-95-6 | H | OH | 221-222 | Benzene | $\begin{aligned} & \quad \text { Acetor } \\ & \mathrm{C}, 62.96 \\ & \mathrm{H}, 5.16 \\ & \mathrm{~N}, 17.59 \end{aligned}$ | $\begin{array}{r} 62.95 \\ 4.97 \\ 17.28 \end{array}$ | 324 | $\begin{aligned} & { }^{a} 1.73(\mathrm{~s}, 6 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}), \\ & 7.57(\mathrm{~m}, 2 \mathrm{H}), 8.33(\mathrm{~m}, 3 \mathrm{H}), G .22(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
| 65102-96-7 | H | H | 177-178 | Benzene | $\begin{aligned} & \mathrm{C}, 66.70 \\ & \mathrm{H}, 5.24 \\ & \mathrm{~N}, 18.42 \end{aligned}$ | $\begin{array}{r} 66.22 \\ 5.23 \\ 18.17 \end{array}$ | 30¢ | $\begin{aligned} & { }^{a} 1.75(\mathrm{~s}, 6 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 7.58(\mathrm{~m}, 3 \mathrm{H}), \\ & \quad 8.07(\mathrm{~m}, 3 \mathrm{H}), 8.93(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
| 65102-97-8 | $\mathrm{OCH}_{3}$ | H | 196-197 | Benzene | $\begin{aligned} & \mathrm{C}, 64.02 \\ & \mathrm{H}, 5.32 \\ & \mathrm{~N}, 16.62 \end{aligned}$ | $\begin{array}{r} 63.89 \\ 5.36 \\ 16.58 \end{array}$ | $33 \varepsilon$ | $\begin{aligned} & { }^{a} 1.77(\mathrm{~s}, 6 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), \\ & \quad 7.95(\mathrm{~m}, 6 \mathrm{H}) \end{aligned}$ |
| 65102-98-9 | H | $\mathrm{OCH}_{3}$ | 173-174 | Benzene | $\begin{aligned} & \text { C, } 63.40 \\ & \text { H, } 5.41 \\ & \mathrm{~N}, 16.57 \end{aligned}$ | $\begin{array}{r} 63.89 \\ 5.36 \\ 16.58 \end{array}$ | $33 \varepsilon$ | $\begin{aligned} & { }^{b} 1.78(\mathrm{~s}, 6 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), \\ & 6.83(\mathrm{~d}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 8.38(\mathrm{~m}, 2 \mathrm{H}), \\ & 9.33(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
| 65102-99-0 | $\mathrm{CH}_{3}$ | H | 147-148 | Benzene | $\begin{aligned} & \mathrm{C}, 67.09 \\ & \mathrm{H}, 5.72 \\ & \mathrm{~N}, 17.81 \end{aligned}$ | $\begin{array}{r} 67.06 \\ 5.63 \\ 17.38 \end{array}$ | 322 | $\begin{aligned} & { }^{\mathrm{b}} 1.83(\mathrm{~s}, 6 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), \\ & \quad 7.42(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~m}, 3 \mathrm{H}) \end{aligned}$ |
| 65103-00-6 | H | $\mathrm{CH}_{3}$ | 167-168 | Benzene | $\begin{aligned} & \text { C, } 67.15 \\ & \mathrm{H}, 5.61 \\ & \mathrm{~N}, 17.42 \end{aligned}$ | $\begin{array}{r} 67.06 \\ 5.63 \\ 17.38 \end{array}$ | 322 | $\begin{aligned} & { }^{b} 1.80(\mathrm{~s}, 6 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}) \\ & \quad 7.42(\mathrm{~m}, 3 \mathrm{H}, 8.08(\mathrm{~m}, 2 \mathrm{H}), 9.17(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
| 65103-01-7 | H | Cl | 145-146 | Benzene | $\begin{aligned} & \mathrm{C}, 59.83 \\ & \mathrm{H}, 4.45 \\ & \mathrm{~N}, 16.55 \end{aligned}$ | $\begin{array}{r} 59.57 \\ 4.41 \\ 16.34 \end{array}$ | $34 ¢$ | $\begin{aligned} & { }^{\mathrm{b}} 1.83(\mathrm{~s}, 6 \mathrm{H}), 4.18(\mathrm{~s}, 3 \mathrm{H}), 7.66(\mathrm{~m}, 3 \mathrm{H}), \\ & 8.33(\mathrm{~m}, 2 \mathrm{H}), 9.20(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
| 65103-02-8 | $\mathrm{OCH}_{3}$ | H | 135-136 | Benzene | Acetonit <br> C, 63.24 <br> H, 4.73 <br> N, 21.61 | $\begin{array}{r} l \mathrm{le} \\ 63.54 \\ 4.70 \\ 21.80 \end{array}$ | 321 | $\begin{aligned} & { }^{a} 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), \\ & 7.50(\mathrm{~m}, 5 \mathrm{H}), 8.05(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |

recrystallization from ligroin to give an analytical sample of 2 -chloro-4-methoxy-6-(2-methyl-1-naphthyl)-1,3,5-triazine (mp 90-91 ${ }^{\circ} \mathrm{C}$ ) in a yield of $84 \%$.

2-Chloro-4-methoxy-6-(2-methyl-1-naphthyl)-1,3,5-triazine was treated with sodium azide in a manner similar to that of described
above to give the corresponding azido-1.3,5-triazine ir a yield of $92 \%$ (mp 88-89 ${ }^{\circ} \mathrm{C}$ ).

Analytical data of new compounds of chlorotriazine type were listed in Table VI.

Acetone and $\mathrm{Me}_{2} \mathrm{SO}$ (G.R. grade) were used without further puri-

Table IX. Photochemical Reaction Products (Ylides) of
2-Azido-4-methoxy-6-(2- or 4-substituted-1-naphthyl)-1,3,5-triazines with Me $\mathbf{2}^{\mathbf{S}} \mathbf{S O}$

| Registry no. | X | Y | $\mathrm{Mp},{ }^{\circ} \mathrm{C}$ | Solvent for rec-ystallization | Anal., \% |  | MS, <br> $m / e$ | $\begin{gathered} \text { NMR }\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right), \\ \delta_{\mathrm{ppm}} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Found | Calcd |  |  |
| 万5103-03-9 | OH | H | 214-215 | Acetone | C, 55.69 | 55.80 | 344 | $\begin{aligned} & 3.50(\mathrm{~s}, 6 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 7.75(\mathrm{~m}, 6 \mathrm{H}), \\ & 9.27(\mathrm{~m},=\mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 4.67 | 4.68 |  |  |
|  |  |  |  |  | N, 16.25 | 16.27 |  |  |
| 65103-04-0 | H | OH | 152-153 | Benzene | C, 55.71 | 55.80 | 344 | $3.55(\mathrm{~s}, 6 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 7.03(\mathrm{~m}, 1 \mathrm{H})$, 7.58 (m, 2 H), 8.27 (m, 2 H), 9.25 (m, 1 H). 10.83 ( $\mathrm{m}, \mathrm{l}$ H) |
|  |  |  |  |  | H. 4.42 | 4.68 |  |  |
|  |  |  |  |  | N, 16.36 | 16.27 |  |  |
| 65121-40-6 | H | H | 164-165 | Benzeneligroin | C, 58.89 | 58.52 | 328 | $\begin{aligned} & 3.58(\mathrm{~s}, 6 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 7.63(\mathrm{~m}, 3 \mathrm{H}) \\ & 8.08(\mathrm{~m}, 3 \mathrm{H}), 9.13(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 5.21 | 4.91 |  |  |
|  |  |  |  |  | N, 17.63 | 17.06 |  |  |
| 65103-05-1 | $\mathrm{OCH}_{3}$ | H | 193-194 | Benzene | C, 57.15 | 56.97 | 358 | $\begin{aligned} & 3.53(\mathrm{~s}, 6 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) \\ & 7.50(\mathrm{~m}, 4 \mathrm{H}), 8.10(\mathrm{~m}, 1 \mathrm{H}), 9.15(\mathrm{~m}, 1 \\ & \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 5.05 | 5.06 |  |  |
|  |  |  |  |  | N, 15.54 | 15.63 |  |  |
| 65103-06-2 | H | $\mathrm{OCH}_{3}$ | 194-195 | Benzene | C, 57.43 | 56.97 | 358 | $\begin{aligned} & 3.55(\mathrm{~s}, 6 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}) \\ & 7.12(\mathrm{~d}, 2 \mathrm{H}), 7.58(\mathrm{~m}, 2 \mathrm{H}), 8.30(\mathrm{~m}, 2 \mathrm{H}), \\ & 9.17(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 5.10 | 5.06 |  |  |
|  |  |  |  |  | N, 15.65 | 15.63 |  |  |
| 65103-07-3 | $\mathrm{CH}_{3}$ | H | 218-219 | Benzene | C, 59.43 | 59.63 | 342 | $\begin{aligned} & 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 6 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), \\ & \quad 7.50(\mathrm{~m}, 4 \mathrm{H}), 7.97(\mathrm{~m}, 2 \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 5.47 | 5.30 |  |  |
|  |  |  |  |  | N, 16.45 | 16.36 |  |  |
| 65103-08-4 | H | $\mathrm{CH}_{3}$ | 219-220 | Benzene | C, 59.56 | 59.63 | 342 | $\begin{aligned} & 2.76(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 6 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), \\ & 7.60(\mathrm{~m}, 3 \mathrm{H}), 8.13(\mathrm{~d}, 2 \mathrm{H}), 9.00(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 5.30 | 5.30 |  |  |
|  |  |  |  |  | N, 16.42 | 16.36 |  |  |
| 65103-09-5 | H | Cl | 140-141 | Benzene | C, 53.10 | 52.96 | 362 | $\begin{aligned} & 3.58(\mathrm{~s}, 6 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 7.80(\mathrm{~m}, 3 \mathrm{H}) \text {, } \\ & 8.20(\mathrm{~m}, 2 \mathrm{H}), 9.05(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$ |
|  |  |  |  |  | H, 4.33 | 4.17 |  |  |
|  |  |  |  |  | N. 15.40 | 15.44 |  |  |

fication. Acetonitrile (reagent grade) was purified by the usual method. ${ }^{17}$ Cyclohexane (G.R. grade) was further purified by passing it through a silica gel column and by distillation.

Light Source and Actinometry. A high-pressure mercury lamp (a Richosa 100-W UVL-100HA) was used for photolyses. Nitrogen gas was bubbled through the solutions during the photolyses. A lowpressure mercury lamp ( 30 W ) with a Vycor glass filter was used as the $254-\mathrm{nm}$ radiation sou:ce. The decomposition quantum yields for the starting materials were measured in cyclohexane at 254 nm and $25^{\circ} \mathrm{C}$. Actinometry was carried out using a ferr c oxalate solution ( 0.006 M). ${ }^{18}$

Reaction Products. After a long irradiaticn of solutions of azidotriazines in acetone, acetonitrile, and $\mathrm{Me}_{2} \mathrm{SO}$ with a high-pressure mercury lamp (see the Tables III-V), the reaction mixtures were evaporated. Then the photoproducts were separated and purified by column chromatography on silica gel using a mixt are of benzene and acetone as the developing solvent (the ratio of the two solvents was changed depending upon the photoproducts obtained).

2-Amino-4-methoxy-6-(2- or 4-substituted-1-naphthyl)-1,3,5-triazines. Analytical data of aminotriazines were listed in Table VII. These compounds were also confirmed by a mixed melting point test with authentic samples prepared by condensation of the corresponding chlorotriazines with ammonia under pressure.

Adducts of Triazinylnitrene and Acetone, Acetonitrile, or $\mathbf{M e}_{2}$ SO. Analytical data of the adducts were listed in Tables VIII and IX.

Adducts of Triazinylnitrene and Acetone. A typical example is noted below in the case of the adduct of acetone and methoxy ( 1 naphthyl)triazinylnitrene ( $\mathrm{X}=\mathrm{Y}=\mathrm{H}$ ); mie of 308 agrees with the predicted value. NMR spectra support the constitution proposed: $\delta$ $1.75\left(2-\mathrm{CH}_{3}\right), 4.12\left(-\mathrm{OCH}_{3}\right), 7.58$ and 8.07 (aromatic protons. 6 H ), 8.93 ( H of 8 -position of the naphthalene nucleus, 1 H ). IR spectrum of this compound (measured in potassium disk) lacks a peak of carbonyl group.
Adducts of Triazinylnitrene and Acetonitrile. MS and NMR spectra support the proposed structure: m/e 321 ; $\Lambda$ MR $\delta 3.22\left(-\mathrm{CH}_{3}\right)$, $3.87\left(-\mathrm{OCH}_{3}\right), 3.95\left(-\mathrm{OCH}_{3}\right), 7.50$ (aromatic protons, 5 H$), 8.05(\mathrm{H}$ of 8 -position of the naphthalene nucleus, 1 H ). IR spectrum of this adduct lacks a peak of $-\mathrm{C} \equiv \mathrm{N}$ group.

Adducts of Triazinylnitrene and $\mathbf{M e}_{2} \mathbf{S O}$. A typical example is noted below in the case oi the adduct of (4-methyl-1-naphthyl)triazinylnitrene and $\mathrm{Me}_{2} \mathrm{SO}\left(\mathrm{X}=\mathrm{H}, \mathrm{Y}=-\mathrm{CH}_{3}\right): m / e$ of 342 agrees with
the predicted value. NMR spectra [ $\delta 2.76\left(-\mathrm{CH}_{3}\right), 3.58\left(2-\mathrm{CH}_{3}\right), 4.03$ $\left(-\mathrm{OCH}_{3}\right), 7.60$ and 8.13 (aromatic protons), 9.00 ( H of 8 -position of the naphthalene nucleus)] agree with the constitution proposed. IR spectrum of this compound involves peaks assignable to SO group ( $1015 \mathrm{~cm}^{-1}$ ) and triazine nucleus ( $820 \mathrm{~cm}^{-1}$ ).

Registry No.-Acetone, 67-54-1; acetonitrile, 75-05-8; Me $\mathrm{Me}_{2} \mathrm{SO}$, 67-68-5; $\beta$-methoxynaphthalene, 93-04-9; 2,4-dichloro-6-methoxy-1,3,5-triazene, 3638-04-8; sodium azide, 26628-22-8; 2-methyl-1bromonaphthalene, 2586-62-1; cyanuric chloride, 108-77-0; 1-bromonaphthalene, 90-11-9; 1-bromo-4-methylnaphthalene, 6627-78-7; 1-bromo-4-chloronaphthalene, 53220-82-9.

## References and Notes

(1) W. Lwowski, Ed., "Nitrenes", Interscience, New York, N.Y., 1970; S. Patai, Ed., "The Chemistry of the Azido Group"', Wiley, New York, N.Y., 1971, and references concerning nitrenes are cited therein.
(2) H. Yamada, H. Shizuka, and K. Matsui, J. Org. Chem., 40, 1351 (1975).
(3) R. Kayama, H. Shizuka, S. Sekiguchi, and K. Matsui, Bull. Chem. Soc. Jpn., 48, 3309 (1975).
(4) H. Shizuka, N. Maeno, and K. Matsui, Mol. Photochem., 4, 335 (1972); K. Matsui, N. Maeno. S. Suzuki, H. Shizuka, and T. Morita, Tetrahedron Lett., 1467 (1970).
(5) H. Shizuka, T. Kanai, T. Morita, Y. Ohto and K. Matsui, Tetrahedron, 27, 4021 (1971); Y. Ohto, H. Shizuke, S. Sekiguchi, and K. Matsui, Bull, Chem. Soc. Jpn., 47, 1209 (1974); K. Tsutsumi, K. Matsui, and H. Shizuka, Mol. Photochem., 7, 325 (1976).
(6) Y. Yamada, H. Shizuka. S. Sekiguchi. and K. Matsui, Bull. Chem. Soc. Jpn., 47, 238 (1974).
(7) H. Shizuka, K. Matsui, T. Okamura, and I. Tanaka, J. Phys. Chem., 79, 2731 (1975); H. Shizuka. K. Matsui, Y. Hirata, and I. Tanaka, J. Phys. Chem., 80, 2070 (1976): 81, 2243 (1977).
(8) S. Tsunoda, Y. Hashida, S. Sekiguchi. and K. Matsui, Bull. Chem. Soc. Jpn., 49, 487 (1976).
(9) There is a possibility that the rate constants $K_{\text {isc }}$ in the intersystem crossing ${ }^{1} \mathrm{~N} \rightarrow{ }^{3} \mathrm{~N}$ may be affected by the substituents of the nitrene or the solvents used. It is, therefore, difficult to make quantitative analyses of the reactions. since the $K_{\text {isc }}$ values are unknown. However, it may be possible to discuss the reactivity of nitrene with solvents qualitatively.
(10) T. Goka, H. Shizuka, and K. Matsui, presented at the 36th Annual Meeting of the Chemical Society of Japan, Osaka, April, 1977.
(11) R. Reiser and L. J. Leyshon. J. Am. Chem. Soc., 93, 4051 (1971).
(12) M. Sumitani, S. Nagakura, and K. Yoshihara. Bull. Chem. Soc Jpn., 49, 2995 (1976).
(13) K. Fujinuma, S. Sekiguchi, and K. Matsui, The 35th Annual Meeting of the (1973).
(15) R. F. Lake and H. Thompson, Proc. R. Soc. London, Ser. A, 317, 187 (1970).
(16) K. Watanabe, J. Chem. Phys., 26, 542 (1357).
(17) A. Weissberger, E. S. Proskauer, J. A. Riddick, and E. E. Troops, Jr., "Organic Solven:s", Interscience, New York, N.Y., 1955, p 435.
(18) C. G. Hatchard and C. A. Parker, Proc. R. Ser. London, Ser. A, 235, 518 (1956); for details, see the following reference: P. de Mayo and H. Shizuka in "Creation and Detection of the Excited State". Vol. 4. W. R. Ware, Ed., Marcel Dekker, New York, N.Y., 1976, Chapter '4.

# Methylation of Protomeric Ambident Nucleophiles with Methyl Fluorosulfonate: A Regiospecific Reaction 

Peter Beak,* Jae-keun Lee, and B. Gary McKinnie<br>Roger Adams Laboratory, University of Illinois at Urbana-Chamoaign, Urbana Illinois 61801

Received October 6, 1977


#### Abstract

Methylation of 15 protomeric ambident nucleophiles with methyl fluorosulfonate has been found to occur regiospecifically at the heteroatom remote from the mobile proton. In most cases the fluorosulfonate salts thus obtained can be isolated, identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and converted to the neutral methylated derivatives by aqueous base. The compounds studied include five of the nine possible systems $\mathrm{X}=\mathrm{YZH} \rightleftarrows \mathrm{HXY}=\mathrm{Z}$, in which Y is carbon and X and Z are oxygen, nitrogen, and/or sulfur. In 12 cases the reaction is synthetically useful, although it is sometimes necessary to remove the excess methyl fluorosulfonate prior to treatment with base. Three cases give mixtures of methylated products, a result established for the case of 2-pyridone to be due to proton transfer from the initial regiospecifically formed salt.


The alkylation of protomeric tautomers is of interest in a wide variety of chemical and biochemical studies. ${ }^{1,2}$ More detailed understanding and better control ot such reactions would be useful.

A generalized case is shown in Scheme I for methylation of the ambident protomeric nucleophiles 1 and 2 to give the salts 3 and 4 . Reaction of 3 and 4 with a base would provide the methylated isomers 5 and 6 . It is well-recognized that there is not necessarily any correspondence between the relative amounts of the protomeric reactants, 1 and 2 , and the isomeric products, $\mathbf{3}$ and $\mathbf{4}$ or 5 and 6 . Recent analyses of such reactions have been appropriately cautious. ${ }^{1,3-6}$

If X and Z are heteroatoms, proton transfer would be expected to be several orders of magnitude more rapid than methylation, and the relative rates of formation of 3 and 4 would then be determined solely by the relative transitionstate energies leading to these cations. ${ }^{7,8}$ If 3 and 4 are stable under the conditions of their formation, subsequent deprotonation would provide 5 and 6 in a ratio which has been determined by the relative transition-state energies leading to 3 and 4 . Reaction profiles showing product control under the Curtin-Hammett principle ${ }^{7}$ in which the ratios of 3 and 4 could be greater or less than one are illustrated in Figure 1.

Nonetheless, the possibility does $\epsilon$ xist that there might be a circumstantial relationship between the ground-state energies of 1 and 2 and the transition states for their alkylation. For example, the bonding features which make 1 of lower energy than 2 could persist in the respective transition states (Figure 1a). In that case, cation 3 would be predominant and the subsequent isomer 5 , in which the alkyl group is attached to the heteroatom remote from the mobile proton in the major tautomer, would be produced after p=oton removal by a base. While this guide would be at best a qualitative indication of the position of alkylation, it is interesting that if the transi-tion-state energy difference were $>2 \mathrm{kcal} / \mathrm{mol}\left(\right.$ at $25^{\circ} \mathrm{C}$ ) an effect:vely regiospecific alkylation of the tautomeric system would result. Formally the proton would appear to be a directiny group if the profile of Figure la were followed. In fact, a number of cases exist which follow such a qualitative course. ${ }^{1,3,5,9}$

It should be emphasized that quantitative correlation of the

tautomeric ratio and the ratio of alkylated products is neither expected ${ }^{6,7}$ nor observed, as careful studies of 5 -nitroimidazole by Ridd ${ }^{3}$ and of 3 -hydroxyisothiazole by Crow ${ }^{4}$ have shown. Moreover, our above suggestion of possible qualitative generality for the reaction path of Figure 1a might well be considered naive jy the following argument. If isomers 1 and 2 undergo protonation to give a common product, the difference in the ground-state energies of 1 and 2 can be considered to reflect the difference in basicity of the atoms X and Z . If that basicity difference reflects a parallel difference in the nucleophilicity of these atoms in the respective transition states for alkylation, the suggested regiospecificity would not be observed. ${ }^{3,10}$ On a practical level, the assumptions that the salts 3 and 4 will be stable and that the neutral tautomers will be reactive nucleophiles might not be valid.

In order to explore the possibility that the pathway of Figure la could be followed for more than a few cases, we have investigated the reactions of 15 protomeric ambident nucleophiles and methyl fluorosulfonate. ${ }^{11}$ This highly reactive readily soluble methylating agent was chosen to maximize the possibilities that transition states would reflect the groundstate energies of the tautomers and that the reaction could be driven, and the initially formed salts stabilized, by precipitation from a nonpolar solution. In general, the regiospecific course suggested by Figure 1a is followed, although synthetic complications arise due to the instabilities of the initially formed salts to the reaction conditions for three cases. ${ }^{12-14}$


Figure 1. Illustrative reaction profiles for Scheme I. (a) Solid line: the transition-state energy difference is of the same sign as the ground-state energy difierence; $[3] /[4]>1$. (b) Dotted line: the transition-state energy difference is of opposite sign to the groundstate energy difference: $[3] /[4]<1$.

## Results and Discussion

If the major product of reaction of a series of ambident protomeric tautomers with methyl fluorosulfonate is the isomer in which the methyl group is bonded to the heteroatom remote from the mobile proton in the major tautomer, then the process of Figure 1a is followed qualitatively. In effect, for the conversion shown in Scheme I, the more stable tautomer 1 would be converted to 5 via 3 ; such a regiospecific conversion could be synthetically valuable. The nucleopailes $7-18$ shown in Table I follow the prescribed course for reactions at ambient temperature in $<2 \mathrm{~h}$. These compounds cover five of the nine possible cases representable by 1 and 2 in which X and Z are oxygen, nitrogen, and'or sulfur and Y is carbon. A secondorder rate constant for the disappearance of 8 and the appearance of the corresponding fluorosulfonate of $2.9( \pm 0.8)$ $\times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ was measured by ${ }^{1} \mathrm{H}$ NMR. The intermediate salts can be isolated and were spectroscopically characterized (Table IV) for seven of the cases in Table I. None of the isomers which would result from methylation a: the heteroatom which bears the proton in the major tautomer is detected in these cases. The yields of alkylated products (Table I) are usually high and generally superior to those of alternative procedures. The fact that the less stable, ard therefore prospectively more reactive, isomer of $5 \leftrightarrows \mathbf{6}$ is produced readily and in high yield suggests that these reactions may be useful for sequences in which further conversions are important.
The conversions of the amides and thioamides 7-12 and 14 to the corresponding imidates by reactive alkylating agents are well precedented. ${ }^{9}$ In fact Julia and Ryan have reported such conversions with methyl fluorosulfonate. ${ }^{9 i}$ The reactions of 2 -aminopyridine (15) and 5 -nitroimidazole (18) also follow previously known courses. Comparison of 13,14 , and 15 suggests that the presence of a pyridine riny does not affect the outcome of the reaction. ${ }^{15}$ Precipitation of the intermediate salt occurs in 6 of the 12 cases shown in Table I so that driving force does not appear to be required for successful reaction.
The conversion of 4 -hydroxy-6-methyl-2-pyrone (16) to 2 -methoxy-6-methyl-4-pyrone (19) in 98\% y-eld provides our best example of the value of this procedure in convenience and yields. Alternative conversions, which involve reaction of 16 with diazomethane followed by separation cf 19 from $20^{16}$ or blocking of the hydroxyl function of 16 with the trimethylsilyl group followed by methylation, ${ }^{17}$ provide 19 in $\sim 20 \%$ yield.
The possibility that the reactions of 16 and 4 -hydroxy-1,6-dimethyl-2-pyridone (17) proceeded by formation of the polymethylated salts 21 was discounted in two ways. In the first place, the precipitated salts can be isolated and charac-

Table I. Reactions of Protomeric Tautomers with Methyl Fluorosulfonate Which Provide Products of Methylation at the Heteroatom Remote from the Mobile Proton

| Reactant | Registry no. | Intermediate cation | Product ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
|  <br> 7 | 55-21-9 |  |  |
|  <br> 8 | 613-93-4 |  |  |
|  <br> 9 | 103-84-4 |  |  |
|  | 5310-14-5 |  |  |
|  | 675-20-7 |  |  |
|  | 13070-01-4 |  |  |
|  | 16879-02-0 |  |  |
|  | 2637-34-5 |  |  |
|  <br> 15 | 504-29-0 |  |  |
|  <br> 16 | 675-10-5 |  |  |
|  <br> 17 | 6052-75-1 |  |  |
|  <br> 18 | 2075-46-9 |  |  |

${ }^{a}$ Yields are $98-100 \%$ unless otherwise indicated. ${ }^{6}$ The yield estimated by NMR is $85 \%$ and the isolated yield is $41 \%$. ${ }^{\text {c }}$ The fluorosulfonate salt precipitates during reaction. ${ }^{d}$ The yield estimated by NMR is $80 \%$ and the isolated yield is $37 \%$. ${ }^{e}$ The isolated yield is $78 \%$. / The same product could be produced in $82 \%$ by reaction with 1 equiv of trimethyloxonium fluoroborate in methylene chloride followed by treatment of that solution with aqueous base. ${ }^{8}$ The yield is $78 \%{ }^{h}$ The isolated yield is $71 \%$.
terized by ${ }^{1} \mathrm{H}$ NMR as monomethylated species (Table IV). Secondly, formation of the dialkylated salts 21 from the respective isomeric pairs $19 \leftrightharpoons 20$ and $22 \leftrightarrows 23$ followed by basic hydrolysis gives the products 20 and 22 , respectively.


The manner in which the reaction is quenched can be critical. For example, although reaction of 11 with methyl fluorosulfonate followed by removal of the excess methylating agent and treatment with aqueous base provides 24 in $78 \%$

yield, if the reaction is quenched with aqueous base without removal of the excess methylating agent only the amide 25 is observed (Table II). Since the expected oxygen-methylated fluorosulfonate salt is formed in the first step (Table IV), base and excess methylating agent must convert this salt to the dimethylated salt 26 , which undergoes hydrolysis to 25 . Such a sequence is precedented by similar observations of Lüssi ${ }^{18}$ with dimethyl sulfate.

A similar, potentially misleading result was observed with 3 -chloro-2-pyridone (27). In this case reaction was unusually

slow and a mixture of products 28 and 29 with 28 predominant was obtained in moderate yield (Tab.e III). ${ }^{19}$ However, if the reaction was quenched without removal of excess methylating agent, 28 and 29 were produced in high yields with 29 the predominant isomer (Table III). The apparent explanation of these results is that in the presence of excess base and methylating agent unreacted 27 is methylated through the corresponding anion. Hence, both the rate and product distribution are very different from the reactions of the neutral species. This possibility was confirmed by the finding that addition of 27 to a mixture of methylene chloride, aqueous base, and excess methyl fluorosulfonate gave 28 and 29 in $92 \%$ yield in a ratio of 5:95 (Table III).

If the regiospecificity of the alkylations of protomeric ambident nucleophiles by methyl fluorosulfonate could be con-

Table II. Methylations of Protomeric Tautomers with Methyl Fluorosulfonate Which Do Not Fit the Hypothesis

| Registry |
| :---: |
| no. | | Intermediate |
| :---: |
| cation(s) |

${ }^{a}$ The amide is the only product observed by NMR of the neutral products if the excess solvent and methyl fluorosulfonate are not removed prior to quenching with 1 N sodium hydroxide. ${ }^{b}$ 2-Methoxypy-idine and 1-methyl-2-pyridone are produced in 12 and $28 \%$ yields, respectively. ${ }^{\text {c }}$ The reaction was carried out in neat methyl fluorosulfonate and quenched with aqueous base as soon as all the 4 -pyridone had dissolved to give 4 -methoxypyridine and 1-methyl-4-pyridone in 20 and $10 \%$ yields, respectively.

Table III. Methylation of 3-Chloro-2-pyridone with Methyl Fluorosulfonate in Methylene Chloride to Give 3-Chloro-2-methoxypyridine (28) and 3-Chloro-1-methyl-2-pyridone (29)

| Reaction <br> time, $\mathbf{h}$ | Excess methyl <br> fluorosulfonate | Product, <br> $\mathbf{2 8 / 2 9}$ |
| :---: | :--- | :---: |
| 3 | Removed in vacuo | $80 / 20$ |
| $21^{a}$ | Removed in vacuo | $84 / 16$ |
| 5 | Not removed | $46 / 54$ |
| 0.1 | Not removed | $8 / 92$ |
| $b$ | Not removed | $5 / 95$ |

${ }^{a}$ Solvent was 5:3 benzene/methylene chloride; yield is $51 \%$. ${ }^{b}$ Reaction was carried out in the presence of 1 N aqueous KOH ; yield was $92 \%$.
trolled by removal of excess methylating agent. the process might be of broad synthetic value. However, additional complications were revealed in our investigations of 2 -pyridone and 4-pyridone (Table II). Reaction of 2-pyridone (30) with methyl fluorosulfonate followed by removal of excess reagent in vacuo gives $<50 \%$ total yield of 2-methoxypyridine (31) and 1-methyl-2-pyridone (32) in a ratio which varies in


Table IV. Proton Magnetic Resonance Spectra of Fluorosulfonate Salts

${ }^{a}$ Relative to DDS in trifluoroacetic acid unless otherwise specified. ${ }^{b}$ Relative to $\mathrm{Me}_{4} \mathrm{~S}$; in acetonitrile- $d_{3}$. ${ }^{c}$ Independently prepared by the reactions of 4-methoxy-6-methyl-2-pyrone and 2-methoxy-6-methyl-4-pyrone with methyl fluorosulfonate. ${ }^{i d} \mathbf{~ M p}$ 126-128 ${ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{FNO}_{5} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N} .{ }^{e}$ Independently prepared by the reactions of 4 -methoxy-1,6-dimethyl-2-pyridone and 2 -me-thoxy-1,6-dimethyl-4-pyridone with methyl fluorosulfonate. $/$ Essentially the same spectrum is obtained for 6 -chloro-1-methyl-2pyridone in trifluoroacetic acid. 8 The spectrum of 6-chloro-2-methoxypyridine in trifluoroacetic acid. ${ }^{h}$ The same spectrum is obtained for 4-methoxypyridine in trifluoroacetic acid. ${ }^{i}$ Prepared from 4-methoxypyridine and methyl fluorosulfonate.
favor of 32 at longer reaction times. Similar reaction of 4pyridone (33) gives a mixture of 4-methoxypyridine (34) and 1-methyl-4-pyridone (35) in low yield.


The reaction of 30 has been investigated in detail. If the reaction is allowed to proceed overnight, a white solid precipitates which is 2-hydroxypyridinium fluorosulfonate (36). At shorter reaction times, the material obtained by evaporation of the excess methylfluorosulfonate is shown by proton magnetic resonance spectroscopy to be a mixture of 2 methoxypyridinium fluorosulfonate (37) and 2-methoxy-1methylpyridinium fluorosulfonate (38). When the independently prepared fluorosulfonate salt 38 is treated with aqueous sodium hydroxide the only product is the pyridone $32 .{ }^{20}$

These results can be accommodated by the process shown in Scheme II. It is proposed that after initial reaction of 2pyridone (30) to give the expected salt 37 proton transfer to 30 occurs against an unfavorable equilibrium constant pro-

Scheme II


31
aq NaOH


30

31
viding 36 and 2 -methoxypyridine. The pyridine 31 then reacts with the methylating agent to give 38 , which gives 1-methyl2 -pyridone (32) on hydrolysis. The removal of 31 by methylation drives the reaction toward 36 , which eventually precipitates from the reaction medium. The formation of 36 explains the $<50 \%$ yields. A decrease in 37 as a function of time would explain the variable ratio of 31 and 32 . The fact that 4 -methoxypyridinium fluorosulfonate and 4 -methoxy-1-
methylpyridinium fluorosulfonate can be isolated from the reaction of 33 with methyl fluorosulfonate suggests a similar course for that reaction. A large number of attempts to induce the reaction of 2 -pyridone to yield only 37 by changes in solvent and methylating agent were not successful. ${ }^{20}$

The case of 2-pyridone shows that even though an initial reaction may follow the course presc-ibed by Figure 1a, that does not ensure synthetic success. In this case the site of initial methylation is obscured by subsequent events. The reaction of 2-pyridone suggests it may be difficult to achieve the synthetically prescribed regiospecific alkylation with protomeric ambident nucleophiles which are basic.

In an effort to extend the scope of these methylations, the reactions of thio acids, imides, $\beta$-hydroxy- $\alpha, \beta$-unsaturated ketones, and $\beta$-amino crotonates with methyl fluorosulfonate were explored. In all cases mixtures of unidentified products were obtained. The cause of these difficulties was not determined, but the use of more reactive methylating agents should be explored. ${ }^{12.21}$
The present results raise interesting questions about the mechanism of alkylations of ambident protomeric nucleophiles. Questions about the nature of the actual nucleophile, the possible effects of association, ${ }^{10}$ the possibility of proton or alkyl transfers of the salts, ${ }^{22}$ and the relative transitionstate energies for alkylation should be investigated.

In summary, the reaction profile of Figure la appears to be frequently observed for the reaction of protomeric ambident nucleophiles with methyl fluorosulfonate. For cases in which the initially formed salt is stable, it appears that isolation of the salt followed by treatment with base provides a regiospecific methylation in which the methyl grocip is bonded to the heteroatom remote from the proton in the major tautomer. On the other hand, complications with some cases suggest further efforts to stabilize the initially formed salts or to find more reactive alkylating agents would be useful.

## Experimental Section

Caution: Methyl fluorosulfonate has been reported to be highly toxic; it should be used only with proper precautions. ${ }^{23}$ Methyl fluorosulfonate (Aldrich) was purified by distillation from calcium hydride (bp $91-93^{\circ} \mathrm{C}$ ) and stored under nitrogen, over calcium hydride, at $-15^{\circ} \mathrm{C}$ prior to use.
2-Pyridone and 4 -pyridone were purified by repetitive sublimations. ${ }^{24}$ 2-Thiopyridone, ${ }^{25} 4$-thiopyridone, ${ }^{25} 3$-chloro-2-pyridone, ${ }^{26}$ 4-hydroxy-6-methyl-2-pyridone, ${ }^{27}$ 1,6-dimethyl-4-hydroxy-2-pyridone, ${ }^{28}$ and $N$-methylthiobenzamide ${ }^{29}$ were prepared by established methods and identified by their physical and spectral properties. All other reactants and solvents were commercially available and used without further purification.
General Procedure for Methylation. A five-to tenfold excess of methyl fluorosulfonate was added to the neat nucleophile or to a methylene chloride solution of the nucleoshile. After being allowed to stir for $1-2 \mathrm{~h}$ at ambient temperature, any solid which formed was collected by filtration and the solution was heated in vacuo to remove solvent and excess methyl fluorosulfonate. The solid residue was examined by NMR spectroscopy in trifluoroacetic acid of acetoni-trile- $d_{3}$ (Table IV).

Without further purification, the resicue was teated with 1 N aqueous sodium hydroxide. The basic solution was extracted with either ciethyl ether or chloroform and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the product isolated and purified by conventional methods. Products were identified by comparison of physical and spectral properties with establisied values: methylbenzimidic acid, ${ }^{30} \mathrm{~N}$-methyl methylbenzimidate, ${ }^{31} \mathrm{~N}$-phenyl methylacetimidate, ${ }^{32} \mathrm{~N}$-methyl methylbenzthioimidate, ${ }^{33} \mathrm{O}$-methylvalerolactim, ${ }^{22 \mathrm{a}} 2$-methylthio- $3,4,5,6$-tetrahydropyridine, ${ }^{9 e}$-chloro-1-methyl-2-pyridone, ${ }^{34,35}$ 2-methylthiopyridine, ${ }^{9 \mathrm{e}}{ }^{1}$-methyl-2-imidopyridone, ${ }^{36}$ 2-me-hoxy- 6 -methyl4 -pyrone, ${ }^{17}$ 4-methoxy-6-methyl-2-pyrone, ${ }^{17}$ 2-methoxy-1,6-di-methyl-4-pyridone, ${ }^{35}$ 4-methoxy-1,6-dimethyl-2-pyridone, ${ }^{35} 1$ -methyl-5-nitroimidazole, ${ }^{3} \mathrm{~N}$-methylvalerolactam, ${ }^{2}{ }^{2}{ }^{2} 2$-methoxypyridine, ${ }^{22 \mathrm{a}} 1$-methyl-2-pyridone, ${ }^{22 \mathrm{a}} 4$-meth 3 xypyridine, ${ }^{22 \mathrm{a}} 1$-methyl-4-pyridone, ${ }^{22 \mathrm{a}} 3$-chloro-2-methoxypyridcne. ${ }^{26} 3$-chloro-1-methyl2 -pyridone. ${ }^{26}$

The results of the methylations are presented in Tables I, II, and III.

Reaction of 2-Pyridone with Methyl Fluorosulfonate. To 2 mL of methyl fluorosulfonate was added $400 \mathrm{mg}(4.2 \mathrm{mmol})$ of 2 -pyridone. After being allowed to stir at ambient temperature for 5 min , the excess methylating agent was removed in vacuo and the residual solid was showr. by comparison of its NMR spectrum ( $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right)$ with that of authentic materials to be a mixture of 2 -methoxypyridinium fluorosulfonate, 1-methyl-2-methoxypyridinium fluorosulfonate, and 2-hydroxypyridinium fluorosulfonate in a ratio of 24:30:36.
Separate treatment of the residue with 1 N aqueous sodium hydroxide followed by extractive separation of the products with chloroform and preparative thin-layer chromatography provided 2 methoxypyridine and 1-methyl-2-pyridone in 12 and $28 \%$ yields. Alternatively, if the hydrolysis of salts was carried out with neutral water followed by extraction with diethyl ether, 2 -methoxypyridine free from 1-methyl-2-pyridine can be obtained in low yield.
2-Hydroxypyridinium Fluorosulfonate. Isolation on Methylation of 2-Pyridone. To $500 \mathrm{mg}(5.2 \mathrm{mmol})$ of 2 -pyridone suspended in 3 mL of methylene chloride was added 900 mg ( 10 mmol ) of methyl fluorosulfonate. After being allowed to stir sernight, the white crystals collected by filtration were found to be a $10 \%$ yield of 2-hydroxypyridinium fluorosulfonate: $\mathrm{mp} \quad 137-139{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) \stackrel{\circ}{\dot{2}} 8.6-8.1(\mathrm{~m}, 2 \mathrm{H}), 7.6-7.3(\mathrm{~m}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{FNO}_{4} \mathrm{~S}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
Reactions of 3-Chloro-2-pyridone with Methyl Fluorosulfonate. The reactions of 3 -chloro-2-pyridone were carried out at ambient temperature with a four- to fivefold excess of methyl fluorosulfonate in methylene chloride for the time and with the disposition of excess methyl fluorosulfonate indicated in Tatle III. The reactions were worsed up extractively. In an additional experiment, 0.3 $\mathrm{mL}(3.7 \mathrm{mmol})$ (f methyl fluorosulfonate was added to $\overline{5} 5 \mathrm{mg}(0.44$ mmol ) of 3 -chloro-2-pyridone in a mixture of 5 mL of methylene chloride and 7 mL of 1 N potassium hydroxide. After being allowed to stir for 21 h , extractive workup gave 60 mg of an oily product shown by NMR to be a $5: 95$ mixture of 3 -chloro- 2 -methoxypyridine and 3-chloro-1-meth-1-2-pyridone. 3-Chloro-2-methoxyp $\because$ ridine: $\delta 4.00$ (s, 3 H ), 6.81 ( d of d, 1 H ), $7.64(\mathrm{~d}$ of d, 1 H ), 8.09 ( d of d, 1 H ). 3-Chloro-1-methyl-2-pyridone: $\delta 3.60(\mathrm{~s}, 3 \mathrm{H}), 6.11(\mathrm{t}, 1 \mathrm{H}), 7.29$ (d of d, 1 H), 7.52 ( d of d, i H).
Rate of Reaction of $\boldsymbol{N}$-Methylbenzamide with Methyl Fluorosulfonate in Deuteriochloroform. The disappearance of the $N$-methyl signal of $N$-methylbenzamide and the appearance of the O -methyl signal of O -methyl -N -methylbenzamidic fluorosulfonate were followed in the NMR probe at $\sim 38^{\circ} \mathrm{C}$. From two runs a sec-ond-order rate constant of $2.9( \pm 0.08) \times 10^{-4} \mathrm{M}^{-:} \mathrm{s}^{-1}$ was obtained.

Acknowledgment. We are grateful to the National Institutes of Health-Institute of General Medicine and the National Science Foundation for support of this work.

Registry No.-Methyl fluorosulfonate, 421-20-5; 3-chloro-2pyridone, 13466-35-8; 4-methoxy-6-methyl-2-pyrone, 672-89-9; 2-methoxy-6-methyl-4-pyrone, 4225-42-7; 4-methoxy-1,6-dimethyl-2-pyridone, 40334-97-2; 2-methoxy-1,6-dimethyl-4-pyridone, 40334-98-3; 6-chloro-1-methyl-2-pyridone, 17228-63-6; 6-chloro-2methoxypyridine, 17228-64-7; 4-methoxypyridine, 620-08-6; 2-hydroxypyridinium. fluorosulfonate, 65103-67-5; 3-chloro-2-methoxypyridine, :3472-84-9.

## References and Notes

(1) For some summaries of pertinent chemistry, see: (a) A. R. Katritzky and J. M. Lagowski. Aơv. Heterocycl. Chem., 1, 320 (1963); (b) L. Skulski, Rocz. Chem. 46, 2139 (1972); (c) O. A. Reutov, "Fundamentals of Theoretical Organic Chemistry", Appleton-Century-Crofts, New York N.Y., 1967, pp 544-551, 559; (d) C. K. Ingold, "Structure and Mechanism in Organic Chemistry'", Cornell University Press, Ithaca, N.Y., 1953, pp 543-554.
(2) For example, reactions of exogenous alkylating agents with nucleic acid bases are believed to provide the molecular basis for the chemotherapeutic, carcenogenic, and mutagenic effects of these agents. B. Singer, Prog. Nucleic Acid Res. Mol. Biol., 15, 219 (1975); A. R. Jones, Dug Metab. Rev., 2, 84 (1974); L. Ferguson, Chem. Soc. Rev., 4, 289 (1975). The action of methylases on the nucleic acids may be a mechanism of species specific self-protectior: F. M. Rottman, R. C. Desrosiers, and K. Friderici, Prog. Nucleic Acid Res. Mol. Biol., 19, 21 (1976).
(3) A. Grimison, J. H. Ridd. and B. V. Smith, J. Chem Soc., 1352, 1357 (1960); J. H. R dd and B. V. Smith, ibid., 1363 (1960).
(4) A. W. K. Chan, W. D. Crow, and I. Gosney, Tetrahedron, 26, 2497 (1970).
(5) For recent cases see: K. Yamauchi, T. Tanabe, and M. K noshita, J. Org. Chem.. 41, 3691 (1976); D. G. McMinn. Synthesis, 824 (1976), and refer-
ences cited therein.
(6) It is clearly erroneous to extract tautomeric equilibrium constants from the results of alkylation. ${ }^{1 a .7}$ Failure to recognize this principle led to errors in assignments in some early studies.
(7) D. Y. Curtin, Rec. Chem. Prog., 15, 111 (1954); E. Eliel, "Stereochemistry of Carbon Compounds'". McGraw-Hill, New York, N Y., 1962, pp 237-239; L. P. Hammett, "Physical Organic Chemistry", MこGraw-Hill, New York, N.Y., 1970, pp 119-120; J. E. Leffler and E. Grunwald, 'Rates and Equilibria of Organic Reactions'', Wiley, New York, N.Y., 1963, pp 119-120.
(8) M. Eigen, Angew. Chem., Int. Ed. Engl., 3, 1 (1964); M. L. Ahrens, M. Eigen, W. Kruse, and G. Maass, Ber. Bunsenges. Phys. Chem., 74, 380 (1970).
(9) For cases of amides to imidates see: (a) E. Bertele, H. Boos, J. D. Dunitz, F. Elsinger, A. Eschenomoser, I. Felner, H. P. Griدi, H. Gschwend, E. F. Meyer, M. Pesaro, and R. Scheffold, Angew. Chem., Int. Ed. Engl., 3, 490 (1964); (b) R. F. Borch. Tetrahedron Lett., 61 (1968); (c) T. Oishi, M. Ochiai, M. Nagai, and Y. Ban. ibid., 491, 497 (1968); (d) A. Pilotti, A. Reuterhall, K. Torssell, and C. G. Lindblad, Acta Chem. Scand, 23, 818 (1969); (e) P. Beak and J. T. Lee, Jr., J. Org. Chem., 34, 2125 (1969); (f) L. A. Paquette, M. J. Wyvratt, and G. R. Allen, J. Am. Chem. Soc., 92, 1763 (1970); (h) R. G. Glushkov and G. V. Franik. Adv. Heterocycl. Chəm., 12, 185 (1970); (i) S. Julia and R. J. Ryan, C. R. Acad. Sci., Ser. C, 274, 1207 (1972); (j) R. C. Moreau and P. Loiseau, ibid., 847 (1977); (k) F. M. F. Chen and N. L. Benoiton, Can. J. Chem., 55, 1433 (1977), and references cited therein.
(10) J. March, "Advanced Organic Chemistry", McGraw-Hill, New York, N.Y., 1968, p 288; C. D. Ritchie. J. Am. Chem. Soc., 97, 1170 (1975), and references cited therein.
(11) M. G. Ahmed, R. W. Alder, G. H. James, M. L. Sinnott, and M. C. Whiting, Chem. Commun., 1533 (1968); R. W. Alder, Chem. Ind. (London), 983 (1973). See the caution regarding use of this material cited in the Experimental Section.
(12) A preliminary account of some of these reactions has appeared: P. Beak and J. Lee, J. Org. Chem., 40, 147 (1975).
(13) A breif discussion of some of these results nas been presented: P. Beak Acc. Chem. Res., 10, 186 (1977).
(14) R. Adams and J. S. Dix, J. Am. Chem. Soc., 80, 4618 (1958).
(15) The 2-hydroxy form of 13 is dominant in apolar solvents. For example, $P$ Beak and J. Covington (unpublished results, 1977) find 13 predominates over the corresponding amide by a factor of 4 in methylene chloride. See also G. Simchen, Chem. Ber., 103, 398 (1970); P. Beak, J. B. Covington,
and S. G. Smith, J. Am. Chem. Soc., 98, 8284 (1976), and references cited therein.
(16) J. D. Bu'Lock and H. G. Smith, J. Chem. Soc., 502 (1960); H. Nakata, Bull. Chem. Soc. Jpn.. 33, 1688 (1960).
(17) P. Beak, D. S. Mueller. and J. Lee, J. Am. Chem. Soc., 96, 3867 (1974). (18) H. Lüssi, Chimia, 27, 65 (1973).
(19) Although the predominance of 28 is consistent with the postulate of Figure 1a, the possibility that the relative amounts of 28 and 29 simply reflect the transition-state energy differences leading to the corresponding salts is tenuous in view of the course of the reaction with 2-pyridone (vida infra).
(20) For related conversions and mechanistic discussions, see: R. Daniels, L T. Grady, and L. Bauer, J. Am. Chem. Soc., 87, 1531 (1965); M. H. O'Leary and R. W. Stach, J. Org. Chem, 37, 1491 (1972); G. H. Schmid and A. W Wolkoff, Can. J. Chem., 50, 2511 (1972); J. A. Zoltewitz, L. S. Helmick, and J. K. O'Halloran. J. Org. Chem., 41, 1303, 1308 (1976).
(21) C. Wong. L. M. Jackman, and R. G. Portman, Tetrahedron Left., 921 (1974), report reactivities of methylating agents.
(22) For examples: (a) P. Beak, J. Bonham, and J. T. Lee, Jr., J. Am. Chem. Soc., 90, 1569 (1968); (b) J. L. Richards, D. S. Tarbell, and E. H. Hoffmeister. Tetrahedron, 24, 6485 (1968); (c) S. Sib and M. Simalty, Tetrahedron Lett., 3661 (1973).
(23) D. M. W. van der Ham and D. van der Meer, Chem. Eng. News, 54 (35), 5 (1976).
(24) P. Beak, F. S. Fry, Jr., J. K. Lee, and F. Steele, J. Am. Chem. Soc., 98, 171 (1976), and references cited therein
(25) R. A. Jones and A. R. Katritzky, J. Chem. Soc., 3610 (1958).
(26) M. P. Cava and B. Weinstein, J. Org. Chem., 23, 1616 (1958).
(27) J. N. Collie, J. Chem. Soc., 59, 607 (1891).
(28) A. P. Sedgwick and N. Collie, J. Chem. Soc., 67, 399 (1895).
(29) J. Voss and W. Walter, Justus Liebigs Ann. Chem., 716, 209 (1968).
(30) Beilstein. "Hanbuch der Organischen Chemie", 4th ed, 9, 270.
(31) H. Bredereck, F. Effenberger, and E. Henseleit, Chem. Ber, 98, 2754 (1965).
(32) G. D. Lander, J. Chem. Soc., 79, 690 (1901)
(33) B. Bottcher and F. Bauer, Justus Liebigs Ann. Chem., 568, 218 (1950).
(34) E. M. Peresleni, L. N. Yashontov, D. M. Krasnikutskaya, and Yu. N. Sheinker, Dokl. Akad. Nauk SSSR, 117, 592 (1962).
(35) P. Beak, T. S. Woods, and D. S. Mueller, Tetrahedron, 28, 5507 (1972)
(36) L. C. Anderson and N. V. Seeçer, J. Am. Chem. Soc., 71, 340 (1949).

# Nucleophilic Aromatic Substitution on o-(Methoxy)aryloxazolines. A Convenient Synthesis of o-Alkyl-, o-Alkylidene-, and o-Arylbenzoic Acids 

A. I. Meyers, * Richard Gabel, and Edward D. Mihelich<br>Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received September 16, 1977


#### Abstract

Reaction of o-(methoxy)aryloxazolines 1 with organolithium or Grignard reagents results in methoxy displacement to the $o$-(alkyl)-, $o$-(aryl)-, and $o$-(vinyl)aryloxazolines 3 . A variety of organometallics were employed and only those considered to be delocalized anions failed to displace the methoxy group. Various poly(methoxy)aryloxazolines (la-e) were investigated. and the reactions proceeded with general success, the yields dropping off in the 2,6(dimethoxy)aryloxazoline Id due to steric factors. The method describes a facile synthesis of unsymmetrically substituted biphenyls and terphenyls by merely choosing the appropriate aryl metallic and methoxyaryloxazolines. Hydrolysis of the $o$-(substituted)aryloxazoline gave the corresponding benzoic acid derivatives 4 in good yield. In the case of 2,6-(disubstituted) aryloxazolines, hydrolysis to the benzoic acid proved difficult and led only to partially hydrolyzed amides.


Nucleophilic aromatic substitution has long been recognized as an important synthetic process, but has been limited to aromatic substrates with so-called "activating groups". ${ }^{1}$ In recent years a number of elegant synthetic techniques have evolved which do not require the traditional activating groups and nucleophiles for substitution. Among these are the nickel-catalyzed reaction of aryl halides with Grignard reagents, ${ }^{2}$ arene chromium derivatives reacting with carbanions, ${ }^{3}$ the nickel-catalyzed reaction o: eno-ates and aryl halides, ${ }^{4}$ displacement on aryl halides ${ }^{5}$ by alkoxide in powerful ion-solvating media, the copper-catalyzed substitution of o-bromobenzoic acids with enolates, ${ }^{6}$ and the $[2,3]$ sigmatropic rearrangements of sulfur ylides to ortho-sutstituted anilines. ${ }^{7}$ The extensive studies by Bunnett, ${ }^{8}$ which provided a variety of substituted benzenes, involve radical and radical ion intermediates and electron-transfer processes ( $\mathrm{S}_{\mathrm{RN}} 1$ mecha-
nism). In effect, the overall transformation is that of nucleophilic substitution on aryl halides with traditional carbanions (enolates, thiolates, amide ions, etc.).

This report describes an aromatic substitution process which involves an activating group, but not in the traditional sense since it "activates" only toward nucleophilic reagents that are possessed of metal ions capable of chelation and transfer of the nucleophile from a tight ion pair to the electrophilic site.
In 1975, a preliminary report appeared ${ }^{9}$ which described the overall process (eq 1 ) as a nucleophilic displacement of the o-methoxy group by several organometallics. This report will provide, in greater detail, the scope and limitations of this useful transformation and offer some evidence that the reaction is most probably occurring by an addition-elimination sequence and not by a free-radical mechanism.

$\mathrm{X}=\mathrm{H}, \mathrm{MeO} ; \mathrm{RM}=$ alkyl or aryl lithium or Grignard
Since the appearance of the earlier report, a large number of examples have been investigatec using five different me-thoxy-substituted aryloxazolines (1a-e) obtained in a simple

a, $n=0$
b, $n=1$ (3-methoxy)
c, $n=1$ (4-methoxy)
d, $n=1$ (6-methoxy)
e, $n=2(4,5$-dimethoxy $)$
transformation from the corresponding methoxy-substituted benzoic acids (2). ${ }^{10}$ Reaction of these methoxyaryloxazolines with a wide variety of organometallic reagents led to orthosubstituted derivatives as outlined in eq 1 and tabulated in Table I. The treatment of 1 with organolithium reagents was performed at -30 to $-45^{\circ} \mathrm{C}$ and in many cases proceeded smoothly. At higher temperatures ( $>-20^{\circ} \mathrm{C}$ ) organolithium reagents added slowly to the $\mathrm{C}=\mathrm{N}$ link of the oxazoline, leading to 5 . This was verified by hydrolysis to the ketones 6

(eq 2). For those cases (Table I, entries $1,3,18$ ) where the methoxy displacement with organolithium was inefficient at $-40^{\circ} \mathrm{C}$, the corresponding Grignard reagents were employed (entries $2,4,17$ ) and gave excellent yields of products. The Grignard reagents could be introduced at $25^{\circ} \mathrm{C}$ or, if necessary, heated without any addition to the oxazoline moiety. The resistance of 2 -oxazolines to Grignard reagents and, hence, its use as a suitable protecting group have already been described. ${ }^{10}$ The versatility of this process can be appreciated by examining the large variation in crganometallic structures present in Table I. Prominent among these examples is the introduction of the o-tert-butyl group (entry 20) in high yield. However, removal of the oxazoline activating group under acidic conditions gave only $m$-methoxybenzoic acid 7. The acid lability of the tert-butyl group in this instance could have valuable synthetic implications by selectively demethoxylating an $o$-methoxy group from ar. aromatic ring, a process withcut precedent. However, the o-tert-butylbenzoic acid 4 could be retrieved from 3 by conversion to the methiodide 8 and removal of the oxazolinium moitty by alkaline hydrolysis. Another example which took advantage of the alkaline removal of the oxazoline was that furnishing the biphenyl de-

rivative 9 containing the acid sensitive Boc group. Whereas alkaline hydrolysis of the adduct gave 9 without event, acid hydrolysis led to the aminobiphenic acid 10.


The use of aryl metallics has proven to be a most convenient route to unsymmetrical biaryl derivatives, a synthetic challenge of long standing. Recent progress in biphenyl syntheses $^{2,11,12}$ has improved greatly on the classical Ullmann reaction, ${ }^{13}$ but most suffer from chemospecificity and/or limitations leading only to symmetrical biaryls. Although several efficient biaryl preparations are listed in Table I (entries 4, 14-17, 25), an additional study was performed using both an electrophilic and a nucleophilic aryloxazoline. The conversion of $o$-bromobenzoic acid to its oxazoline and then its Grignard reagent 11 gave after treatment with $1 \mathbf{b}$ an $88 \%$ yield of the biaryl 13. Hycrolysis of 13 gave the unsymmetrical biphenic dicarboxylic acid 14 in $93 \%$ yield. Similar treatment of 1 b with the Grignard reagent 12 (from $p$-bromobenzoic acid) gave 15 $(90 \%)$ and the isomeric biphenic acid 16 in $85 \%$ yield. This sequence illus:rates the versatility of the oxazoline ring as an activating group in nucleophilic aromatic substitution as well as the ability of oxazolines to protect carboxyl functions toward Grignard formation. The process, by virtue of its nature, precludes any isomeric products and is truly a chemospecific route to biaryls containing a number of ortho substituents. Other metal derivatives also appear to behave similarly in this substitution process. Thus, lithiotrimethylsilane gave the o-(trimethylsilyl)aryloxazoline 17, while a variety of lithioamines smoothly displaced the methoxy group, affording the $c$-amino derivatives $18 .{ }^{14}$ The facile introduction


14

18
of the silyl group (17) provides a useful precursor for further substitution, ${ }^{15}$ and a recent report by Dervan ${ }^{16}$ has also opened new pathways for aryl silanes.

Metallation of aryloxazolines to 19 has been reported ${ }^{17,18,19}$ to occur specifically ortho to the oxazoline activating group; however, if a methoxy group occupies an ortho position (20), no metallation occurs (to 21) and only methoxy substitution takes place (22) (Table I, entries 21, 22). The absence of ortho lithiation was confirmed by quenching the reaction product of 20 with $\mathrm{D}_{2} \mathrm{O}$ after addition of butyllithium (entry 22). In this instance undeuterated starting material was recovered in $51 \%$ yield. Grignard reagents derived from dihalides were also successfully employed, transforming $1 \mathbf{b}$ into the 1,4 diarylbutane 23 and the terphenyl 24. A general side reaction that was observed in these substitutions, particularly when Grignard reagents were employed, was the formation of the phenol 25 in $5-50 \%$ yields. The phenolic product, starting materials, and the substitution product were routinely sepa-


25
rated using either column or preparative layer chromatography.

Introduction of organolithium reagents or Grignard reagents to the 2,6 -(dimethoxy)aryloxazoline Id proceeded with less efficiency than the other aryloxazolines, presumably due to steric effects imparted by the two o-methoxyl groups (Table I, entries 23-25). For example, when 1 equiv of organometallic was added to $1 \mathbf{d}$, the substituted product 4 was isolated in moderate yield only after $40-90 \mathrm{~h}$ of reaction, thus indicating the slowness of the process. This may be attributed to the fact that the two $o$-methoxy substituents inhibit the oxazoline from achieving coplanarity with the aromatic nucleus. On the other hand, 2 equiv of phenyl Grignard reagent (after 76 h at $25^{\circ} \mathrm{C}$ ) gave a $93 \%$ yield of mono- and diarylated product 26 and 27 in equal amounts. An interesting facet of this reaction arose when it was found that the monoaryl product 26 when treated with phenyl Grignard reagent (excess, 126 h ) gave no visible trace of the $m$-terphenyl derivative 27 . Thus, the biphenyl system (26) is not a precursor to the terphenyl system

Table I. Nucleophilic Substitution of 2-(o-Methoxyarl)oxazolines


| Entry | 1 | $n$ | Posn | RM | Temp, ${ }^{\circ} \mathrm{C}$ | 3,a\% | Registry no. | 4, \% | $\mathrm{Mp},{ }^{\circ} \mathrm{C}$ | Registry no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 a | 0 |  | $n-\mathrm{BuLi}$ | -35 | 22 |  | 74 | $39-40{ }^{\text {b }}$ |  |
| 2 |  |  |  | $n-\mathrm{BuMgBr}$ | 25 | 85 |  |  |  |  |
| 3 |  |  |  | PhLi | 0 | 45 |  | 75 | $113-114{ }^{c}$ |  |
| 4 |  |  |  | PhMgBr | 25 | 95 |  |  |  |  |
| 5 | 1b | 1 | 3 | $n-\mathrm{BuLi}$ | -45 | 98 |  | 93 | 101-102 ${ }^{\text {d }}$ |  |
| 6 |  |  |  | MeMgBr | 25 | 84 |  | 92 | 148-150e |  |
| 7 |  |  |  | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{MgBr}$ | 25 | 88 |  | 91 | 118-119f | 65000-01-3 |
| 8 |  |  |  | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{MgBr}$ | 25 | 94 |  | 71 | 107-108g | 64957-77-3 |
| 9 |  |  |  | $\mathrm{PhCH}_{2} \mathrm{MgBr}$ | 25 | 6 |  | h | 69.0-69.5 |  |
| 10 |  |  |  | $\mathrm{PhC} \mathrm{\equiv} \mathrm{CMgBr}$ | 25 | $31^{i}$ | 64957-79-5 | 67 | $146-148^{j}$ | 64957-78-4 |
| 11 |  |  |  | $\mathrm{CH}_{2}=\mathrm{CHM}_{5} \mathrm{Br}$ | 25 | 66 |  | 90 | 125-127k | 64957-80-8 |
| 12 |  |  |  | $\mathrm{CH}_{2}=\mathrm{CHLi}$ | -45 | 64 |  |  |  |  |
| 13 |  |  |  | (E) $\cdot \mathrm{PhCH}=\mathrm{CHMgBr}$ | 25 | 61 |  | 87 | 128-130 ${ }^{\text {l }}$ | 64957-81-9 |
| 14 |  |  |  | 4-(Ph) PhLi | -45 | 73 |  | 71 | 201-202 ${ }^{\text {m }}$ | 57598-45-5 |
| 15 |  |  |  | PhLi | -45 | 95 |  | 70 | 176-177 ${ }^{\text {d }}$ |  |
| 16 |  |  |  | 4-( $\left.\mathrm{Me}_{2} \mathrm{~N}\right) \mathrm{PhLi}$ | -45 | $66^{n}$ | 57598-37-5 | 69 | 253-254 ${ }^{\circ}$ | 57598-46-6 |
| 17 |  |  |  | 2-(MeO) PhMgBr | 25 | $95^{p}$ | 57598-39-7 | 78 | 196-197 $q$ | 57598-49-9 |
| 18 |  |  |  | $2-(\mathrm{MeO}) \mathrm{PhLi}$ | -45 | 13 |  |  |  |  |
| 19 |  |  |  | EtLi | -45 | 88 |  | 75 | 120-121 ${ }^{\text {r }}$ |  |
| 20 |  |  |  | $t-\mathrm{BuLi}$ | -45 | 95 |  | $45^{t}$ | 123-124s | 57598-52-4 |
| 21 | 1 c | 1 | 4 | EtMgBr | 25 | $50^{u}$ | 64957-63-7 |  |  |  |
| 22 |  |  |  | $n-\mathrm{BuLi}$ | -22 | $47^{\circ}$ | 64957-64-8 |  |  |  |
| 23 | 1d | 1 | 6 | $n-\mathrm{BuLi}{ }^{w}$ | -25 | $49^{x}$ | 64957-65-9 |  |  |  |
| 24 |  |  |  | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{MgBr}$ | 25 | $18^{y}$ | 64957-66-0 |  |  |  |
| 25 |  |  |  | PhMgBr | 25 | $50^{z}$ | 64957-67-1 |  |  |  |
| 26 | 1 e | 2 | 4,5 | $n-\mathrm{BuMgBr}$ | 25 | 49 |  | 71 | 132-133aa | 64957-69-3 |
| 27 |  |  |  | EtMgBr | 25 | 57 bb | 64957-68-2 | $h$ |  |  |

${ }^{a}$ Cride product unless otherwise noted. ${ }^{b}$ C. D. Gutsche, G. L. Bachman, and R. S. Coffey, Tetrahedron, 18 , 617 (1962). c"Handbook of Chemistry and Physics", 47th ed, The Chemical Rubber Co., Cleveland, Ohio. ${ }^{d}$ H. Richtzenhain and P. Nippus, Chem. Ber., 77, 566 (1944). e R. A. Barnes and R. W. Faessinger, J. Org. Chem., 26, 4544 (1961). f Anal. Calcd: C, $74.98 ; \mathrm{H}, 6.38$. Found: C, $74.78 ; \mathrm{H}, 6.31$. g Anal. Calcd: C, $75.52 ; \mathrm{H}, 6.72$. Found: C, 75.48 ; H, 6.94. h Not hydrolyzed to benzoic acid derivative; melting point is that of the 2 -benzyl derivative (registry no., 65000-00-2). Anal. Calcd: C, 77.26; $\mathrm{H}, 7.17$. Found: $\mathrm{C}, 76.92 ; \mathrm{H}, 6.94 .{ }^{i}$ Reaction stirred at $25^{\circ} \mathrm{C}$ for 7 days; mp $93.5-94.5{ }^{\circ} \mathrm{C}$. ${ }^{j}$ Anal. Calcd: C, $73.55 ; \mathrm{H}, 5.02$. Found: C, 73.21 ; H, $5.30\left(0.5 \mathrm{H}_{2} \mathrm{O}\right) .^{k}$ Anal. Calcd: C, 67.41 ; H, 5.66. Found: C, $67.55 ; \mathrm{H}, 5.88 .^{l}$ Anal. Calcd: C, 75.57 ; H, 5.55. Found: C, $75.65 ; \mathrm{H}, 5.61 .^{m}$ Anal. Calcd: C, $78.93 ; \mathrm{H}, 5.30$. Found: C, $78.88 ; \mathrm{H}, 5.15 . \mathrm{n} \mathrm{Mp} 110-110.5{ }^{\circ} \mathrm{C}$. o Isolated as hydrochloride. Anal. Calcd: C, 62.44 ; H, 5.90 . Found: C, 62.41 ; H, 5.77. ${ }^{p}$ Mp 129-131 ${ }^{\circ}$ C. Anal. Calcd: C, 70.07 ; H, 8.65. Found: C, 69.74 ; H, 8.79. ${ }^{q}$ Anal. Calcd: C, 69.76 ; H, 5.46 . Found: C, $69.46 ;$ H, 5.51. $r$ H. Richtzenhain, Chem. Ber., 77,1 (1944).s Anal. Calcd: C, 69.21; H, 7.74. Found: C, $68.94 ; \mathrm{H}, 8.00$. ${ }^{\text {t Hydrolysis performed on methiodide salt (Experi- }}$ mental Section). ${ }^{u}$ Oil; bulb-to-bulb distillation at $55^{\circ} \mathrm{C}(0.06 \mathrm{~mm})$. Anal. Calcd: C, 72.07 ; H, 8.21. Found: C, $71.90: \mathrm{H}$, 8.06. 'Oil; distilled at $60^{\circ} \mathrm{C}(0.04 \mathrm{~mm})$. Anal. Calcd: C, $73.53 ; \mathrm{H}, 8.87$. Found: C, $73.89 ; \mathrm{H}, 9.04$. w A $1.0-1.1$ equiv amount of organometallic introduced. ${ }^{x}$ Anal. Calcd: C, $73.53 ; \mathrm{H}, 8.87$. Found: C, $72.95 ; \mathrm{H}, 8.72 .{ }^{y}$ Oil; distilled bulb-tobulb, $135{ }^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$. Anal. Calcd: C, $77.98 ; \mathrm{H}, 7.79$. Found: C, 77.85, H, 8.00. ${ }^{2} \mathrm{Mp} 95.0-95.5^{\circ} \mathrm{C}$. Anal. Calcd: C, $76.84 ; \mathrm{H}, 6.81$. Found: C, 77.05 ; H, 6.75. aa Anal. Calcd: C, 65.53 ; H, 7.61. Found: C, 66.00; H, 8.00. bb Oil; bulb-to-bulb distillation at $100^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$. Anal. Calcd: C, $68.42 ; \mathrm{H}, 8.04$. Found: C, 68.82; H, 8.26.
(27). This is not surprising in view of the large ortho substituents present in 26. Thus, the terphenyl system must have arisen from some intermediate during the reaction.

If it is assumed that these reactions proceed via an addi-tion-elimination sequence (Scheme I), then the $\sigma$ complex B allows the oxazoline to align itself in a coplanar fashion with the aromatic ring while the metal $\left(\mathrm{Mg}^{2+}\right.$ or $\mathrm{Li}^{+}$i forms a strong complex with the methoxy group. The transition state leading to $B$ may be envisioned as forming from $A$, where the R group of the organometallic enters from the side almost perpendicular to the aromatic ring (to the $\pi$ cloud). This is consistent with the lack of steric inhibition to addition by large groups (tert-butyl, phenyl, etc.). However, if there are two ortho
substituents, ccmplex A and ultimately B become difficult to form and the reaction is slow or unable to occur. Thus, the failure of $\mathbf{2 6}$ to form the terphenyl 27 is understandable.

However, if the second phenyl group enters after the initial phenyl group is still in the $\sigma$ complex C (Scheme II), complexation of phenyllithium may occur to the oxazoline sandwiched between the initial phenyl and methoxy group and addition may ensue with expulsion of the 2 -methoxyl group. In effect, the second phenyl is introduced in a $1, \delta$ addition to C. The relative rates of addition ( $\mathrm{C}, k_{2}$ ) and elimination ( 26 , $k_{1}$ ) therefore determine the $1: 1$ mixture which results. ${ }^{23}$ In those instances where 2,6 -(disubstituted)aryloxazolines are formed, hydrolysis to the benzoic acids by removal of the ox-



1d
azoline has thus far proved to be unsatisfactory. The usual steric effects toward hydrolysis are obviocsly in play, and \{urther efforts in this regard are in progress.

The importance of organometallic (RM) complexation to the $o$-(methoxy) aryloxazolines 1 (A in Scheme I) cannot be overstated since a number of organometallic reagents failed to substitute the methoxy group. Grignard and lithium reagents which gave no substitution are listed in Table II. Benzyl Grignard reagent gave 5-6\% of the substitution products, but all of the others listed gave only starting material or demethylation ( $10-50 \%$ ) to the phenol 25 . A glance at the structures in Table II indicates that all are delocalized or intramolecularly chelated anions. It would therefore seem that failure to add to the aromatic ring is due to (a) the complex A generating an anion sufficiently delocalized to allow its addition or (b) the intramolecular complexation already present in the organometallic precluding any complexation with the methoxyaryloxazoline. For lithium ethanethiolate, the high nucleophilicity of the sulfur results in rapid and complete demethylation of the $o$-methoxy group, affording $\mathbf{2 5}$ in quantitative yield. The failure of LiSEt to displace methoxy also enhanced the assumption that the substitution reactions were not occurring by an electron-transfer (ET) process since sulfides are known to be excellent ET reagents. ${ }^{20}$ In order to assess further the possibility of an ET mechanism


Scheme II



for this reaction, 1-bromohexene and its Grignard reagent were examined as an alkylating agent. It is well-known ${ }^{21}$ that hexenylmagnesium bromide in a radical reaction rearranges rapidly ( $k_{\text {cycln }}=10^{5} \mathrm{~s}^{-1}$ ) to cyclopentylmethylmagnesium bromide. Therefore, reaction with 1 lb should give a large amount of 29 as a byproduct in the formation of 28 if alkyla-


$13 \%$
$f^{16}$


tion proceeded by an ET route. Hexenyl bromide was transformed ${ }^{22}$ into its Grignard reagent (THF), and prior to reaction with $1 \mathbf{b}$ it was quenched and analyzed (VPC) for the ratios of $n$-hexene and methylcyclopentane. The ratio of several runs was $87 \pm 3 \%$ of the former and $13 \pm 3 \%$ of the latter, in agreement with the literature. ${ }^{22}$ Reaction with 1 b gave 28 and 29 in $73 \%$ yield, and NMR analysis indicated that $87 \%$ of 28 and $13 \%$ of 29 was present. Thus, there was virtually no change in the composition of the products compared to the composition of the starting Grignard reagents. It therefore may be concluded that if the alkylation of methoxyaryloxazoline is an ET process, its rate constant must be considerably faster than $10^{5} \mathrm{~s}^{-1}$, the rate constant for the rearrangement of hexenyl to cyclopentylmethyl radical. In view of the efficiency of lithioamides ${ }^{14}$ in this reaction and the unlikelihood of their ability to proceed by ET mechanisms, it can be assumed at this time that this highly useful synthetic process is occurring through an addition-elimination sequence.
Further studies on polynuclear a:omatics and heteroaromatics are in progress, and results of these efforts will be reported in due course.

## Experimental Section

2-(2-Methoxyphenyl)-4,4-dimethyl-2-oxazoline (1a). A mixture of $50 \mathrm{~g}(330 \mathrm{mmol})$ of $o$-anisic acid and $117.3 \mathrm{~g}(980 \mathrm{mmol})$ of thionyl chloride was stirred at $25^{\circ} \mathrm{C}$ for 24 h . The excess thionyl chloride was removed in vacuo, and the residue was distilled ( $\mathrm{bp} 68^{\circ} \mathrm{C}, 0.05 \mathrm{~mm}$ ), yielding 51.4 g of the acid chloride as a colorless oil. A solution of the acid chloride in 75 mL of methylene chloride was added dropwise to 53.7 g ( 600 mmol ) of 2-amino-2-methy-1-propanol in 125 mL of methyene chloride at $0^{\circ} \mathrm{C}$. After stirring for 2.5 h at $25^{\circ} \mathrm{C}$, the solution was filtered and the filtrate evaporated to give 68.3 g of the crystalline amide. The latter ( 25 g ) was treated dropwise with 40.2 g of thionyl chloride and magnetically stirred. The solution was then poured into 150 mL of dry ether, and the oxazoline hydrochloride precipitated and was removed by filtraticn. The salt was neutralized with $20 \%$ sodium hydroxide, and the alkaline solution was extracted with ether, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give an oil ( $21 \mathrm{~g}, 83 \%$ ), which crystallized on standing, $\mathrm{mp} 66-68^{\circ} \mathrm{C}$. An analytical sample was purified by recrystallization from hexane, $\mathrm{mp} 68-69.5^{\circ} \mathrm{C}$; IR (KBr) $1635 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.75(\mathrm{~m}, 1), 7.33(\mathrm{~m}, 1), 6.94(\mathrm{~m}, 2)$, 3.96 (s, 2), 3.86 (s, 3), $1.33(\mathrm{~s}, 6)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ : C, 70.22; H, 7.37. Found: C, 70.47; H , 7.47.

2-(2,3-Dimethoxyphenyl)-4,4-dimethyl-2-oxazoline (lb). In a manner similar to the preparation of $1 \mathrm{a}, 12 \mathrm{~g}$ of 2,3-dimethoxybenzoic acid gave $10.44 \mathrm{~g}(70 \%)$ of $1 \mathrm{~b}, \mathrm{~mJ} 49-50^{\circ} \mathrm{C}$; IR (film) 1642 $\mathrm{cm}^{-1}$; NMR $\left.\left(\mathrm{CCl}_{4}\right) \delta 6.8-7.4(\mathrm{~m}, 3), 3.96 \mathrm{is}, 2\right), 3.83(\mathrm{~s}, 3), 3.78(\mathrm{~s}, 3)$, 1.33 (s, 6).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$ : C, 66.36; H, 7.28. Found: C, 66.31; H , 7.54 .

2-(2,4-Dimethoxyphenyl)-4,4-dimethyl-2-oxazoline (1c). Following the procedure for $1 \mathrm{a}, 50 \mathrm{~g}$ of 2,4-dimethoxybenzoic acid gave $35.2 \mathrm{~g}(56 \%)$ of 1 c as a viscous oil, which was purified by chromatography (silica gel) using ethyl acetate as the eluent; IR (film) $1630 \mathrm{~cm}^{-1}$; NMR ( $\mathrm{CCl}_{4}$ ) $\delta 7.57$ (d, $J=9 \mathrm{~Hz}, 1$ ), 6.32 (nd, 2), 3.8.5 (s, 2), 3.73 (s, 3), 3.68 ( $\mathrm{s}, 3$ ), 1.27 ( $\mathrm{s}, 6$ ).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$ : C, $66.36 ; \mathrm{H}, 7.28$. Found: $\mathrm{C}, 66.12 ; \mathrm{H}$, 7.12.

2-(2,6-Dimethoxyphenyl)-4,4-dimethyl-2-oxazoline (1d). Following the procedure for $1 \mathrm{a}, 25.0 \mathrm{~g}$ of 2,6 -dimethoxybenzoic acid gave 24.5 g ( $76 \%$ overall) of $1 \mathrm{~d}, \mathrm{mp} 64-65^{\circ} \mathrm{C}$ (hexane); IR (film) 1665 $\mathrm{cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.22(\mathrm{t}, J=9 \mathrm{~Hz}, 1), 6.50(\mathrm{~d}, J=9 \mathrm{~Hz}, 2), 3.93$ ( $\mathrm{s}, 2$ ), 3.77 ( $\mathrm{s}, 6$ ), 1.33 ( $\mathrm{s}, 6$ ).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$ : C, 66.36; $\mathrm{H}, 7.28$. Found: $\mathrm{C}, 66.42 ; \mathrm{H}$, 7.04 .

2-(2,4,5-Trimethoxyphenyl)-4,4-dimethyl-2-oxazoline (1e). This compound was prepared in $60 \%$ overall yield from 10 g of 2,4,5-trimethoxybenzoic acid according to the procedure given for la, $\operatorname{mp} 84-86{ }^{\circ} \mathrm{C}$ (hexane); IR (film) $1630 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.27$ (s, 1), $6.40(\mathrm{~s}, 1), 3.93(\mathrm{~s}, 2), 3.82(\mathrm{~s}, 6), 3.78(\mathrm{~s}, 3), 1.33(\mathrm{~s}, 6)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}$ : C, 63.38; H, 7.22. Found: C, 63.47 ; H , 7.34.

Reaction of 1 (a-e) with Organolithium Reagents. General Procedure. The formation of compounds 3 in Table I using organolithium reagents was accomplished using the following procedure for

Table II. Organometallics Failing to React with $o$-(Methoxy )aryloxazolines

|  |  |
| :---: | :---: |
|  |  |
| $\mathrm{LiCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ |  |
| $\mathrm{LiCH}_{2} \mathrm{CN}$ |  |
|  |  |
| $\mathrm{PhCH}_{2} \mathrm{MgEir}$ | $\mathrm{LiCHCO} \mathrm{MMe}_{2}$ |
|  |   |
| EtSLi |  |

all. A solution of 1 (a-e), 14.5 mmol , in 60 mL of THF was cooled to $-45^{\circ} \mathrm{C}$ under a nitrogen atmosphere. To this was added dropwise $15.5-16.0 \mathrm{mmol}$ of organolithium reagent in the appropriate solvent (hexane, ether, or THF). In some cases the addition of organolithium reagent was accompanied by an exotherm (usually alkyllithium), and the reaction was held below $-35^{\circ} \mathrm{C}$ by adjusting the rate of addition. Stirring of the resulting amber solution at $-30^{\circ} \mathrm{C}$ was continued until TLC monitoring (ethyl acetate-hexane) indicated the absence of starting material (usually $1-3 \mathrm{~h}$ ). In most instances the reaction was allowed to slowly warm to $0^{\circ} \mathrm{C}$ and quenched in saturated ammonium chloride solution, extracted ( 3 times) with ether, dried ( $\mathrm{K}_{2} \mathrm{CO}_{3}$ ), and concentrated. The products were purified by prepara-ive thin-layer or column chromatography on silica gel (ethyl acetate-hexane). In other cases the groduct was distilled, bulb-to-bulb, under a vacuum.

Reaction of 1 (a-e) with Grignard Reagents. General Procedure. The formation of 3 in Table I using Grignard reagents was performed as follows. The Grignard reagent ( $6.00 \mathrm{~mm} . \mathrm{ol}$ ) in ether or THF was slowly added to 5.8 mmol of 1 (a-e) in 10 mL of THF under argon or nitrogen at $25^{\circ} \mathrm{C}$. Stirring of the solution was usually performed for 16-20 h or longer if TLC monitoring (silica gel, ethyl ace-tate-hexane) indicated the presence of starting mater al. Workup of the reaction mixture as described above gave the crude product, which was purified by bulb-to-bulb distillation and column or preparative thin-layer chromatography (silica gel, ethyl acetate-t.exane).

Hydrolysis of Oxazolines 3 to Benzoic Acids 4. General Procedure. The oxezolines ( 5 mmol ) were dissolved in $1(10 \mathrm{~mL}$ of 4.5 N hydrochloric acid and heated to reflux for $16-24 \mathrm{~h}$. After cooling, the heterogeneous mixture was extracted with ether ( 3 times). The ethereal extracts were washed with water and saturated brine, dried ( $\mathrm{MgSO}_{4}$ ), and concentrated to give products of acceptable purity. Further purifica-ion was achieved by recrystallization from hexane, ethanol-water, or water, depending on the solubility properties.
$\mathbf{2 - M e t h o x y v a l e r o p h e n o n e ~ f r o m ~} 5(2-M e O ; ~ R=n-B u)$. In a typical experiment, $2 \mathrm{~mL}(5.0 \mathrm{mmol})$ of $2.5 \mathrm{Mn}-\mathrm{BuLi}$ in hexane was added slowly to. $.03 \mathrm{~g}(5.0 \mathrm{mmol})$ of 1 a in THF at $-35^{\circ} \mathrm{C}$. The solution was stirred for 3 h and then warmed to ambient temperature. The usual aqueous workup afforded $22 \%$ of $3(\mathrm{R}=n-\mathrm{Bu} ; n=0)$ and $49 \%$ of 5 after prepa-ative TLC (silica gel, $20 \%$ ethyl actate-hexane). Hydrolysis of 5 in 4.5 M hydrochloric acid for 18 h at reflux gave the crude ketone, purified by elution through silica gel with $10 \%$ ace-tone-hexane; IR (film) $1680,1025 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right)$ © 6.75-7.73 (m, 4), $3.87(\mathrm{~s}, 3), 2.90(\mathrm{t}, J=7 \mathrm{~Hz}, 2), 1.13-1.93(\mathrm{~m}, 4), 0.68-1.12(\mathrm{~m}$, 3).

Anal. Calcd: C, 74.97; H, 8.39. Found: C, 74.87; H, ع.12.
The 2,4-DNP melted at $126.4-126.6^{\circ} \mathrm{C}$ (from ethanol).
Reaction of $1 \mathbf{b}$ with tert-Butyllithium. 2-tert-Butyl-3methoxybenzoic Acid $\mathbf{4}(\mathbf{3 - M e O} ; \mathrm{R}=\boldsymbol{t}-\mathrm{Bu})$. In a manner using the
general procedure for organolithium reagents, $0.380 \mathrm{~g}(1.62 \mathrm{mmol})$ of 1 b in 40 mL of THF and $1.4 \mathrm{~mL}(3.22 \mathrm{mmol}$ oi 2.3 M tert - butyllithium gave $0.427 \mathrm{~g}(\sim 99 \%)$ of $3(\mathrm{R}=t \cdot \mathrm{Bu} ; 3-\mathrm{MeO})$ as a clear oil; IR $\left(\mathrm{CCl}_{4}\right) 1665 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 7.3-6.6(\mathrm{~m}, 3), 3.93(\mathrm{~s}, 2), 3.85(\mathrm{~s}, 3)$, 1.48 (s, 9), $1.33(\mathrm{~s}, 6)$.

Without further purification, 3 was stirred with excess methyl iodide at room temperature overnight and the excess methyl iodide removed in vacuo. To the crude methiodide salt was added 12 mL of methanol and 12 mL of $20 \%$ aqueous sodium hydroxide, and the mixture was heated to reflux for 12 h . The solution was extracted with ether and the ethereal extracts were discarded. The aqueous solution was neutralized to $\mathrm{pH} 2(9 \mathrm{~N} \mathrm{HCl})$, extracted with ether, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to afford 4. Recrustellization from hexane provided pure 2-tert-buty.-3-methoxybenzoic acid (45\%), mp 123-124 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CCl}_{4}\right) 1695 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 11.9(\mathrm{~s}, 1), 7.33-6.75(\mathrm{~m}, 3)$, 3.86 (s, 3), 1.53 (s, 9).

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ : C, 69.21; $\mathrm{H}, 774$. Found: $\mathrm{C}, 68.94$; H , 8.00 .

2-Carboxy-6-methoxy- $\mathbf{3}^{\prime}$ - ( $N$-methyl- $\boldsymbol{N}$-tert-butoxycarbonyl)biphenyl (9). 3 -Bromo( $N$-methyl- $N$-Boc)aniline ( 0.472 g ) was converted to its lithio sal: by addition of 0.72 mL of $2.3 \mathrm{M} n$-butyllithium (hexane) to a THF solution at $-78^{\circ} \mathrm{C}$. After 15 min , the solution was warmed to $-45^{\circ} \mathrm{C}$ and 0.353 g of 1 b in 15 mL of THF was added. The solution was stirred for 5 h at $-45^{\circ} \mathrm{C}$ and then warmed to $25^{\circ} \mathrm{C}$, quenched in ammonium chloride (saturated), extracted with ether, dried, and concentrated. Chromatography, as above, afforded the biaryloxazoline, $\mathrm{mp} 93-97^{\circ} \mathrm{C}$. Without further purification the latter was hydrolyzed in two fashions.
(A) Acidic Hydrolysis to 10. A solution of the above ( 0.2 mmol ) in 10 mL of 4 N hydrochloric acid was heated to reflux ( 12 h ). Ether extraction gave no ether-soluble material. The pH was adjusted to 6 with saturated sodium bicarbonate. Ether extraction produced crude 10 ( $40 \%$ ). Conversion to its hydrochloride (dry HCl passed into an ethereal solution of 10 ) gave $\mathrm{mp} 200^{\circ} \mathrm{C}$ dec; IR (KBr) $1695 \mathrm{~cm}^{-1}$; NMR ( $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$ ) $\delta 8.7$ (brd s, 2), 7.8-7.0 (m, 7), 3.73 (s, 3), 3.13 (s, 3).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{CINO}_{3}$ : $\mathrm{C}, 61.33$; $\mathrm{H}, 5.49$. Found: $\mathrm{C}, 61.11$; H, 5.78.
(B) Alkaline Hydrolysis to 9. The biaryloxazoline was stirred in the presence of a 5 -fold excess of methyl iodide overnight and the excess methyl iodide removed in vacuo. To the crude methiodide $(0.097 \mathrm{~g})$ was added 25 mL of a $1: 1$ solution of methanol and $20 \%$ sodium hydroxide, and the mixture was heated to reflux for 15 h . Cooling was followed by ether ext:action, and the latter phase was discarded. Acidification of the aqueous phase to $\mathrm{pH} 2(9 \mathrm{~N} \mathrm{HCl})$ and ether extraction, drying ( $\mathrm{MgSO}_{4}$ ), and concentration gave $0.05 \mathrm{~g}(65 \%)$ of 9 as a colorless solid, $\mathrm{mp} 52-55^{\circ} \mathrm{C}$ (hexane); IR ( $\left.\mathrm{CCl}_{4}\right) 1700 \mathrm{~cm}^{-1}$ : NMR $\left(\mathrm{CCL}_{4}\right) \delta 7.85(\mathrm{~s}, 1), 7.65-6.70(\mathrm{~m}, 7), 3.72(\mathrm{~s}, 3), 3.22(\mathrm{~s}, 3), 1.42(\mathrm{~s}$, 9).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{5}$ : C, 67.21 ; $\mathrm{H}, 6.49$. Found: C, 67.43 ; H , 6.26.

2,4'-(Dicarboxy)-6-methoxybiphenyl (16). The preparation of the $p$-(magnesiobromide)phenyloxazoline 12 has been reported. ${ }^{10}$ The deep red Grignard reagent was added to $1.18 \mathrm{~g}(5 \mathrm{mmol})$ of 1 b in 10 mL of THF at $25^{\circ} \mathrm{C}$. After stirring for 15 h , the solution was worked up in the usual way to give 2.11 g of a yellow solid, 15 . Purification via preparative TLC ( $50 \%$ ethyl acetate-hexane) gave $1.71 \mathrm{~g}, \mathrm{mp} \mathrm{151-153}$ ${ }^{\circ} \mathrm{C}(90 \%)$. Spectral characteristics for 15 were the =ollowing: IR (film) $1645,1045 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCL}_{4}\right) \delta 6.67-8.07(\mathrm{~m}, 7), 4.03(\mathrm{~s}, 2), 3.67(\mathrm{~s}$, 3 ), $3.60(\mathrm{~s}, 2), 1.35(\mathrm{~s}, 6), 1.15(\mathrm{~s}, 6)$.

The biaryloxazoline 15 was hydrolyzed by heating to reflux 0.75 g in 4.5 N HCl for 18 h . The resulting solid was filtered and recrystallized from ethanol-water to give $0.462 \mathrm{~g}(85 \%)$ of 16 as a colorless solid, $\mathrm{mp} 224-227{ }^{\circ} \mathrm{C}$; IR (KBr) 2300-2400, 1675, $1050 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 11.7-12.7$ (brd s, 2), 7.10-8.23 (m, 7), 3.72 (s, 3).

Anal. Calcd: C, 66.17; H, 4.45. Found: C, 66.91; H, 4.31.
2,2'-(Dicarboxy)-6-methoxybiphenyl (14). In a fashion similar to 16 above, 1.79 g of $o$-bromophenyloxazoline was converted to its Grignard reagent ${ }^{10}$ and added to 1.18 g of 1 b in 10 mL of THF. The solution was stirred at $25^{\circ} \mathrm{C}$ for 60 h and then poured into saturated ammonium chloride, extracted with ether, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and concentrated to give 2.25 g of crude 13. Purification on silica gel using preparative TLC ( $50 \%$ ethyl acetate-hexane) gave $.66 \mathrm{~g}(88 \%)$ of pure 13, mp 99-101 ${ }^{\circ} \mathrm{C}$; IR (film) $1650,1040 \mathrm{~cm}^{-1}$; NMP. $\left(\mathrm{CCl}_{4}\right) \delta 6.70-8.00$ (m, 7), 3.57-3.67 (s, 7), 0.88-1.27 (s, 12).

Hydrolysis was performed by heating 0.756 g of 13 in 4.5 N HCl for 24 h . The solid was collected by filtration and recrystallized from water to give $0.467 \mathrm{~g}(93 \%)$ of pure $14, \mathrm{mp} 222-224^{\circ} \mathrm{C}$; IR (film) 2300-3500 broad, 1680, 1060, $\mathrm{cm}^{-1}$; NMR ( $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}$ ) $\delta 11.67-12.77$ (brd, 2), 6.67-8.43 (m, 5), 3.67 (s, 3).

Anal. Calcd: C, 66.17; H, 4.45. Found: C, 66.27; H, 4.35.
2-(3-Methoxy-2-trimethylsilylphenyl)-4,4-dimethyl-2-oxazoline (17). Methyllithium ( $3.8 \mathrm{~m} . \mathrm{L}, 1.45 \mathrm{M}$ ) was added to $1.2 \mathrm{~mL}(6.0$ mmol ) of hexamethyldisilane in 4 mL of dry HMPA at $0^{\circ} \mathrm{C}$. After stirring for $20 \mathrm{~min}, 10 \mathrm{~mL}$ of dry 7 HF was added and the solution was cooled to $-78^{\circ} \mathrm{C}$. A solution of $1.18 \mathrm{~g}(5 \mathrm{mmol})$ of 1 b in 5 mL of THF was introduced, and the deep red mixture was stirred for 2 h at -78 ${ }^{\circ} \mathrm{C}$ and then warmed to $0^{\circ} \mathrm{C}$ over 1 h . The usual workup gave crude 17, which was purified by prepara-ive thin-layer chromatography ( $50 \%$ ethyl acetate-hexane), furnishing 58 mg of 1 b and 0.907 g of 17 as an oil. Distillation, bulb-to-bulb, at $70^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$ gave pure material ( $66 \%$ ); NMR ( $\mathrm{CCl}_{4}$ ) $\delta 6.67-7.38(\mathrm{~m}, 3), 3.95(\mathrm{~s}, 2), 3.73(\mathrm{~s}, 3), 1.32$ (s, $6), 0.30(\mathrm{~s}, 9)$.

Anal. Calcd: C, 64.94; H, 8.36. Found: C, 65.15; H, 7.89.
1,4-Bis(2-oxazinyl-6-methoxyphenyl)butane (23). 1,4-Dibromobutane ( $0.54 \mathrm{~g}, 2.5 \mathrm{mmol}$ ) was added to 0.243 g of magnesium turnings in 10 mL of dry THF. The resulting Grignard reagent was then added to $1.18 \mathrm{~g}(5.0 \mathrm{mmol})$ of $1 \mathbf{b}$ in 5 mL of THF at $25^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 21 h and then heated at reflux for 24 h . The usual workup gave the crude product, which was purified by preparative TLC (silica gel, $50 \%$ ethyl acetate-hexane) to give 0.320 g of $25(3-\mathrm{MeO})$ ar.d $0.333 \mathrm{~g}(29 \%)$ of 23 as a colorless solid, mp 150-151 ${ }^{\circ} \mathrm{C}$ (hexane); NMR ( $\mathrm{CDCl}_{3}$ ) $\delta$ 6.73-7.43 (m, 6), 4.05 (m, 4), $3.82(\mathrm{~m}, 6), 2.77(\mathrm{~m}, 4), 1.17-1.80(\mathrm{~m}, 4), 1.40(\mathrm{~s}, 12)$

Anal. Calcd: C, 72.39; H, 7.81. Found: C, 72.43 ; H, 7.95 .
1,4-Bis(2-oxazinyl-6-methoxyphenyl)benzene (24). A mixture of 1.18 g of $1 \mathrm{~b}, 0.170 \mathrm{~g}$ of magnesium turnings, and 0.590 g of $p-\mathrm{di}$ bromobenzene in 15 mL of dry i HF was heated under reflux for 24 h. The standard workup gave the crude product, which was purified by preparative TLC (silica gel, $50 \%$ ethyl acetate-hexane, eluted twice). There was cut (ether) from the plate 0.116 g of 25 ( $11 \%$ ), 0.284 g of 3 (Table I. entry 15 : $20 \%$ yie.d). and 0.365 g ( $30 \%$ ) of 24 . Recrystallization from ethyl acetate-hexane gave pure $24, \mathrm{mp} 220-221^{\circ} \mathrm{C}$; NMR ( $\mathrm{CCl}_{4}$ ) $\delta 6.90-7.47(\mathrm{~m}, 10), 3.77(\mathrm{~s}, 3), 3.75(\mathrm{~s}, 4), 1.27(\mathrm{~s}, 12)$.

Anal. Calcd: C, 74.36; H, 6.66. Found: C, 74.17; H, 6.59.
2-(2,6-Diphenylphenyl)-4,4-dimethyl-2-oxazoline (27). A solution of 1.18 g ( 5.0 mmol ) of $1 \mathbf{b}$ i. 5 mL of THF was treated with 12.5 mmol of phenylmagnesium bromide (from 1.96 g of bromobenzene and 0.30 g of magnesium turnings in 17 ml of THF), and the mixture was stirred for 76 h at room temperature. After quenching (saturated $\mathrm{NH}_{4} \mathrm{Cl}$ ), ether extraction, dryirg $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and concentration, the crude mixture was purified by preparative TLC (silica gel, $50 \%$ ethyl acetate-hexane). The faster moving band was cut away and extracted with ether to give, after evapuration. $0.70 \mathrm{~g}(50 \%)$ of $27, \mathrm{mp} 96.5-97.5$ ${ }^{\circ} \mathrm{C}$; IR (film) $1660,1456,1038.760,700 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right)$ ò 6.27-7.60 (m, 13), 3.47 (s, 2), 0.87 (s, 6).

Anal. Calcd: C, 84.37 ; H, 6.46. Found: C. 84.65; H. 6.59.
The slower moving band, after similar isolation, gave $0.699 \mathrm{~g}(49.8 \%)$ of 26 (Table I, entry 25). Treatment of 26 with 2.0 equiv of phenylmagnesium bromide in THF for 170 h gave complete recovery of the starting material.

Reaction of 1 b with 5-Hexenylmagnesium Bromide. Preparation of 28 and 29 . Freshly distilled 6-bromo-1-hexene ( $1.06 \mathrm{~g}, 6.50$ mmol ) was added to 0.160 g of magnesium turnings in 10 mL of dry THF. After the Grignard reagent was completely formed, 0.25 mL was withdrawn and quenched in water. Analysis by VPC indicated 87-90\% of 1 -hexene and $10-13 \%$ of methylcyclopentane. The remainder of the Grignard reagent was added to 1.18 g of 1 b in 7 mL of THF at 25 ${ }^{\circ} \mathrm{C}$ and stirred for 6 h . Standard workup gave 1.46 g of an oil, which was purified to remove starting material ( $1 \mathrm{~b}, 8 \%$ ) by preparative TLC ( $50 \%$ ethyl acetate-hexane). The overlapping bands were removed together from the silica gel with ether and evaporated to leave 1.08 g of a mixture of 28 and 29. NMR analysis indicated that the mixture consisted of $87 \%$ of 28 and $13 \%$ of 29 . Analysis of the mixture gave the following results: NMR $\left(\mathrm{CCl}_{4}\right) \delta 6.67-7.43(\mathrm{~m}, 3), 4.77-6.00[\mathrm{~m}$, viny] region, $2.5(87 \%)$ ], $3.92(\mathrm{~s}, 2), 3.75(\mathrm{~s}, 3), 2.80-3.23(\mathrm{~m}, 2) .1 .87-2.33(\mathrm{~m}$, 2), $1.40-1.77(\mathrm{~m}, 4), 1.32(\mathrm{~s}, 6)$.

Anal. Calcd: C, 75.22 ; H, 8.77. Found: C, 74.91; H, 8.79.
Acknowledgment. Financial support of this work was provided by the National Institutes of Health and the Army Research Office (Durham). An Eastman Kodak Fellowship (E.D.M.) is also gratefully acknowledged.

Registry No.-la, 57598-33-1: 1a (HCl), 64957-82-0; 1b, 57598-32-0; 1b (HCl), 64957-83-1; 1c, 64957-84-2; 1c (HCl). 64957-85-3; 1d, 64957-86-4; ld (HCl), 64957-87-5: le, 64957-88-6: le (HCl), 64957-89-7: 2a, 579-75-9; 2a (acid chloride), 21615-34-9; 2b, 1521-38-6; 2b (acid chloride), 7169-06-4: 2c, 91-52-1: 2c (acid chloride). 39828-35-8; 2d, 1466-76-8; 2d (acid chloride), 1989-53-3; 2e, 490-64-2; 2e (acid
chloride), 42833-66-9; $3(\mathrm{R}=\mathrm{Bu} ; n=0$ ), $57629-47-7$; $3(\mathrm{R}=t-\mathrm{Bu}$; $3-\mathrm{MeO}), 57598-43-3 ; 3(\mathrm{R}=t-\mathrm{Bu} ; 3-\mathrm{MeO})$ methiodide, $65000-02-4$; $4(\mathrm{R}=t-\mathrm{Bu} ; 3-\mathrm{MeO}), 57598-52-4 ; 5(\mathrm{R}=\mathrm{Bu} ; 2-\mathrm{MeO}), 64957-90-0 ; 6$ ( $\mathrm{R}=\mathrm{Bu} ; 2-\mathrm{MeO}$ ), 20359-54-0; 9, 57598-48-8; 10 ( HCl ), 64957-91-1; 13, 64957-92-2; 13 (meta analogue), 64957-93-3; 14, 38197-35-2; 15, 64957-94-4; 16, 64957-71-7; 17, 64957-72-8; 23, 64957-73-9; 24, 65000-03-5; 27, 64957-74-0; 28, 64957-75-1; 29, 64957-76-2; thionyl chloride, 7719-09-7; 2-amino-2-methyl-1-propanol, 124-68-5; 3-bromo( $N$-methyl-N-Boc)aniline, 57598-34-2; 2-p-bromophenyl-4,4-dimethyloxazol-2-ine, 32664-14-5; 2-o-bromophenyl-4,4-dimethy-loxazol-2-ine, 32664-13-4; hexamethyldisilane, 1450-14-2; 1,4-dibromobutane, 110-52-1; p-dibromobenzere, 106-37-6; bromobenzene, 108-86-1; 6-bromo-1-hexene, 2695-47-8; 2-methoxyvalerophenone 2,4-DNP, 64957-70-6.

## References and Notes

(1) A number of reviews on nucleophilic aromatic substitution have appeared: J. F. Bunnett, Q. Rev., Chem Soc., 12, 1 (-958); J. Sauer and R. Huisgen, Angew. Chem., 72, 294 (1960); S. D. Ross, Prog. Phys. Org. Chem., 1, 31 (1963).
(2) K. Tamas, K. Sumitani, and M. Kumada, J. Am. Chem. Soc., 94, 4374 (1972).
(3) M. F. Semmelhack, Y. Thebtaranonth, and L. Keller, J. Am. Chem. Soc. 99: 960 (1977), and references cited therein.
(4) A. A. Millard and M. W. Rathke, J. Am. Cr.em. Soc., 99, 4833 (1977)
(5) J. E. Shaw, D. C. Kunerth, and S. B. Swanson, J. Org. Chem., 41, 732 (1976); H. E. Simmons and D. J. Sam, J. Am. Chem. Soc., 96, 2252 (1974).
(6) A. Bruggink and A. McKillop. Tetrahedron 31, 2607 (1975).
(7) P. G. Gassman and R. J. Balchunis, Tetrahedron Lett., 2235 (1977), and references cited therein.
(8) J. F. Bunnett, Z. G. Scamehorn, and R. P. Traher, J. Org. Chem., 41, 3677 (1976), and earlier references cited.
(9) A. I. Meyers and E. D. Mihelich, J. Am. Chem. Soc., 97, 7383 (1975).
(10) A. I. Meyers, D. L. Temple, D. Haidukewych, and E. D. Mihelich, J. Org Chem., 39, 2787 (1974).
(11) E. C. Taylor, ${ }^{\text {Z }}$. Kienzle, and A. McKillop, J. Am. Chem. Soc., 92, 6088 (1970); E. C. Taylor, H. W. Altland, and A. McKillop, J. Org. Chem., 40, 2351 (1975); E. C. Taylor and A. McKillop, Acc. Chem. Res., 3, 338 (1970); A. McKillop. A. G. Turrell, and E. C. Taylor, J. Org. Chem., 42, 764 (1977).
(12) T. E. Ziegler, K. W. Fowler, and S. Kanfer, J. Am. Chem. Soc., 98, 8282 (1976); T. Cohen and I. Cristea, ibid., 98, 748 (1976).
(13) For a review on the Ullmann synthesis and related couplings leading to biaryls, see J F. Normant, Synthesis, 63 (1972), and P. E. Fanta, ibid., 9 (1974).
(14) Various alkyl, dialkyl, and aryl amines have been introduced onto the ortho position by methoxyl displacement and briefly described: A. I. Meyers and R. Gabel, J. Org. Chem., 42, 2653 (1977).
(15) C. Eaborn, J. Organomet. Chem., 100, 43 (1975).
(16) M. A. Shippey and P. B. Dervan, J. Org. Chem., 42, 2655 (1977).
(17) A. I. Meyers and E. D. Mihelich, J. Org. Chem., 40, 3158 (1975).
(18) H. Geschwind and A. Hamdan, J. Org. Chem., 40, 2008 (1975).
(19) L. D. Vecchia and I. Vlattas, J. Org. Chem., 42, 2649 (1977).
(20) C. Y. Meyers et al., Abstracts of the American Chemical Society Midwest Regional Meeting, Carbondale, III., Oct 1975, ORGN 510.
(21) D. Lal, D. Griller, S. Husband, and K. U. Ingold, J. Am. Chem. Soc., 96, 6355 (1974).
(22) H. W. H. J. Bcdowitz, C. Blomberg, and F. Bickelhaupt, Tetrahedron, 31, 1053 (1975).
(23) Professor D. J Cram (UCLA) informed us that the addition of a large excess of phenylmagnesium bromide to 1d gave the m-terphenyl derivative 27 in quantitative yield.

# Sulfenylation and Sulfinylation of Lactams and Imino Ethers 

P. A. Zoretic,* P. Soja, ${ }^{1}$ and N. D. Sir.ha<br>Department of Chemistry, Southeastern Massachusetts University; North Dartmouth, Massachusetts 02747

Received August 25, 1977


#### Abstract

The sulfenylation of 1-trimethylsilyl-2-pyrrolidinone (1) with phenyl disulfide under a variety of reaction conditions afforded the bissulfide 3 as the major product along with the monosulfide 2 . The direct sulfinylation of 1 with methyl benzenesulfinate, however, could be achieved to afford the sulfoxice 4 . An analogous sulfinylation of 1 -methyl-2-pyrrolidinone gave the sulfoxide 13 in excellent yield. The imino ether 5 could be monosulfenylated effectively by employing a $1: 2: 1$ ratio of lactam/base/electrophile. It was also observed that in the sulfenylation of the $N$-alkyllactams 7 and 8 that HMPA had no effect on promoting bissulfenylation and that the ratio of substrate/ base/electrophile is very important.


Recently, we reported ${ }^{2}$ that mono- or bissulfenylation or selenenylation of $N$-methyllactams can be cleanly controlled by varying the equivalents of base utilized in the reaction. It has also been demonstrated ${ }^{3}$ that an $\alpha$-phenylselenenyl or an $\alpha$-phenylsulfenyl moiety can be used to introduce a $\Delta^{3,4}$ double bond in an intact 2-pyryolidinone nucleus.

In order to develop a synthetic sequence that would be compatible with the formation of a 3 -pyrrolin- 2 -one system and also allow modification on the nitrogen, we were interested in utilizing the trimethylsilyllactam $1^{4}$ and the imino ether 5 . The results of the sulfenylation of 1 and 5 and related lactam chemistry are reported hereir.

Reaction of the trimethylsilyllactam 1 with 2 equiv of LDA in THF at $-78^{\circ} \mathrm{C}$ followed by sulfenylation with 1 equiv of phenyl disulfide and subsequent cleavage of the $\mathrm{N}-\mathrm{Si}$ bond on workup afforded the monosulfide 2 in $29 \%$ yield and the

bissulfide 3 in $50 \%$ yield. When a 1:2:2 ratio of lactam/base/ electrophile was employed, it was found that sulfenylation of

1 gave the bissulfide 3 in $84 \%$ yield along with $3 \%$ of the monosulfide 2.

The best yield of the monosulfide was realized when a 1:1:2 ratio of lactam/base/electrophile was used with inverse quenching at $0^{\circ} \mathrm{C}$. In this case, 2 was obtained in a $35 \%$ yield and 3 in $33 \%$ yield. The results observed by varying the ratio of lactam/base/electrophile with or without the presence of HMPA and with or without inverse quenching are summarized in Table :.

Although the above results with respect to controlling mono- vs. bissulfenylation in the case of silylated lactams were discouraging, the problem could be circumvented, since it was found that sulfinylation of 1 with methyl benzenesulfinate ${ }^{5}$

could be achieved to afford the desired sulfoxide directly. Thus, reaction of 1 with 2 equiv of LDA in THF at $-78^{\circ} \mathrm{C}$ and subsequent sulfinylation with methyl benzenesulfinate ( 45 $\min$ at $-78^{\circ} \mathrm{C}$ and room temperature for 2 h ) afforded a $67 \%$ yield of the crystalline sulfoxide 4.

Table I. Sulfenylation of a Trimethylsilyllactam 1

| Ratio of lactam/base/ electrophile ${ }^{a}$ | Equiv of HMPA | Yield, \% ${ }^{\text {b }}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | Mono-2 | Bis-3 |
| 1:1:1 | 1 | 26 | 44 |
| $1: 1: 1^{c, d}$ | 1 | 21 | 39 |
| $1: 1: 2^{\text {c,e }}$ |  | 35 | 33 |
| 1:2:1 |  | 29 | 50 |
| $1: 2: 1^{c, f}$ |  | 21 | 55 |
| 1:2:2 |  | 3 | 84 |

${ }^{a} \mathrm{PhSSPh} .{ }^{b}$ Isolated by column chromatography using silica gel G. ${ }^{c}$ Inverse quenching. ${ }^{d} 35 \mathrm{~min}$ at $0^{\circ} \mathrm{C}$ and 0.5 h at room temperature. ${ }^{e} 0{ }^{\circ} \mathrm{C}$ for 1.5 h and room temperature for 0.5 h . $1-40^{\circ} \mathrm{C}, 1.0 \mathrm{~h}$.

The imino ether 5 can be envisioned as a synthon for the elaboration of the 2-pyrrolidinone nucleus and it also lends itself readily for modification on nitrogen. The bissulfenylation of the imino ether, 2 -methoxy-3,4,5,6-tetrahydropyridine, has been reported by Trost and Kunz. ${ }^{5}$ We were interested to ascertain if the imino ether 5 could be monosulfenylated under our conditions previously reported ${ }^{2}$ for the sulfenylation of lactams, since monosulfenylation is a necessary requirement for the introduction of a $\Delta^{8,4}$ double bond in an intact 2-pyrrolidinone nucleus.

Reaction of the imino ether 5 with 2 equiv of LDA in THF

at $-78^{\circ} \mathrm{C}$ followed by sulfenylation with phenyl disulfide at $-78^{\circ} \mathrm{C}$ and subsequent warming to $-20^{\circ} \mathrm{C}$ end then to room temperature afforded a $46 \%$ yield of the distilled phenyl sulfide $6 .{ }^{7}$ No bissulfide was detected in this reaction.

Trost and co-workers ${ }^{8}$ have shown that in THF solutions bissulfenylation of ketcne enolates with pher.yl disulfide does not occur regardless of the amount of excess base or disulfide, whereas bissulfenylation in THF-HMPA mistures can occur. It has also been pointed out by these workers that HMPA effectively increases the rate of sulfenylaticn. In our earlier work ${ }^{2}$ on the sulfenylation of $\alpha$-methylenelactams in THF-HMPA solutions, it was observed that the ratio of substrate/base/electrophile was critical in controlled monovs. bissulfenylation. We therefore were interested in carrying out these sulfenylation reactions in THF alone to determine what role HMPA might have with respect to mono- and bissulfenylation.

These results using different ratios of base and electrophile are summarized in Table II. It appears in this case that HMPA has no effect on promoting bisulfenylation and that the ratio of base to disulfide is very important. Witho at the utilization of HMPA in these reactions, the purification of the products is much less laborous.

We have also observed that the lactam 7 can be sulfinylated

in high yield directly with methyl benzenesulfinate, ${ }^{5}$ thus circumventing the problems association with bissulfenylation. Reaction of 7 with 2 equiv of LDA in THF at $-78^{\circ} \mathrm{C}$ and

Table II. Sulfenylation of $\boldsymbol{N}$-Methyllactams in THF

|  | Ratio of <br> lactam/base/ <br> electrophile |  | Compd (yield, \% \% ${ }^{b}$ |  |
| :---: | :---: | :---: | :---: | :---: |

${ }^{a}$ PhSSPh. ${ }^{b}$ Isolated by column chromatography using silica gel G. ${ }^{c}$ Inverse quenching. ${ }^{d}$ Isolated by direct crystallization.
subsequent sulfinylation with methyl benzenesulfinate at -78 ${ }^{\circ} \mathrm{C}$ for 1 h , warming to room semperature, and stirring overnight afforded the crystalline sulfoxide 13 in $94 \%$ yield.


## Experimental Section

3-Phenylthio-2-pyrrolidinone (2) and 3,3-Diphenylthio-2pyrrolidinone (3). General Procedure A. A $100-\mathrm{mL}$ three-neck flask fitted with a nitrogen inlet tube, addition funnel, serum cap, and magnetic stirring bar was flamed and deaerated with nitrogen. A solution of diisopropylamine $(5.15 \mathrm{~g}, 0.051 \mathrm{~mol})$ in 30 mL of dry THF was added under $\mathrm{N}_{2}$, and the reaction vessel was cooled to $0^{\circ} \mathrm{C}$. A hexane solution of $2.4 \mathrm{M} n$-butyllithium ( $21.23 \mathrm{~mL}, 0.051 \mathrm{~mol}$ ) was added with a hypodermic syringe and allowed to stir at $0^{\mathrm{C}} \mathrm{C}$ for 10 min . The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$ with a dry iceacetone bath, and 1-trimethylsilyl-2-pyrrolidinone ( $4.0 \mathrm{~g}, 0.0255 \mathrm{~mol}$ ) dissolved in 10 mL of dry THF was added over a $5-\mathrm{min}$ period. The reaction was allowed to stir at $-78^{\circ} \mathrm{C}$ for 35 min . Phenyl disulfide ( 5.55 g .0 .0255 mol ) dissolved in 10 mL of THF was added dropwise over a $5 \cdot \mathrm{~min}$ period, and the addition funnel was then rinsed with 3 mL of THF. The reaction mixture was stirred for an additional 35 min at $-78^{\circ} \mathrm{C}$. The reaction was allowed to warm to $-20^{\circ} \mathrm{C}$, stirred at -20 ${ }^{\circ} \mathrm{C}$ for 20 min , and then allowed to warm to room temperature. The reaction mixture was poured into 400 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with three $350-\mathrm{mL}$ portions of ether. The ether extracts were combined and washed consecutively with 150 mL of a $10 \% \mathrm{NaOH}$ solution, 150 mL of $\mathrm{H}_{2} \mathrm{O}, 150 \mathrm{~mL}$ of a $10 \% \mathrm{HCl}$ solution, and 150 mL of $\mathrm{H}_{2} \mathrm{O}$. The ether solution was dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated on a rotary evaporator, affording 6.0 g of an oil. The oil was chromatographed on silica gel $G$ and elution with ether-hexane solutions gave $1.9 \mathrm{~g}(50 \%)$ of 3,3 -diphenylthio-2-pyrrolidinone (3) [mp $100.5-102{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$ trituration); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.92$ (s, br, NH, 1 $\mathrm{H}), 7.10-7.84(\mathrm{~m}, 10 \mathrm{H}), 3.06(\mathrm{t}, 2 \mathrm{H})$, and $2.28(\mathrm{t}, 2 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right)$ 3435,3220 , and 1700 (broad) $\mathrm{cm}^{-1}$ ] and $1.4 \mathrm{~g}(29 \%)$ of 3-phenylthio-2-pyrrolidinone (2) (mp $120-1 \_0.7^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane trituration); NMR $\left(\mathrm{CHCl}_{3}\right) \delta 7.95(\mathrm{~s}, \mathrm{br}, \mathrm{NH} .1 \mathrm{H}), 7.14-7.75(\mathrm{~m}, 5 \mathrm{H}), 3.82(\mathrm{t}, 1 \mathrm{H})$, $3.27(\mathrm{t}, 2 \mathrm{H})$, and $1.80-2.86(\mathrm{~m}, 2 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) 3435,3224$, and 1695 $\left.\mathrm{cm}^{-1}\right]$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NOS}_{2}$ : $\mathrm{C}, 63.76: \mathrm{H}, 5.02 ; \mathrm{N}, 4.65$. Found: C , 63.72; H, 5.11 N, 4.61 .

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11}$ NOS: C, 62.15: H, 5.74; N, 7.25. Found: C, 62.09: H, 5.78; N, 7.24.

3-Phenylthio-2-pyrrolidinone (2) and 3,3-Diphenylthio-2pyrrolidinone (3). General Procedure B. Inverse Quenching. A $50-\mathrm{mL}$ three-neck flask fitted with an addition funnel, serum cap, and magnetic stirring bar was connected via a glass siphoning tube to a second $100-\mathrm{mL}$ three-neck flask fitted with a nitrogen inlet tube, stopper, and magnetic stirring bar. The apparatus was flamed and deaerated with nitrogen. Phenyl disulfide ( $5.55 \mathrm{~g}, 0.0255 \mathrm{~mol}$ ) dissolved in 20 mL of dry THF was placed in the $100-\mathrm{mL}$ flask. A solution of diisopropylamine ( $1.29 \mathrm{~g}, 0.0128 \mathrm{~mol}$ ) dissolved in 12 mL of THF was placed under nitrogen in the 50 mL -flask and cooled $\mathrm{t} \cdot 0^{\circ} \mathrm{C}$. A hexane solution of $2.4 \mathrm{M} n$-butylithium ( $5.31 \mathrm{~mL}, 0.01274 \mathrm{~mol}$ ) was added with a hypodermic syringe and allowed to stir at $0^{\circ} \mathrm{C}$ for 10 $\min$. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and 1 -trimethylsi-lyl-2-pyrrolidinone ( $2.0 \mathrm{~g}, 0.01274 \mathrm{~mol}$ ) dissolved in 7 mL of THF was added over a $5-\mathrm{min}$ period. The reaction mixture was stirred for an
additional 0.5 h at $-78^{\circ} \mathrm{C}$. The enolate solution was then siphoned through the glass tube into the solution of phenyl disulfide cooled to $0^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h and then at room temperature for 0.5 h . The reaction mixture was poured into 200 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with three $175-\mathrm{mL}$ portions of ether. The ether extracts were combinec and washed consecutively with 75 mL of a $10 \% \mathrm{NaOH}$ solution, 75 mL of $\mathrm{H}_{2} \mathrm{O}, 75 \mathrm{~mL}$ of a $10 \%$ HCl sclution, and 75 mL of $\mathrm{H}_{2} \mathrm{O}$. The et.eer solution was dried over anhydzous $\mathrm{MgSO}_{4}$ and filtered, and concentration on a rotary evaporator afforded 3.2 g of an oil. The oil was chromatographed on silica gel G, and elution with ether-hexane solctions yielded 630 mg (33\%) of 3,3-diphenylthio-2-pyrrolidinone (3) and 850 mg (35\%) of 3 -phenylthio-2-pyrrolidinone (2). The NMR and TLC analyses of compounds 2 and 3 were consistent when compared with those of authertic 2 and 3.
3-Phenylthio-2-pyrrolidinone (2) and 3,3-Diphenylthio-2pyrrolidinone (3). A 1:1:1 Ratio with HMPA. Following the general procedure A, the amide enolate ( $0.0127 \leq \mathrm{mol}$ ) was prepared in the usual way in 10 mL of dry THF. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Phenyl disulfide ( $2.73 \mathrm{~g}, 0.01274 \mathrm{~mol}$ ) dissolved in 10 mL of THF containing HMPA ( $2.28 \mathrm{~g}, 0.01274 \mathrm{~mol}$ ) was added over a $10-\mathrm{min}$ period, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 35 min . The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$, stirred at $-20^{\circ} \mathrm{C}$ for 20 min , and then allowed to warm to room temperature.

Workup as usual yielded an oil. The oil was chromatographed on silica gel G, and elution with ether-hexane solutions afforded 840 mg ( $44 \%$ ) of 3 and $650 \mathrm{mg}(26 \%)$ of 2. The NMR and TLC analyses of compounds 2 and 3 were consistent when compared with those of authentic 2 and 3.
3-Phenylthio-2-pyrrolidinone (2) and 3,3-Diphenylthio-2pyrrolidinone (3). Inverse Quenching. A 1:1:1 Ratio with HMPA. Following the general procedure B , the amide enolate ( 0.01274 mol ) was prepared in the usual way in 10 mL of dry THF. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The enolate solution was then siphoned through a glass tube into a solution of phenyl disulfide ( $2.78 \mathrm{~g}, 0.01274$ mol ) dissolved in 10 mL of THF containing HMPA ( $2.28 \mathrm{~g}, 0.01274$ mol ) at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 35 min and then at room temperature for an additional 0.5 h .
Worsup as usual yielded an oil. The oil was chromatographed on silica gel G and elution with ether-hexane solutions afforded 750 mg ( $39 \%$ ) of 3 and $500 \mathrm{mg}(20 \%)$ of 2 . The NMR and TLC analyses of compounds 2 and 3 were consistent when compared with those of authentic 2 and 3.
3-Phenylthio-2-pyrrolidinone (2) and 3,3-Diphenylthio-2pyrrolidinone (3). Inverse Quenching. A 1:2:1 Ratio. Following the gereral procedure $B$, the amide enolate $(0.00637 \mathrm{~mol})$ was prepared in the presence of LDA ( 0.01274 mcl ) in the usual way in 5 mL of THF. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . The enolate solution was then siphoned through a glass tube into a solution of phenyl disulfide ( 1.39 g 0.00637 mol ) cissolved :n 10 mL of THF at $-40^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h .

Workup as usual yielded an oil. The oil was chromatographed on silica gel G and elution with ether-hexane solutions afforded 525 mg ( $55 \%$ ) of 3 and 245 mg ( $20 \%$ ) of 2 . The NMR and TLC analysis of compounds 2 and 3 were consistent when compared with those of authentic 2 and 3.
3-Phenylthio-2-pyrrolidinone (2) and 3,3-Diphenylthio-2pyrrolidinone (3). A 1:2:2 Ratio. Following the general procedure A, the amide enolate ( 0.00637 mol ) was prepared in the presence of LDA ( $(1.0127 \mathrm{~mol}$ ) in the usual way in 5 mL of THF. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 35 min . Phenyl disulfide $(2.77 \mathrm{~g}$, 0.0127 mol ) dissolved in 10 mL of THF was added dropwise over a $10-$ min period, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 35 min . The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$, stirred at $-20^{\circ} \mathrm{C}\left(\mathrm{CCl}_{4}\right.$-dry ice bath) for 20 min , ard then al.owed to warm to room temperature over a $40-\mathrm{min}$ period. Workup as usual vielded an oil. The oil was chromatographed on silica gel $G$ and elution with ether-rexane solutions afforded $1.6 \mathrm{~g}(84 \%)$ of 3 and $0.03 \mathrm{~g}(3 \%)$ of 2. The NMR and TLC analyses of compound 3 were consistent when compared with those of authentic 3.

3-Phenylsulfinyl-2-pyrrolidinone (4). Following the general procedure A, LDA ( 0.0446 mol ) was prepared in the usual way in 10 mL of THF. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and 1 -tri-methylsilyl-2-pyrrolidinone ( $3.5 \mathrm{~g}, 0.0223 \mathrm{~mol}$ ) dissolved in 15 mL of THF was added over a $10-\mathrm{min}$ period. The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 45 min , then allowed to come to room temperature, and stirred for 2 h .
The reaction was poured into 100 mL of a $10 \%$ sodium bicarbonate
solution and extracted with three $350-\mathrm{mL}$ portions of $\mathrm{CHCl}_{3}$. The chloroform extracts were combined, washed with a dilute solution of HCl and a saturated NaCl solution, dried over anhydrous $\mathrm{MgSO}_{4}$, and filtered, and concentration on a rotary evaporator aff orded a brown oil. The oil was chromatographed on silica gel G , and elution with ether-me:hanol solutions afforded $3.1 \mathrm{~g}(67 \%)$ of 4 as a white solid: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.05-7.85(\mathrm{~m}, 6 \mathrm{H}), 3.20-3.75(\mathrm{~m}, 3 \mathrm{H})$. and $1.52-3.17$ ( $\mathrm{m}, 2 \mathrm{H}$ ); IR $\left(\mathrm{CHCl}_{3}\right) 3340,3325,1710$, and $1045 \mathrm{~cm}^{-1}$.
Anal. Calcd fcr $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 57.40 ; \mathrm{H}, 5.30 ; \mathrm{N}, 6.69$. Found: C, 57.42; H, 5.38; N, 6.72.

2-Ethoxy-3-phenylthio-1,2-dehydropyrrolidine (6). A 1:2:1 Ratio with HMPA. Following the general procedure A, the imidate anion ( 0.0354 mcl ) was prepared in the presence of LDA $(0.0708 \mathrm{~mol})$ in the usual way in 30 mL of dry THF. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 35 min . Phenyl disulfide ( $7.72 \mathrm{~g}, 0.0354 \mathrm{~mol}$ ) dissolved in 15 mL of THF containing HMPA ( $6.34 \mathrm{~g}, 0.0354 \mathrm{~mol}$ ) was added over a $7-\mathrm{min}$ period. The addition funnel was rinsed with 5 mL of THF , and the resulting reaction mixture was stirrec at $-78^{\circ} \mathrm{C}$ for 35 min . The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$, stirred at $-20^{\circ} \mathrm{C}$ for 20 min , and then allowed to warm to roon temperature. Workup as usual yielded an oil. The oil was distilled twice to afford $3.6 \mathrm{~g}(46 \%)$ of $6: \mathrm{bp} 95-100^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$; NMR $\left(\mathrm{CCl}_{4}\right)$; $7.05-7.58(\mathrm{~m}$, $5 \mathrm{H}), 4.13(\mathrm{q})$, and $3.73-3.96(\mathrm{~m}, 3 \mathrm{H}), 3.39(\mathrm{t}, 2 \mathrm{H}), 1.6_{c}-2.76(\mathrm{~m}, 2 \mathrm{H})$ and $1.27(\mathrm{t}, 3 \mathrm{H})$.
Anal. Calcd fcr $\mathrm{C}_{12} \mathrm{H}_{15}$ NOS: C, 65.12: H, 6.83; N, 6.32. Found: C, 65.08; H, 6.74; N, 6.20.

1-Methyl-3-phenylthio-2-pyrrolidinone (9) and 1-Methyl-3,3-diphenylthio-2-pyrrolidinone (11). A 1:2:1 Ratio. Following the general procedure A , the enolate of $N$-methyl-2-pyrrolidinone $(0.0404 \mathrm{~mol})$ was prepared in the presence of LDA ( 0.0808 mol ) in the usual manner in 30 mL of THF. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 35 min . Phenyl disulfide ( $8.81 \mathrm{~g}, 0.0404 \mathrm{mcl}$ ) dissolved in 20 mL of THF was added dropwise over a $10-\mathrm{min}$ period. The reaction mixture was stireed at $-78^{\circ} \mathrm{C}$ for 35 min . The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$, stirred at $-20^{\circ} \mathrm{C}$ for 20 min , and then allowed to warm to room temperature.

Workup as us'ial yielded an oil. The oil was chromatographed on silica gel G, and elution with ether-hexane solutions and ether afforded $4.5 \mathrm{~g}(54 \%)$ of 9 and $141 \mathrm{mg}(2 \%)$ of 11 . The NMR and TLC analyses of compounds 9 and 11 were consistent when compared with those of authentic ${ }^{2} 9$ and 11 .

1-Methyl-3-phenylthio-2-piperidone (10). A 1:2:1 Ratio. Following the general procedure $A$. the enolate of 1-methy'-2-piperidone ( 0.0354 mol ) was prepared in the presence of LDA ( 0.0 .07 mol ) in the usual way in 35 mL of THF. The reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 35 min . Prenyl disulfide ( $7.72 \mathrm{~g}, 0.0354 \mathrm{~mol}$ ) dissolved in 20 mL of THF was add 2 d over a $15-$ min period. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 35 min . The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$. stirred at $-20^{\circ} \mathrm{C}$ for 20 min , and then allowed to warm to room temperature.
Workup as usual yielded an oil. The oil was chromatographed on silica gel G and elution with ether-hexane and ether solctions afforded $6.0 \mathrm{~g}(77 \%)$ of 10 , bp $1.55^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$. The NMR and TLC analyses of compound 10 were consistent when compared with those of authentic ${ }^{2} 10$.

1-Methyl-3-phenylthio-2-pyrrolidinone (9) and 1-Methyl-3,3-diphenylthio-2-pyrrolidinone (11). A 1:2:2 Racio. Following the general procedure $A$, the enolate of 1 -methyl-2-pyrrolidinone $(0.040 \mathrm{mo}$ ) was prepared in the presence of LDA $(0.030 \mathrm{~mol})$ in the usual manner in 35 mL of THF. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for $35 \mathrm{~m} \cdot \mathrm{n}$. Phenyl disulfide ( $17.6 \mathrm{~g}, 0.080 \mathrm{~mol}$ ) dissolved in 35 mL of THF was added dropwise over a $15-\mathrm{min}$ perioc. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 35 min . The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$, stirred at $-20^{\circ} \mathrm{C}$ for 20 min , and then allowed to warm to room temperature.

Workup as usual yielded a white solid. The solid was triturated with a $50 \%$ ether-hexane solution to afford 9.2 g ( $72 \%$ ) of $11, \mathrm{mp} 87-88.5$ ${ }^{\circ} \mathrm{C}$. The mother liquor was chromatographed on silica gel G , and elution with ether and methanol-ether solutions afforded an additional $1.4 \mathrm{~g}(11 \%)$ of 11 and $460 \mathrm{mg}(6 \%)$ of 9 . Total yield of 11 was $83 \%$. The NMR and TLC analyses of compcunds 9 and 11 were consistent when compared with those of authentic ${ }^{2} 9$ and 11.

1-Methyl-3,3-diphenylthio-2-piperidone (12). A 1:2:2 Ratio. Following the general procedure A , the enolate of 1-methyl-2-piperidone ( 0.0354 mol ) was prepared in the presence of LDA $(0.0707 \mathrm{~mol})$ in the usual way in 50 mL of dry THF. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 35 min . Phenyl disulfide ( $15.41 \mathrm{~g}, 0.0707 \mathrm{~mol}$ ) dissolved in 35 mL of THF was added over a $15-\mathrm{min}$ period. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 35 min . The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$, stirred at $-20^{\circ} \mathrm{C}$ for 20 min , and then
allowed to warm to room temperature. Workup as usual yielded a white solid. Trituration of the solid with a $50 \%$ ether-hexane solution afforded $6.5 \mathrm{~g}(56 \%)$ of $12, \mathrm{mp} 136-137^{\circ} \mathrm{C}$. The nother liquor was chromatographed on silica gel $G$, and elution with ether-hexane solutions and ether afforded an additional $675 \mathrm{mg}(j \%)$ of 12 and 1.2 g ( $15 \%$ ) of 10 . Total yield of 12 was $62 \%$. The NMR and TLC analyses of compounds 10 and 12 were consistent when compared with those of authentic ${ }^{2} 10$ and 12.

1-Methyl-3,3-diphenylthio-2-piperidone (12). Inverse Quenching. A 1:2:2 Ratio. Following the general procedure B. the amide enolate ( 0.00885 mol ) was prepared in the usual way in 13 mL of THF in the presence of LDA ( 0.0177 mol ). The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min . The enolate solution was sjphoned through a glass tube into a solution of phenyl disulfide $(3.85 \mathrm{~g}, 0.0177 \mathrm{~mol})$ dissolved in 10 mL of THF at $0^{\circ} \mathrm{C}$. The resulting recction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h . W.orkup as usual yielded a solid. The solid was triturated with a $50 \%$ ether-hexane solution to atford $2.2 \mathrm{~g}(76 \%)$ of $12, \mathrm{mp} \mathrm{136-37.5}{ }^{\circ} \mathrm{C}$. The NMR and TLC analysts of compound 12 were consistent when compared with those of authentic ${ }^{2} 12$.

1-Methyl-3-phenylsulfinyl-2-pyrrolidinone (13). Following the general procedure A, LDA ( 0.0202 mol ) was prepared in the usual manner in 10 mL of THF. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and 1-methyl-2-pyrrolidinone ( $1 \mathrm{~g}, 0.0101 \mathrm{~mol}$ ) cissolved in 20 mL of THF was added over a $15-\mathrm{min}$ period. The reaction mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Methyl benzer esulfinate ( 1.57 g , 0.0101 mol ) dissolved in 5 mL of THF was added over a $5-\mathrm{min}$ period. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then allowed to come to room temperature, and stirred overnight. The reaction mixture was poured into a $10 \%$ hydrochloric acid solution and extracted with two $200-\mathrm{mL}$ portions of $\mathrm{CHCl}_{3}$. The chloroform extracts were combined, washed with a saturated NaCl solution, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated on a rotary evaporator, affording a yellow
oil. The oil was chromatographed on silica gel G, and elution with ether-hexane solutions, ether, and ether-chloroform solutions afforded $2.2 \mathrm{~g}(96 \%)$ of pure 13 as a white solid: the NMR and TLC analyses of 13 were consistent when compared with those of authentic $13 .{ }^{3}$

Registry No.-1, 14468-90-7; 2, 65102-72-9; 3, 65102-73-0; 4, 65102-74-1; 5, 931-46-4; 6, 65138-32-1: 7, 872-50-4; 8, 931-20-4; 9, 59953-50-3; 10, 59953-51-4; 11, 59953-53-6; 12, 59953-54-7; 13, 63914-40-9; 14, 65102-75-2; phenyl disulfide, 882-33-7; met hyl benzenesulfinate, 670-98-4.

## References and Notes

(1) Undergraduate research participent.
(2) P. A. Zoretic and P. Soja. J. Org. Chem., 41, 3587 (1976).
(3) P. A. Zoretic and P. Soja, J. Heterocycl. Chem., 14. 681 (1977). For an analogous sulfoxide elimination, see: A. Guzman, J. M. Muchowski, and J. Saldano, Chem. Ind. (London), 357 (1977).
(4) M. J. Hurwitz, and P. L. DeBenneville, U.S. Patent, 2876234 (1959); Chem. Abstr., 53, 12238e (1959).
(5) H. J. Monteiro and J. P. DeSouza, Tetrahedron Lett., 921 (1975).
(6) B. M. Trost and R. A. Kunz, J. Org. Chem., 39, 2475 (1974).
(7) Reaction of the phenyl sulfide $\mathbf{6}$ with methyl 7 -bromoheptanoate in refluxing xylene afforded the lactam 14: NMR (CCl4) $\delta 6.90-7.60(\mathrm{~m})$ and $3.59(\mathrm{~s}$, $\mathrm{O}_{3} \mathrm{H}_{3}$ ). For an analogous N -alkylation, see: L. A. Paquette, T. Kakihana, and J. F. Kelly, J. Org. Chem., 36, 437 (1971).


14
(8) B. M. Trost. T. N. Saltzman, and K. Hiroi, J. Am. Chem. Soc., 98, 4887 (1976).

# Clarification of the Mechanism of the Reaction of Terminal Propargylic Chlorides with Alkyl Grignard Reagents 

Daniel J. Pasto,* Richard H. Shults, Joseph A. McGrath, and Andrew Waterhouse<br>Department of Cheristry: University of Notre Dame, Notre Dame, Indiana $4655 \overline{6}$

Received August 26, 1977


#### Abstract

In the absence of transition metal impurities in the magnesium used to prepare the alkyl Grignard reagent, terminal propargylic chlorides react with Grignard reagents to form an allene carbene-zwitterion intermediate. Reaction of this intermediate with a secor d molecule of the Grignard reagent generates a mixture of propargyl and allenyl Grignard reagents which on hydrolysis generates a mixture of two alkynes and the allene. No evidence was found for the occurrence of carbonium ion, free radical, or $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction pathways.


The history of the reaction of propargyl derivatives with Grignard reagents is one of confusion, widely divergent results being reported by various authors. Serratosa ${ }^{1}$ has suggested that propargyl bromide can react with Grignard reagents via two mechanistic pathways, one being a direct $S_{N} 2$ process to

produce exclusively alkyne, and the other sccurring via an allene-carbene to give exclusively allene. Pasternak and Delépine ${ }^{2}$ have reported that terminal tertiary propargylic halides react with methylmagnesium bromide to produce only allene in quantitative yields! (No mechanism was proposed.) These authors also suggested that the previous contradictory reports of the formation of mixtures of isomeric allenes, al-

kynes, and dienes were due to isomerization during the hydrolysis step.

Coulomb-Delbecq ${ }^{3}$ and co-workers have investigated the reactions of propargylic acetates with Grignard reagents in the absence and presence of added magnesium iodide or cobalt chloride. In the presence of added magnesium iodide a mixture of products is obtained in which allene and alkyne are formed in greater amounts than in the absence of magnesium iodide, leading the authors to propose that a propargyl-allenyl cation was an intermediate. However, in the presence of cobalt chloride substantially highe: yields of allene were formed, leading the authors to suggest that an intermediate propar-gyl-allenyl radical was involved as an intermediate. Substantial yields of dimeric products were also reported in both cases.


The reactions of nonterminal propargylic halides with Grignard reagents have been studied by Zakharova ${ }^{4}$ and by Jacobs and Meyers. ${ }^{5}$ Zakharova ${ }^{4}$ reported that allenes are the major products formed and sugges-ed a carbocation intermediate mechanism. Jacobs and Meyers ${ }^{5}$ reported that alkynes and dienes were the major products; the dienes later were shown to be derived by isomerization of the initially formed allenes. ${ }^{6}$
Finally, apparently accepting that allenes are formed in the reactions of propargylic halides with Grignard reagents, an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-type mechanism has also been suggested to account for their formation. ${ }^{7}$

In tiew of our need to develop a reliable synthesis of allenes, and the diverse results reported in the literature, we undertook a detailed study of the reaction of selected propargylic halides with Grignard reagents. During the course of this study we have derived evidence in favor of the allene-carbene mechanism for the direct reaction of Grignard reager:ts with terminal propargylic halides leading to the formation of a mixture of alkynes and allene, and a transition metal catalyzed process resulting in the exclusive formation of allene. ${ }^{8}$ We describe herein the results of the study of the noncatalyzed reaction, while the study of the transition metal catalyzed reactions is described in detail in the accompanying article. ${ }^{9}$

## Results

Initial results derived from reactions of propargyl halides with Grignard reagents in our laboratories were not consistent. In some instances mixtures of alkynes and allene, and in some cases dienes, were formed, while in others only allene was formed. It finally became apparent that internally consistent, but different, results were being obtained using two different sources of magnesium, and that allene formation was the abnormal reaction in which transition metal catalysis was occurring. ${ }^{8,9}$ Only the results of the noncatalyzed reactions are described here.

Treatment of 3 -chloro-3-methyl-1-butyne (1) with 2 molar equiv of ethylmagnesium iodide at $\left(1^{\circ} \mathrm{C}\right.$ resulted in the slow evolution of ethane. At the end of 24 h gas evolution had ceased. Hydrolysis of an aliquot of the reaction mixture indicated that $\sim 75 \%$ of the Grignard reagent had been consumed. Distillation of the reaction product produced a volatile fraction containing 2,3 , and 4 which were separated by preparative GLPC and identified by their spectral properties. The distillation residue was analyzed and separated by GLPC and shown to contain, in addition to 2 , the three dienes 5,6 , and 7. GLPC analysis of the crude reaction mixture immediately after hydrolysis showed the presence of only 2,3 , and 4 in a 57:15:26 ratio. In contrast to the earlier suggestion that isomerization of the allene to dienes occurred during the hydrolysis step, ${ }^{2}$ the ratio of 2:3:4 remained the same regardless of whether the reaction mixture was quenched with water, $5 \%$




5
$+$


sulfuric acid, saturated ammonium chloride, or $5 \%$ sodium hydroxide in tither a normal or inverse manner. The isomerization of the allene appears to be a thermal process and is under further study in our laboratories. Quenching a reaction mixture with deuterium oxide followed by determination of the deuterium content in 2,3 , and 4 by mass spectrometry showed the presence of $47.0 \% 2-d_{1}, 48.8 \% 3-d_{1}$ and $8.9 \%$ 4- $d_{1}$.

In a similar manner, 1-ethynylcyclohexyl chloride (8) on


14
reaction with 2 molar equiv of methylmagnesium iodide for 19.5 h at $0^{\circ} \mathrm{C}$ produced 9,10 , and 11 in a 100:15:46 ratio, along with lesser amounts of the rearranged dienes 12,13 , and 14 .

## Discussion

The formation of the isomeric alkynes and allene as the primary products from the tertiary propargylic halides is best rationalized as occurring via a zwitterion-allene carbene intermediate (15) which is formed by proton abstraction of the acetylenic hydrogen by the Grignard reagent followed by loss of chloride ion. ${ }^{10}$ Nucleophilic attack on 16 by a second molecule of the Grignard reagent at either the propargyl or allenyl




16


18


carbon ${ }^{11}$ produced the new organomagnesium intermediates 17,18 , and 19 . The incemplete utilization of 2 molar equiv of the Grignard reqgent, and the incomplete deuterium incorporation on deuterolysis, is due to the fact that the newly formed G-ignard reagents $17-19$ compete with the original Grignard reagent in proton abstraction from the propargyl halide.

The competitive proton abstraction by 17 unfortunately does not allow one to gain any information concerning the possible fcrmation of allene via an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ displacement process. Accordingly, we reinvestigated the reaction of propargyl bromide with a Grignard reagent as reported by Serratosa. ${ }^{1}$ As reported, only allene is formed ( $<1 \%$ of any isomeric alkyne was present). However, careful analysis of the reaction mixture showed that no hexane had been formed as would have been required by the allene carbene mechanism. The formation of only allene is most consistent with its being formed via a transition metal catalyzed process, ${ }^{9}$ propargyl bromide being very much more reactive than the propargyl chlorides in the transition metal catalyzed process and thus occurring at much lower concentrations of transition metal impurities in the magnesium. At best, an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ process cannot be occurring to more than a few percent, even in the most favorable cases.

## Experimental Section

Reaction of 3-Chloro-3-methyl-1-butyne (1; with Ethylmagnesium Iodide. To a solution of 0.25 mol of ethylmagnesium iodide in 135 mL of ether was rapidly added $10.25 \mathrm{~g}(0.1 \mathrm{~mol})$ of 1 at $0^{\circ} \mathrm{C}$. The reaction $m$.xture was allowed to warm to room t $t$ mperature during which slow gas evolution ensued (mostly ethane containing a small amount of butane by mass spectroscopy). After 24 h gas evolution had ceased. An aliquot of the reaction mixture was removed and hydrolyzed in a gas evolution apparatus indicating $\sim 75 \%$ consumption of the ethylmagnesium iodide. The reaction mixture was hydrolyzed by the cautious addition of cold water ( 30 mL ). The organic layer was decanted, washed once with water and saturated NaCl , and dried $\left(\mathrm{MgSO}_{4}\right)$. The ether was removed by distillation and the residue was distilled ( $63-95{ }^{\circ} \mathrm{C}$ ) giving 2.48 g of a coloriess liquid and 3.95 g of distillation residue. Analysis of the distillate by GLPC on a $10-\mathrm{ft}$ Carbowax 20 M column showed the presence of 4 ' $26.6 \%$ ), 3 ( $15.5 \%$ ), and $2(58.9-)$ which were isolated by preparative GLPC.

4: NMR $\mathrm{CDCl}_{3}$ ) $\delta 0.98$ (distorted triplet, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.17 (s, 6 H ) , and 1.47 (distorted quartet, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), and $2.07(\mathrm{~s}, 1 \mathrm{H})$; MS M ${ }^{+} .96$.

3: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6$ H ) and $2.18(\mathrm{~s}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{M}^{+} .96$.

2: $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 6$ $\mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H})$, and $5.02(\mathrm{~m}, 1 \mathrm{H})$; MS M ${ }^{+} .96$.

GLPC analysis of the distillation residue showed the presence of allene 2 , dienes 5 and 6 , and 7 in a ratio of $0.26: 0.45: 1.00 .5,6$, and 7 were isolated by preparative GLPC.

5: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, J=6.7,3 \mathrm{H}), 1.89(\mathrm{~m}, 3 \mathrm{H}), \sim 2.13(\mathrm{~m}, 2$ $\mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~m}, 1 \mathrm{H})$, and 5.84 (broadened doublet, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$ ); MS M ${ }^{+} .96$.

6: $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 3 \mathrm{H}), 2.14$ (dq, $J=7.2,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~m}, 2 \mathrm{H}) .5 .74(\mathrm{dt}, J=16.8,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, and 6.16 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$ ); MS M ${ }^{+} .96$.

7: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.72$ (overiapping broad singlets, 6 H ), 1.78 (broad singlet, 3 H ), 5.49 (bdd, $J=14.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.9 (dm's, $J=$ $14.8, \sim 1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), and $6.23(\mathrm{ddq}, J=14.8,10.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{M}^{+}$. 96.

GLPC analysis of the crude reaction product immediately after hydrolysis indicated the presence of essentially only 3,2 , and 4 in a 26:59:15 ratio. The product distribution remains the same regardless of whether the reaction mixture is quenched with water, $5 \%$ sulfuric acid, saturated ammonium chloride, or $5 \%$ sodium hydroxide.

Deuterolysis of Reaction of I with Ethylmagnesium Iodide. The reaction of 1 with ethylmagnesium iodide was carried out as described above except that hydrolysis was carried out by addition of 20 mL of deuterium oxide. 2,3 , and 4 were isolated by preparative GLPC and their deuterium content was determined by mass spectrometry indicating the presence of $8.9 \% 4-d_{1}, 48.8 \% 3-d_{1}$, and $47.0 \%$ $2-d_{1}$.

Reaction of 1-Ethynylcyclohexyl Chloride (8) with Methylmagnesium Iodide. To 0.1 mol of methylmagnesium iodide in 150 mL of ether was added 0.04 mol of 1-ethynylcyclohexyl chloride (8). A slow evolution of methane (identified by MS analysis) ensued. Aliquots were periodically removed, hydrolyzed, and analyzed by GLPC on a $10-\mathrm{ft}$ Carbowax 20 M column for unreacted 8 . After stirring for 19.5 h at $25^{\circ} \mathrm{C}$ the reaction was complete. The reaction mixture was hydrolyzed by the addition of 25 mL of water. The organic layer was removed, washed twice with water, and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed under reduced pressure giving a pale yellow liquid ( $85 \%$ ). Analysis by GLPC showed the presence of 9-14 in a 100:15: 46:1:12:9 ratio. The products were separated by preparative GLPC and characterized by IR. NMR, and MS.

9: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.56(\mathrm{bm}, 6 \mathrm{H}), 1.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .2 .11$ (m, 4 H ), 4.91 (quartet of quintets, $J=7.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ); IR (cap film) 1920 $\mathrm{cm}^{-1}\left({ }_{\mathrm{C}} \mathrm{C}=\mathrm{C}=\mathrm{C}\right)$; MS calcd for $\mathrm{C}_{9} \mathrm{H}_{14}$ 122.1096, obsd 122.1098.

10: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.5-1.8(\mathrm{bm}, 11 \mathrm{H})$; MS calcd for 122.1096, obsd 122.1098.

11: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{bm}, 10 \mathrm{H})$, and $2.07(\mathrm{~s}, 1 \mathrm{H})$; IR (cap film) $3330(\nu=\mathrm{C}-\mathrm{H})$ and $2110 \mathrm{~cm}^{-1}(\nu \mathrm{C}=\mathrm{C})$; MS calcd for 122.1096, obsd 122.1097.

12: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.62(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~m}$, $4 \mathrm{H}), 5.32(\mathrm{dq}, J=12.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H})$, and $5.78(\mathrm{bd}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}$ ); MS M ${ }^{+} .122$.

13: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.62(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .2 .11(\mathrm{~m}$, $4 \mathrm{H}), 5.56(\mathrm{dq}, J=15.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H})$, and $6.05(\mathrm{bd}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H})$; MS M ${ }^{+}$. 122 .

14: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.62(\mathrm{~m}, 6 \mathrm{H}), 2.10(\mathrm{~m}, 4 \mathrm{H}), 4.8-5.2(\mathrm{~m}, 3 \mathrm{H})$; MS M ${ }^{+}$. 122.

Registry No.-1, 1111-97-3; 2, 29212-09-7; 3, 36566-80-0; 4, 918-82-1; 5, 65150-07-4; 6, 20626-38-4; 7, 32763-68-1; 8, 6209-75-2; 9, 20023-43-2; 10, 18736-95-3; 11, 28509-10-6; 12, 5680-41-1; 13, 54354-35-7; 14, 5664-10-8.

## References and Notes

(1) F. Serratosa, Tetrahedron Lett., No. 16, 895 (1964).
(2) Y. Pasternak and M. Delépine. C. R. Acad. Sci., 3429 (1962)
(3) F. Coulomb-Delbecq and J. Goie, Bull. Soc. Chim. Fr., 541 (1976); F Coulomb-Delbecq, J. Goíe, and M.-L. Roumestant, ibid., 533 (1976).
(4) A. I. Zakharova. Zh. Obshch. Krim., 17, 1277 (1947) [Chem. Abstr., 42, 372 (1948)]: Zh. Obshch. Khim.. 19, 1297 (1949) [Chem. Abstr., 44, 1001 (1959)]: A. I. Zakharova and R. A. Sapozhnikova, Zh. Obshch. Khim., 22, 1804 (1952) [Chem. Abstr., 47, 6857 (1953)]
(5) T. L. Jacobs and R. A. Meyers, J. Am. Chem. Soc., 86, 5244 (1964).
(6) T. L. Jacobs and P. Prempree, J. Am. Chem. Soc., 89, 6177 (1967).
(7) C. A. Buehler and D. E. Pearson. "Survey of Organic Syntheses". WileyIntersciēnce, New York. N.Y., 1970; D. R. Taylor, Chem. Rev., 67, 317 (1967).
(8) For a preliminary report, see: D. J. Pasto, G. F. Hennion, R. H. Shults, A. Waterhouse, and S.-K. Chou, J. Org. Chem., 41, 3496 (1976)
(9) D. J. Pasto. S.-K. Chou, A. Waterhouse, R. H. Shults, and G. F. Hennion, J. Org. Chem., accompanying paper in this issue.
(10) G. F. Hennion and D. E. Maloney J. Am. Chem. Soc., 73, 4735 (1951); G. F. Hennion and K. W. Nelson, J. Am. Chem. Soc., 79, 2142 (1957).
(11) G. F. Hennion and J. F. Motier, J. Org. Chem., 34, 1319 (1969); G. F. Hennion and C. V. DiGiovanna, ibid., 31, 1977 (1966).

# Transition Metal Catalysis in Allene Formation from Grignard Reagents and Propargyl Chlorides ${ }^{1}$ 

Daniel J. Pasto,* Shine-King Chou, Andrew Waterhouse, Richard H. Shults, and George F. Hennion<br>Departmenī of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556

Received August 26, 1977


#### Abstract

In the presence of catalytic quantities of iron, cobalt, nickel, and copper salts Grignard reagents react with propargyl chlorides to produce allenes. Alkynes are generally not formed. Chromium, manganese, rhodium, and silver salts do not catalyze the reaction. A mechanism for allene formation is proposed involving initial formation of a low valence state metal species from reaction of the Grignard reagent with the metal salt, which undergoes oxidative insertion into the carbon-calorine bond of the propargyl chloride. Displacement of halogen by alkyl from the Grignard reagent forms a bisorganometal species which is proposed to decompose to allene. Evidence in support of this mechanism is discussed.


## Introduction

In the preceding article, ${ }^{2}$ a brief review was given of the diverse results reported on the reactions of propargylic halides with Grignard reagents, and the results of studies in our laboratories on the reactions of terminal, tertiary propargylic halides with Grignard reagents were presented and discussed. In that study it was shown that the jerminal propargylic halides react slowly with Girgnard reagents to form a zwitter-ion-allene carbene intermediate which undergoes nucleophilic attack by a second molecule of the Grignard reagent at either the propargylic or allenyl carbon atoms to produce new organomagnesium species. The newly formed Grignard species either abstract a proton from the propargylic halide or under hydrolysis to produce mixtures of two isomeric alkynes and allene.

During our initial studies it was observed that 3 -chloro3 -methyl-1-butyne reacted with phenylmagnesium bromide to form 1,1-dimethyl-3-phenylallene and biphenyl in excellent yield. The formation of the biphenyl initially suggested that

a single electron transfer (SET), free-radical process was occurring. Utilizing the observation of Ashby and co-workers that ferric ion catalyzes SET reactions between Grignard reagents and benzophenones, ${ }^{3}$ ferric chloride was added to the reactions of propargylic halides with alkyl Grignard reagents in an attempt to catalyze the supoosed electron transfer, free-radical process in those cases. The rates of the reactions in the presence of ferric chloride were tremendously accelerated, and excellent yields of allenes uncontaminated by alkynes were obtained. ${ }^{4}$ Although it was initially thought that these reactions were SET, free-radical processes, further considerations (vide infra) militated against this, and an organometallic intermediate, catalytic cycle mechanism evolved. Our initial studies with ferric chloride catalysis have been extended to include other transition metal salts, the results of which are reported herein along with a discussion of the catalysis mechanism. With the discovery of the transition metal catalysis the seemingly contradictory results previously reported for the reactions of propargylic halides with Grignard reagents are readily understood.

## Results

Initial studies were carried out on the reaction of 4 -chloro-4-methyl-2-pentyne (1) with $n$-butylmagnesium bromide in ether solution at $0^{\circ} \mathrm{C}$ to determine optimum conditions for formation of allene. Addition of 0.07 mol of 1 to 0.085 mol of Grignard reagent containing as little as $2.5 \times 10^{-6} \mathrm{~mol}$ of ferric chloride or ferric acetonylacetate $\left[\mathrm{Fe}(\mathrm{Acac})_{3}\right]$ resulted in a nearly instantaneous reaction. Immediate analysis by GLPC after completion of the addition of 1 showed the reaction to be comolete. GLPC analysis of the product showed the presence of octane (up to $5 \%$ ), allene 3 , and four $\mathrm{C}_{12}$ dimers

and rearranged dimer
of 1 (up to $5 \%$ total yield). Three of the dimers are assigned structures 4-6 on the basis of their NMR spectra. The fourth dimer is believed to be an allene rearrangement product of either 4 or 6. GLPC analysis of a hydrolyzed aliquot of the Grignard solution before addition of 1 showed the presence of only trace amounts of $n$-butyl bromide or octane. Inverse addition of 2 so 1 yielded the same results.

In addition to the facile iron(III) catalyzed reactions of 1 with primary alkylmagnesium halides, secondary alkyl Grignard reagents also react in a similar, but slower manner. Higher yields of the propargyl dimers 4-6 are formed during the reactions with the secondary alkyl Grignard reagents. Alkylation with tert-butylmagnesium bromide could not be affected.
All structural variations of propargyl chlorides have been studied. Terminal primary, secondary, and tertiary propar-

Table I. Reactions of Propargylic Chlorides with Grignard Reagents in the Presence of $\mathbf{F e}(\text { III })^{a}$

| Entry | Propargyl chloride | Registry no. | Grignard reagent | Catalyst | Addition time, min | Product | Yield, \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{ClCH}_{2} \mathrm{C} \equiv \mathrm{CH}$ | 624-65-7 | $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}$ | $\mathrm{FeCl}_{3}$ | 10 | $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ | 8.5 |
| 2 | $\mathrm{ClCH}_{2} \mathrm{C}=\mathrm{CH}$ |  | sec- $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}$ | $\mathrm{FeCl}_{3}$ | 60 | $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}\left(\mathrm{sec}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ | 73 |
| 3 |  | 21020-24-6 | $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}$ | $\mathrm{FeCl}_{3}$ | 10 | $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}=\mathrm{CH}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ | 83 |
| 4 |  | 1111-97-3 | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgI}$ | $\mathrm{FeCl}_{3}$ | 10 | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{CHC}_{2} \mathrm{H}_{5}$ | 80 |
| 5 | 7 |  | $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}$ | $\mathrm{FeCl}_{3}$ | 10 | 3 | 80-90 |
| 6 | 7 |  | $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}$ | $\mathrm{Fe}(\mathrm{Acac})_{3}$ | 30 | 3 | 60 |
| 7 | 7 |  | sec- $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}$ | $\mathrm{FeCl}_{3}$ | 60 | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}\left(\mathrm{sec}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ | 75 |
| 8 | 1 | 999-79-1 | $\mathrm{CH}_{3} \mathrm{MgI}$ | $\mathrm{FeCl}_{3}$ | 10 | $\begin{aligned} \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC} \equiv & =\mathrm{CCH}_{3}, \\ \left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} & =\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \end{aligned}$ | $90^{\text {b }}$ |
| 9 | 1 |  | $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}$ | $\mathrm{FeCl}_{3}$ | 20 | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ | 87 |
| 10 | 1 |  | $i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{MgBr}$ | $\mathrm{FeCl}_{3}$ | 60 | $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ | 88 |
| 11 | 1 |  | $t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{MgBr}$ | $\mathrm{FeCl}_{3}$ | 240 |  | $\ldots{ }^{\text {c }}$ |
| 12 |  | 60820-36-2 | $\mathrm{CH}_{3} \mathrm{MgI}$ | $\mathrm{FeCl}_{3}$ | 10 |  | $90^{\text {b }}$ |

${ }^{a}$ Reaction temperature $25^{\circ} \mathrm{C}$. Catalyst added as THF solution. ${ }^{b}$ Alkyne and allene formed in a $1: 1$ ratio. ${ }^{c}$ No reaction after the indicated time.

Table II. Relative Reactivities of Propargyl Chlorides with n-Butylmagnesium Bromide in the Presence of Fe(III)

| Propargyl chloride | Relative reactivity |
| :---: | :---: |
| $\mathrm{CICH}_{2} \mathrm{C}=\mathrm{CH}$ | 30 |
|  | 19.7 |
|  | 8 |
|  | 1 |

gylic chlorides react with methyl, primary, and secondary alkyl Grignard reagents in the presence of iron(III) to produce good to excellent yields of allene. Nonterminal tertiary propargylic halides react with methylmagnesium iodide in the presence of iron(III) to produce $1: 1$ mixtures of alkyne and allene (entries 8 and 12 in Table I). In contrast, these same chlorides react with $n$-butyl, isopropyl, or sec-butyl Grignard reagents in the presence of iron(III) to produce only allene.
Relative reactivities of variously substituted propargyl chlorides with $n$-butylmagnesium bromide in the presence of iron(III) have been determined using competitive reaction techniques under identical reaction conditions and extrapolated to zero reaction time. The results are given in Table II.

A number of other transition metal hal:des and acetonylacetonates have been tested for catalytic activity in the reaction of 1 and 7 , the results of which are given in Table III. It is particularly interesting to note that both Fe (III) and $\mathrm{Fe}(\mathrm{II})$, and $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{I})$, salts catalyze the reaction, in each case with the same apparent degree of efficiency. Of the transition metals which did catalyze the reaction, the catalytic efficiency decreases markedly in the sequence $\mathrm{Fe}>\mathrm{Co}>\mathrm{Ni}$ $>\mathrm{Cu}$. In the reactions catalyzed by iron, the reaction proceeded very rapidly, regardless of whether the Grignard reagent was added to the chloride or vice versa. With cobalt, the reaction proceeded less rapidly, but still proceeded in the presence of excess Grignard reagent. In the case of nickel and

Table III. Reactivity of Transition Metal Catalysts on the Reaction of 1 and 7 with 2

| Catalyst | Propargyl chloride | Addition time, min | Allene yield, \% $\qquad$ | Dimer yield, $\%$ $\qquad$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{FeBr}_{2}$ | 1 | 20 | 80 | 8 |
| $\mathrm{CoBr}_{2}$ | 1 | 60 | 55 | $\ldots{ }^{a}$ |
| $\mathrm{Co}(\mathrm{Acac})_{2}$ | 7 | 60 | 30-40 | $\ldots{ }^{\text {a }}$ |
| $\mathrm{NiBr}_{2}$ | 7 | 60 | 90 | $\ldots{ }^{a}$ |
| $\mathrm{Ni}(\mathrm{Acac})_{2}$ | 7 | 60 | 95 | $<2$ |
| CuCl | 7 | 30 | 55 | $\ldots{ }^{\text {a }}$ |
| CuCl | 1 | 30 | 50 | 30 |
| $\mathrm{CuBr}_{2}$ | 7 | 30 | 90 | $\ldots{ }^{\text {a }}$ |
| $\mathrm{CuBr}_{2}$ | 1 | 30 | 50 | 23 |
| $\mathrm{MnCl}_{2}$ | 7 |  | $\ldots{ }^{\text {b }}$ |  |
| $\mathrm{CrCl}_{3}$ | 7 |  | $b$ |  |
| $\mathrm{RhCl}_{2}$ | 7 |  | $b$ |  |
| $\mathrm{Rh}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right] \mathrm{Cl}$ | 7 |  | $b$ |  |
| $\mathrm{AgO}_{2} \mathrm{CCH}_{3}$ | 7 |  | $b$ |  |

${ }^{a}$ Not measured. ${ }^{b}$ No observed catalytic reaction.
copper, catalytic activity is maintained only when the Grignard reagent is added very slowly to the chloride-catalyst solution in order to avoid the presence of an excess of the Grignard reagent. When the Grignard reagent is added too rapidly, catalytic activity is lost. Addition of more catalyst at this point fails to generate catalytic activity. Addition of nickel and copper catalysts to a premixed solution of chloride and Grignard reagent is ineffective.
Attempts were made to detect catalytic coupling of $n$ butylmagnesium bromide (2) with halides. None was observed. The direct reaction of 2 with allyl bromide is sufficiently rapid that possible Fe (III) catalysis could not be observed. No catalysis was evident in the reaction of 2 with benzyl bromide.

## Discussion

Although it was first thought that allene formation was occurring via a SET, radical intermediate process, the properties of the intermediate propargyl-allenyl radical (8) were not consistent with the formation of only allene in a radical abstraction or combination process. Ab initio calculations on


8 indicate slightly greater spin density exists on $\mathrm{C}_{1} \cdot{ }^{5}$ INDO calculations carried out in our laboratories on 8 and 1,1dimethyl radical indicate that $\sim 61 \%$ and $\sim 56 \%$ of the spin density resides on $\mathrm{C}_{1}$, respectively. ESR data are consistent with a delocalized species with considerable spin density at $\mathrm{C}_{1}$ and $\mathrm{C}_{3} .{ }^{6}$ Experimentally, it is observed that alkynes are formed as the major product in reactions of the propargyl-allenyl-type free radicals. Free-radical chlorination of propyne ${ }^{7}$ or allene, ${ }^{7}$ and 2 -butyne, ${ }^{8}$ produces only the propargyl chloride; tri- $n$-butyltin hydride reacts with propargyl chlorides to produce mixtures of alkyne and allene in which the former is always dominant; ${ }^{9}$ in gas-p.ase radical combination reactions methyl radical reacts with 8 in one case to give a $1: 1$ mixture of butyne and 1,2-butadiene, ${ }^{10}$ and in the other a 3.5:1 mixture. ${ }^{11}$ Thus, the formation of only allene in the reactions of Grignard reagents with propargyl chlorides in the presence of Fe (III) is not consistent with a SET, free-radical process.

The formation of allenes in the catalyzed process is proposed to occur via the mechanism illustrated in Scheme I incorporating a catalytic cycle involving low valence state transition metal species similar to those proposed by Tamura and Kochi. ${ }^{12}$ Although the scheme outlined is based on an $\mathrm{Fe}(\mathrm{III})-\mathrm{Fe}(\mathrm{I})$ cycle, an $\mathrm{Fe}(\mathrm{II})-\mathrm{Fe}(0)$ cycle is also possible in that $\mathrm{Fe}(\mathrm{II})$ is also an active catalyst. Because of the possible redox capabilities of the reaction system it cannot be unambiguously specified which couple is active in the catalytic cycle. ${ }^{13}$ Similar catalytic cycles can be written for the other active transition metals involving $\mathrm{Co}(\mathrm{II})-\mathrm{Co}(0), \mathrm{Ni}(\mathrm{II})-\mathrm{Ni}(0)$, and $\mathrm{Cu}(\mathrm{II})-\mathrm{Cu}(0)$ cycles.

The oxidative insertion of $\mathrm{Fe}(\mathrm{I}) \mathrm{Cl}$ into the propargyl chloride can occur to produce the propargyl iron species (9), which then undergoes rearrangement to the allenyl tautomer 10 , or by insertion with concomitant rearrangement to form directly 10. The observation that both alkyne and allene are formed in the reactions of 1 and 1-propynylcyclohexyl chloride with methylmagnesium iodide suggests that a direct oxidative insertion to form 9 occurs. The observation that as the degree of substitution at the propargyl carbon increases the reactivity of the propargyl chloride decreases is consistent with a steric effect on the rate of direct insertion to form 9 . Displacement of chloride in 9 or 10 by alkyl of the Grignard reagent produces the bisorganoiron species 11 and 12 which then decompose to alkyne or allene with regeneration of the low oxidation state metal species. Morrell and Kochi ${ }^{14}$ have reported on the formation and thermal decomposition of a bisorganonickel(II) complex which would be similar to that formed in the $\mathrm{Ni}(\mathrm{II})$ catalyzed process reported herein. Evidence for the intermediacy of allenyl transition metal compounds such as 12 has been derived from studies on the reactions of dialkylcuprates with propargyl chlorides. ${ }^{15}$

Whether tautomeric equilibrium is established between 9 and 10 and/or between 11 and 12 cannot be specified and must await the results of further studies. The exclusive formation of allene with the primary and secondary alkyl Grignard reagents can be attributed to a steric effect on the tautomeric equilibrium between 11 and 12 .

The decreased reactivity of the secondary alkyl Grignard reagents relative to the primary alkyl reagents, and the total lack of reactivity of tert-butylmagnesium bromide, is probably due to increased steric effects in the displacement of chloride in 9 and/or 10 by the Grignard reagent.

The formation of the minor products octane and the dimers 4-6 can be visualized as occurring via an extension of the


Scheme I





11
12


Fe(I)Cl


Scheme II


14




15


16

17
mechanism in Scheme I to include trisorganometal species (Scheme II). Displacement of the remaining chloride in 12 would produce 13 which can decompose either to give allene and an alkyliron(I) species or to octane and the iron(I) species 14. Oxidative insertion of 14 into the propargyl chloride forms the trisorganoiron species 15-17 which decompose to the dimers 4-6. Decomposition of 13 must occur to approximately the same extent via the two pathways shown as evidenced by the similarity in yields of octane and the dimers.
Critical to the operation of the catalytic cycle is the rate of decomposition of the bisorganometal species similar to 11 and

12 in Scheme I. The decrease in catalvtic activity in the sequence $\mathrm{Fe}>\mathrm{Co}>\mathrm{Ni}>\mathrm{Cu}$ is probably due to the increasing stability of bisorganometal species on going from iron to copper. ${ }^{16}$ The loss of catalytic activity in the nickel and copper systems when an excess of Grignard reagent is present suggests that some nickel or copper species is formed by reaction wi-h the Grignard reagent which is not capable of entering the catalytic cycle. The lack of catclytic activity by chromium, maganese, rhodium, and silver must also be due to greater stability of the alkylmetal species. ${ }^{17,18}$ Further studies rrust be carried out to clarify this point.
It is interesting to compare the catalytic activity described herein w.th that reported by Tamura and Kochi for the iron, ${ }^{12 \mathrm{a}}$ ccpper, ${ }^{12 \mathrm{~b}}$ and silver ${ }^{12 \mathrm{c}}$ catalyzed reactions of Grignard reagents with alkyl and vinyl halides. Silver catalyzes the coupling of Grignard reagents with alkyl halides via a freeradical pathway. ${ }^{12 \mathrm{c}}$ Copper catalyzes coupling via a nonradical pathway, as well as disproportionation. ${ }^{12 b}$ Iron catalyzes disproportionation with alkyl halides and coupling with vinyl halides. ${ }^{12 a}$ In the present work silver as a catalyst was inef fective, waile both iron and copper catalyzed coupling, but not disproportionation. This unique catalytic reactivity must be due $t o$ the presence of the $\mathrm{C} \equiv \mathrm{C}$. The presence of an adjacent $\mathrm{C}=\mathrm{C}$ or aromatic ring does not result in coupling with these catalysts.

Although many studies have indicated that the addition of cobalt chloride to Grignard reagents inducєs free-radical reaction. ${ }^{19}$ the evidence presented herein indicates that such reactions need not necessarily proceed via free-radical mechanisms. For example, Coulomb-Delbecq and co-workers have suggested very recently that the reactions of propargylic acetates with methylmagnesium iodide in the presence of cobalt ch-loride to produce allenes occur via a free-radical process. ${ }^{20}$ It is critical io note that no alkynes are formed, and thus it is very doubtful if a free-radical process is involved in those reactions.

## Experimental Section

Iron(III) Catalyzed Reaction of 4-Chloro-4-methyl-2-pentyne (1) with $\boldsymbol{n}$-Butylmagnesium Bromide. To a sclution of $5 \mathrm{~g}(0.067$ M) of 1 in 30 mL of ether, to which has been added 5.0 mL , of $5 \times 10^{-6}$ $M$ ferric chloride or ferric acetonylacetonate in tetrahydrofuran, maintained at $0{ }^{\circ} \mathrm{C}$ under a helium atmosphere is added 2 molar equiv ${ }^{21}$ of $0.5 \mathrm{M} n$-butylmagnesium bromide in ether. ${ }^{22}$ The reaction mixture was hydrolyzed by the addition of $5 \mathrm{~mL} \mathrm{o}^{-}$water. The organic layer was decanted from the aqueous phase, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed by distillation. Analysis by GLPC on a $10-\mathrm{ft}$ Carbowax 201M on firebrick column indicated the presence of two short retention-time peaks and four longer retertion-time peaks. The six componer.ts were isolated by preparative GLPC and identified as octane ( $\leqslant 5 \%$ ), 2-methyl-2,3-octadiene ( $90 \%$ ), dimers 4-6 (total $\sim 4 \%$ ) and an ap jarently rearranged dimer ( $\sim 1 \%$; by high-resolution mass spectrometry and NMR. 4: m/e 162; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.56(\mathrm{~s}, 12 \mathrm{H})$ and 1.67 ( $\mathrm{s}, 6 \mathrm{H}$ ). 5: m/e 162; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{~s}, 12 \mathrm{H})$ and $1.80(\mathrm{~s}, 6$ H). 6: m/e 162; NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 1.25$ (s, 6 H ), 1.66 ( $\mathrm{s}, 6 \mathrm{H}$ ), 1.77 (s, 3 $\mathrm{H})$, and $1.30(\mathrm{~s}, 3 \mathrm{H})$. Unknown dimer: $\mathrm{m} / \mathrm{e} 162$; NMR ( $\left.\mathrm{CDCl}_{3}\right) \delta 1.47$ (s), 1.55 ( s ), 1.81 (s).

General Procedure for Transition Metal Cátalyzed Reactions of Propargyl Chlorides with Grignard Reagents. The quantities and procedure outlined above were employed as standard reaction conditions. The optimum rates of additior of the Grignard reagent to the chloride-catalyst solution were determined in preliminary runs
by monitoring the extent of reaction by GLPC techniques. Optimum addition times are given in Table I. The product mixtures were ana lyzed by GLPC and the yields were calculated using an internal standard. The allenes were purified by preparative GLPC ${ }^{23}$ and characterized by high-resolution MS and NMR. All of the substituted allenes prepared in this study have been reported previously in the literature.

Competitive Reactivity Experiments. All competitive reactivity experiments were carried out in the following manner. To $1: 1$ molar mixtures of the two substrates in ether ( 1 M ) containing the appropriate concentration of the catalyst was added, in portions, a total of 0.5 molar equiv of the Grignard reagent. After addition of the portions of the Grignard reagent an aliquot of the reaction mixture was removed, hydrolyzed, and analyzed by GLPC. Product identification was carried out by comparison of retention times with the products derived on reaction of each of the substrates individually.

Registry No.-4, 17553-34-3; 5, 17553-33-2; 6, 65150-08-5; butyl bromide, 109-65-9; sec-butyl bromide, 78-76-2; ethyl iodide, 75-03-6; methyl iodide, 74-88-4; isopropyl bromide, 75-26-3; tert-butyl bromide, 507-19-7.

## References and Notes

(1) The authors acknowledge partial financial support of this research by a grant in aid to G.F.H. from Eli Lilly and Co., Indianapolis, Ind
(2) D. J. Pasto, R. H. Shults, J. McGrath, and A. Waterhouse. J. Org. Chem., accompanying paper in this issue.
(3) E. C. Ashby, I. G. Lopp. and J. D. Buhler, J. Am. Chem. Soc., 97, 1964 (1975); E. C. Ashby, J. D. Buhler, I. G. Lopp. T. L. Wiesemann, J. S. Bowers. Jr., and J. T. Laemmule, ibid., 98, 6561 (1976).
(4) D. J. Pasto. G. F. Hennion, R.t. Shults. A. Waterhouse, and S -K. Chou, J. Org. Chem.. 41, 3496 (1976).
(5) F. Bernardi, C. M. Camaggi, and M. Tiecco, J. Chem. Soc.. Perkin Trans. 2. 518 (1974).
(6) R. W. Fessenden and R. H. Shu er, J. Chem. Phys., 30, 2147 (1963); J. K Kochi and P. J. Krusic. J. Am. Chem. Soc., 92, 4110 (1970)
(7) M. C. Caserio and R. E. Pratt, Tetrahedron Lett., 91 (1967).
(8) C. Walling. L. Heaton. and D. D. Tanner. J. Am. Chem. Soc., 87, 1714 (1965).
(9) R. M. Fantazier and M. L. Poutsma, J. Am. Chem. Soc., 90, 5490 (1968).
(10) I. Haller and R. Srinivasan. J. Am. Chem. Soc., 88, 3694 (1966).
(11) P. Kebarle. J. Chem. Phys.. 39, 2218 (1963)
(12) (a) M. Tamura and J. Kochi. J. Am Chem. Soc., 93, 1487 (1971); (b) M. Tamura and J. Kochi, ibid., 93, 1485 (1971): (c) M. Tamura and J. Kochi, ibid., 93, 1483 (1971).
(13) See also ref 12 a
(14) D. G. Morrell and J. K. Kochi, u. Am. Chem. Soc., 97, 7267 (1975).
(15) See accompanying article on the reactions of dialkylcuprates with propargyl chlorides [D, J. Pasto, S.-K. Chou, E. Fritzen, R. H. Shults, A. Waterhouse, and G. F. Hennion, J. Org. Chem., following article In this issue].
(16) Attempts to prepare alkyl- and aryliron compounds indicate that such species undergo decomposition at low temperatures (see M. Tsutsui, Ann. N.Y. Acad. Sci., 93, 133 (1961)). An aikylarylnickel(II) complex has been prepared and its decomposition studied (see ref 14). Alkylcopper compounds are well known.
(17) Trimethylchromium has been prepared in ether solution and is reasonably stable at $0^{\circ} \mathrm{C}$ (K. Claus and C. Beermann. Angew. Chem., 71, 627 (1959)). DimethyImanganese has also been prepared and is stable in ether at $0^{\circ} \mathrm{C}$ but explodes when dry at higher temperatures ( C . Beermann and K . Clauss, Angew. Chem., 71, 627 (1959)).
(18) Alkyl and aryl derivatives of second row transition metals have been prepared and show reasonable stability (see J. Chatt and B. L. Shaw, J. Chem. Soc. A. 1836 (1966), and references contained therein)
(19) M. S. Kharasch and O. Reinmuth, "Grignard Reactions of Nonmetallic Substances". Prentice-Hall, Inc., Englewood Cliffs, N.J., 1954.
(20) F. Coulomb-Delbecq. J. Gore, and M.-L. Roumestant, Bull. Soc. Chim. Fr., 533 (1976): F. Coulomb-Delbe aq and J. Gore, ibid., 541 (1976).
(21) The use of $50-100 \%$ excess of the Grignard reagent results in the maximum yield of allene.
(22) GLPC analysis immediately after completion of the addition of the Grignard reagent showed that the reaction had gone to completion
(23) Purification of the more highly substituted allenes by distillation must be carried out at pot temperatures below $100^{\circ} \mathrm{C}$ in order to avoid cyclodimerization and rearrangement of the allenes to conjugated dienes. The injection port. detector block. and column must be kept below $150^{\circ} \mathrm{C}$ during preparative GLPC isolation procedures.

# Allene Formation in Reactions of Propargyl Chlorides with Dialkylcuprates and Alkylallenylcuprates ${ }^{1}$ 

Daniel J. Pasto,* Shine-King Chou, Edward Fritzen, Richard H. Shults, Andrew Waterhouse, and George F. Hennion

Departmen: of Chemistry, University of Notre Dame Notre Dame, Indiana 46556
Received August 26, 1977


#### Abstract

Dialkylcuprates react with propargyl chlorides to form allenes in generally excellent yield. The mixed $n$-butylme-thyl- and tert-butylmethylcuprates react to preferentially transfer the $n$-bu:yl (67:29) and tert-butyl (97:3) groups, the latter providing an excellent means for the synthesis of tert-butylalleres. Small amounts of coupled product derived from the dialkylcuprates are formed, along with allene formally derived by net reduction of the propargyl chloride. It is shown that the "reduced" allene is formed by hydrolysis of an allenylcopper(I) compound formed during the reaction. Allenylcopper(I) compounds, alkylallenylcuprates, anc bisallenylcuprates were prepared and their chemistry was explored in a preliminary manner. Reaction of alkylallenylcuprates with an alkyl halide produced alkane only, while reaction with propargyl chlorides resulted in the formation of only allenes. These reactions are compared with those of dialkylcuprates with alkyl halides and tosylates and the mechanisms of the reactions are discussed.


## Introduction

In the preceding articles we have described the results of studies of the noncatalyzed ${ }^{2}$ and transition metal catalyzed ${ }^{3}$ reactions of propargyl chlorides with Grignard reagents. In the transition metal catalyzed process, allene formation was proposed to occur via a catalytic cycle in which a low-valence state metal species, formed by reaction of the metal salt (illustrated below with ferric chloride) with the Grignard reagent, undergoes insertion into the carbon-chlorine bond of the propargyl chloride to produce an equilibrium mixture of propargyl and allenyl metal derivatives. Displacement of the chloride bonded to the metal by an alkyl group produces a bisorganometal species which unde:goes thermal decomposition to produce allene and regenerate the low-valence state metal species. Only when the alkyl group of the Grignard reagent is methyl and the propargyl chloride is not terminal is there an appreciable amount of the alkyl propargyl metal species present which undergoes decomposition to form alkyne. In all other cases only allene is formed. Transition metals found to be active at $5 \times 10^{-5} \mathrm{M}$ are Fe (III), Fe (II), $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$, and $\mathrm{Cu}(\mathrm{I})$.



In view of the catalytic activity of $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{I})$ and the nature of the mechanism proposed, we decided to extend our investigations to the stoichiometric reactions of dialkylcuprates with propargyl chlorides, an area where only limited work had been carried out previously. Landor and co-workers ${ }^{4}$
have reported that allenyl and propargyl halides react with dialkylcuprates to form allenes. These authors proposed that the allenyl ha ides react via a four-centered transition state (1), while the propargyl halides react via a $\pi$ complex (2) which decomposes to allene with rearrangement of $\mathrm{a} \pi$ bond.


Crabbé and co-workers have reported that the reaction of propargyl acetates with dialkylcuprates produce allenes and proposed that the reactions proceeded via an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ mechanism. ${ }^{5}$ During the course of our investigation, Crabbé and co-workers reported that when the reaction of propargyl acetates with dialkylcuprates is carried out at low temperature and hydrolyzed immediately, a considerable amount of "re-

duced" allene is formed. ${ }^{6}$ Based on these observations, Crabbé proposed formation of an intermediate represented as 3 which can undergo decomposition to produce allene, or be intercepted by hydrolysis to produce reduced allene.


3
In this artic.e we describe the results of our studies on the synthetic aspects of the reaction of homo and mixed dialkylcuprates with propargyl chlorides, and on the preparation and reactions of al-enyl-containing cuprates.

## Results

Reaction of lithium di-n-butylcuprate (4) with 3-chloro-

3-methyl-1-butyne (5) at $-78{ }^{\circ} \mathrm{C}$ followed by hydrolysis produces 2-methyl-2,3-octadiene (6) along with a low yield of


5
octane. In a similar manner 4 reacts with 7 at $-78^{\circ} \mathrm{C}$ to produce 8 along with octane and trimethylallene. At $0^{\circ} \mathrm{C}$, the reaction is very fast but the yield of 8 is low $\in$ r, while the yield

of trimethylallene is increased. Although 4 undergoes only very slow decomposition to give octane at -78 or $0^{\circ} \mathrm{C}$, monobutylcopper(I) undergoes decomposition to octane considerably faster. A comparison of the rate of fo-mation of octane by decomposition of monobutylcopper(I) with that during the reaction of 4 with 7 shows that octane must be formed during the reaction of 4 with 7 (see Experimental Section), Monitoring the reaction with time shows that the yield of trimethylallene increases to a maximum and then decreases owing to decomposition of the allenylcopper(I) species formed in the reaction (vide infra).
The reaction of 1 -chloroethynylcyclohexane (9) with lithium dimethylcuprate (10) produces the "reduced" allene 11

and 1-propenylidenecyclohexane (12) in a 1:4 ratio. A reaction mixture of 9 with 10 was maintained at $-78^{\circ} \mathrm{C}$ and aliquots were periodically removed, hydrolyzed, and analyzed by GLPC. The ratio of $11: 12$ remained constant although at room temperature slow decomposition occurred :esulting in lower yields of 11 . Deuteriolysis of a reaction mixture derived from 9 and 10 produced 11 containing 1.0 deuterium atom at the allenyl position. During the reactions of 9 with 10 gas evolution occurred. A sample of the gas above a reaction mixture was analyzed by mass spectrometry showing the presence of ethane.

In contrast to the reaction of 9 with 10 , the reaction of 9 with


15
16
$\mathrm{CH}_{3} \mathrm{MgI} / \mathrm{FeCl}_{3}$


14


17
di-n-butylcuprate (4) produces only the alkylated allene 13. Only traces of octane are formed, and the reduced allene 11 could not be detected.

Although 1-(1-propynyl)cyclohexyl chloride (14) reacts with methylmagnesium iodide in the presence of ferric chloride to produce a $1: 1$ mixture of 1-i1-propynyl)methylcyclohexane (15) and (2-methyl-1-propenylidene)cyclohexane (16), ${ }^{2} 14$ reacts with 10 to form only 16 . No reduced allene of 14 was formed. In a similar manner 14 reacted with 4 to produce 17.

Application of the reaction to the alkynylcyclopentyl and cyclobutyl chlorides provided interesting contrasts in both reactivity and mode of reaction. The cyclopentyl derivatives 18 and 19 reacted considerably slower than 9 and 14,18 requiring 18 h for completion. In both cases only the methylated allenes 20 and 21 were formed. The cyclobutyl derivative 22 underwent very slow reaction with 10 to produce in low yield a $60: 40$ mixture of allene 23 and alkyne 24.


In the transition metal catalyzed reaction of propargyl chlorides with Grignard reagents it was not possible to introduce a tert-butyl group onto the allene. We therefore investigated the possibility of transfer of a tert-butyl group from a mixed dialkylcuprate, ${ }^{8}$ specifically lithium tert-butylmethylcuprate (25). ${ }^{9}$ Reaction of ethynylcyclohexyl chloride (9) with 25 gave an $80 \%$ yield of a $97: 3$ mixture of the tert-butyl and methyl allenes 26 and 12. Much lower selectivity is ex-

hibited by lithium $n$-butylmethylcuprate, reacting with 9 to produce 13 and 12 in 67:29 ratio along with $3.2 \%$ of reduced allene 11. Magnesium cuprates, prepared from alkylcopper and Grignard reagents, ${ }^{9}$ failed to react with the propargyl chlorides.
The formation of reduced allene in many of the instances described above and the formation of both allene and alkyne from 22 initially suggested that the propargyl-allenyl group becomes covalently bonded to the copper of the cuprate. In order to clarify this possibility we have prepared and studied in a preliminary manner the reactivity of allenylcopper(I) compounds and alkylallenyl- and bisallenylcuprates. Reaction of 11 with a methyllithium in the presence of a catalytic quantity of isopropylamine ${ }^{10}$ at $0{ }^{\circ} \mathrm{C}$ rapidly produces the allenyllithium compound 27 . Immediate hydrolysis regenerates 11 uncontaminated by the isomeric alkyne. (If the solution of 27 is allowed to warm to room temperature for 30 min

28

11
27




30



31
extensive rearrangement to 28 occurs. ${ }^{11}$ Addition of the solution of 27 to a suspension of cuprous bromide in ether produces an insoluble dark reddish-brown precipitate of 29. Hydrolysis of 29 produces only allene 11. The allenylcopper compound 29 appears to be quite stable in ether at room temperature. Addition of 1 molar equiv of an alkyllithium produces the mixed cuprate 30 , while addition of a second molar equiv of 27 produces the bisal.enylcuprate 31 . Both 30 and 31 produce only 11 on hydrolys:s.

Reaction of $30\left(\mathrm{R}^{\prime}=-n-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ with $n$-hexyl bromide followed by hydrolysis produced decane ( $80 \%$ ) and allene 11 . No butyl- or hexylallene ( 13 and 32 ) could be detected.


Reaction of $30\left(\mathrm{R}^{\prime}=-\mathrm{CH}_{3}\right)$ with propargyl halide 9 produced an excellent yield ( $>80 \%$ ) of 16 , along with 11 formed during hydrolysis. Reaction of $30\left(\mathrm{R}^{\prime}=-\mathrm{CH}_{3}\right)$ with 14 gave 16. Careful GLPC analysis indicated the possible presence of a very small amount ( $<1 \%$ ) of 12 . Whether 12 is formed by methyl transfer to the allenyl portion in $30\left(\mathrm{R}^{\prime}=\mathrm{CH}_{3}\right)$ or by hydrolysis of an allenyl fragment attached to copper derived from 14 could not be determined. The other data presented herein, however, would suggest that the 12 is formed via the latter pathway. In neither case was any of the bisallenes 33 or 34 formed.

Similar results are obtained in reactions of $30\left(\mathrm{R}^{\prime}=n-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ with propargyl halides 5,7 , and 9 , producing only the butylated allenes 6,8 , and 13 derived from the propargyl chlorides. In none of these reactions was any bisallene detected.

Reaction of the diallenylcuprate 31 with $n$-butyl bromide for $30^{\circ} \mathrm{min}$ at room temperature resulted in no apparent reaction. GLPC analysis after hydrolysis showed the presence of un:eacted $n$-butyl bromide and allene 11. Reaction of 31 with 5 at $0^{\circ} \mathrm{C}$ led to the complete disappearance of 5 , yet none



12

of the bisallene 33 could be detected. Hydrolysis of the reaction mixture resulted in the formation of allene 11 with $\sim 70 \%$ recovery. Considerable noncharacterizable residue remained after removal of 11 . Similarly, reaction of 31 with 9 resulted in the disappearance of the propargyl halide, yet GLPC analysis after hydrolysis showed the formation of 11 ( $70 \%$, recovery) and no bisallene. Evaporation of 11 again left considerable noncharacterizable residue. These reactions of bisallenylcuprates are under further scrutiny.

## Discussion

The results reported herein differ in several aspects from those reported previously for reactions of dialkylcuprates with alkyl halides and tosylates. Mandeville and Whitesides ${ }^{8}$ have reported that reactions of mixed dialkylcuprates with an alkyl halide result in coupling of only the alkyl groups attached to copper to the alkyl group of the halide. No coupling products derived from the two alkyl groups attached to the copper are formed. In the reactions of dialkylcuprates with propargyl halides, coupling of the alkyl groups attached to copper does occur.

$$
\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{Cu}^{-} \mathrm{Li}^{+}+\mathrm{R}_{3} \mathrm{Hal} \rightarrow \mathrm{R}_{1} \mathrm{R}_{3}+\mathrm{R}_{2} \mathrm{R}_{3}\left(\text { no } \mathrm{R}_{1} \mathrm{R}_{2}\right)
$$

Mandeville and Whitesides ${ }^{8}$ have also correlated rates of reactions of dibutylcuprate with alkyl halides with other typical $\mathrm{S}_{\mathrm{N}} 2$ displacement reactions and suggest that the dialkylcuprate reactions occur via "unexceptional $\mathrm{S}_{\mathrm{N}} 2$ " pathways; however, distinction between attack by copper or an alkyl anion could not be made.

On the basis of Mandeville and Whitesides'8 and earlier results, and the results of reactions of dialkylcuprates with alkyl tosylates, Johnson and Dutra ${ }^{12}$ suggested that the mechanism of coupling involved formation of a square-planer Cu intermediate in which the alkyl groups attached to the Cu are trans located. Rapid decomposition before rearrangement results in coupling of only groups which are cis located.

( L is a liganded solvent molecule)
The results of the present study cannot be accommodated by such a mechanism. Assuming that the groups attached to copper become trans-located intermediates $36-39$ would have




been formed. Coupling of cis-located groups would have produced only those products shown. However, intermediate 36 produced not only allene, but also alkane; 37 gave alkane and no allene, 38 gave only allene $\mathrm{RAl}_{1}$ and no bisallene or RAl, while 39, if formed, did not give ary coupled bisallenes. Obviously these results are not consistent with the Johnson and Dutra mechanism. It is also obvious that when an allenyl group is bonded to the copper it is not capable of being coupled with an alkyl or propargyl halide, being sim:lar in reactivity with an alkynyl group attached to copper.

In view of the above, we believe that allenes are not formed via the intermediates 36 and 38 , but arise t.y alkyl transfer from copper to the propargyl halide in a $\pi$-type complex (40). In general, allene is formed except when the allene contains considerable strain energy as in the case of the reaction with 22 where alkyne is also formed. In competition with alkyl transfer to the propargyl halide, nucleophilic attack by Cu to produce 36-39 must also occur. Competition between nu-

cleophilic attack by alkyl and copper must be controlled by the nucleophilicity of the alkyl group attached to the Cu . This feature of the reaction is under further study. If groups must be cis related to couple, an intermediate such as $\mathbf{3 6}$ must be sufficiently stable to undergo rearrangement to 37 prior to decomposition.

In a recent article, Pearson and Gregory ${ }^{13}$ proposed that the structure of lithium dimethylcuprate is that shown as 40. These authors favor a rate-determining oxidative addition with inversion followed by a rapid reductive elimination with retention of configuration, all occurring within a dimeric species. Although the reaction involves reaction between a dimeric cuprate and organic halide or tosylate, no evidence is available indicating whether the dimeric species remains intact or forms intermediates of the type suggested by Johnson and Dutra. Regardless, the Pearson and Gregory mechanism is not consistent with the results of our present study for the reactions of dialkylcuprates with propargyl chlorides.

As in the previous article describing the transition metal catalyzed formation of allenes in the reactions of Grignard reagents with propargyl halides, ${ }^{2}$ special reactivity is attributed to the presence of the $\mathrm{C} \equiv \mathrm{C}$. We currently believe that the mechanisms of the two reactions differ, in the former a covalent carbon-metal bond being formed and the latter occurring via a $\pi$ complex.

## Experimental Section

General Procedure for the Preparative Reactions of Propargyl Chlorides with Lithium Dialkylcuprates 4 and 10. To a solution of 5 mmol of lithium di- $n$-butylcuprate (4) [prepared at -78 ${ }^{\circ} \mathrm{C}$ by the addition of 10 mmol of $n$-butyllithium in hexane to a suspension of 5 mmol of cuprous bromide in hexane ( 10 mL )] or lithium dimethylcuprate (10) (prepared at $-78^{\circ} \mathrm{C}$ from 10 mmol of methyllithium and 5 mmol of cuprous bromide suspended in 10 mL of ether) under a helium atmosphere at $0^{\circ} \mathrm{C}$ was added 2.5 mmol of propargyl chloride in 5 mL of ether. The reaction mixtures were stirred at $0^{\circ} \mathrm{C}$ for 30 min and were hydrolyzed by the addition of 2 mL of water. The organic layer was decanted and the aqueous layer extracted with 10 mL of ether. The organic layers were combined and dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed by fractional distillation. The reaction mixtures were analyzed and separated by GLPC and the products were characterized by NMR and MS. Products and yields are given in Table I.

In the case of reaction of 10 with 9 a sample of the gas above the reaction mixture was removed in an evacuated MS sampling bulb. High-resolution MS analysis showed the presence of large amounts of ethane: $m / e$ for $\mathrm{C}_{2} \mathrm{H}_{6}$ calcd $30.04 \% 0$; found 30.0468 .

All allenes formed in this study have been characterized previously except the following.

13: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.12$ (distorted $\left.\mathrm{t}, 3 \mathrm{H}\right), 1.45-1.78(\mathrm{bm}, 10 \mathrm{H})$, 1.78-2.45 (bm, 6 H), $4.85(\mathrm{bm}, 1 \mathrm{H})$; MS calcd for $\mathrm{C}_{12} \mathrm{H}_{20}$ 164.1565, found 164.1570 .

26: NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.83(\mathrm{bm}, 6 \mathrm{H}), 1.9-2.4$ (bm, $4 \mathrm{H}) 5.95(\mathrm{p}, \mathrm{IH})$; MS calcd for $\mathrm{C}_{12} \mathrm{H}_{20}$ 164.1565, found 164.1568.
23: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.66(\mathrm{~s}, 6 \mathrm{H}), 1.68(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}$ ); MS calcd for $\mathrm{C}_{8} \mathrm{H}_{12}$ 108.0939, found 108.0940.

Table I. Reactions of Dialkylcuprates with Propargyl Chlorides

| Dialkylcuprate | $\begin{gathered} \text { Registry } \\ \text { no. } \\ \hline \end{gathered}$ | Propargyl chloride | Registry no. | Products (\%) |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 24406-16-4 | 5 | 1111-97-3 | 6 (60) |
| 4 |  | 7 | 999-79-1 | 8 (60-65), $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{CHCH}_{3}(\sim 15)$ |
| 4 |  | 9 | 6209-75-2 | 13 (90) |
| 4 |  | 14 | 60820-36-2 | 17 (75) |
| 10 | 15681-48-8 | 9 |  | 12 (70), 11 (20) |
| 10 |  | 14 |  | 16 (70) |
| 10 |  | 18 | 40185-07-7 | 20 (20) |
| 10 |  | 19 | 65149-99-7 | 21 (50) |
| 10 |  | 22 | 65150-00-7 | 23 (12), 24 (8) |
| 25 | 58096-49-4 | 9 |  | 26 (85), 12 (2.5) |
| $\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{CH}_{3}\right) \mathrm{Cu}^{-} \mathrm{Li}^{+}$ | 42278-64-8 | 9 |  | 13 (42), 12 (28) |

24: $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.50-2.25(\mathrm{~m}, 6 \mathrm{H})$; MS calcd for $\mathrm{C}_{8} \mathrm{H}_{12}$ 108.0939, found 108.0941.

Reaction of 7 with 4 . To a solution of 2.2 mmol of 4 in 3 mL of hexane at $-78^{\circ} \mathrm{C}$ under a helium atmosphere containing toluene as a GLPC internal standard was added 2.2 mmol of 7 in ether. Aliquots were periodically removed, hydrolyzed, and analyzed by GLPC. Aliquots were removed after 40 and 90 min , hydrolyzed, and analyzed by GLPC. The yields of products were at $40 \mathrm{~min} 18.6 \%$ octane, $3.3 \%$ trimethylallene, and $19.3 \% 8$, and at $90 \mathrm{~min} 51.9 \%$ octane, $15.2 \%$ trimethylallene, and $34.5 \% 8$. After 150 min the field of 8 approached $65 \%$.

In a similar reaction maintained at $0^{\circ} \mathrm{C}$ yields were after 5 min $42.9 \%$ octane, $18.5 \%$ trimethylallene, and $33 \%$, after $10 \mathrm{~min} 53.5 \%$ octane, $23.0 \%$ trimethylallene, and $37.8 \% 8$, and after $60 \mathrm{~min} 77.1 \%$ octane, $15.6 \%$ trimethylallene, and $40.8 \% 8$.

Measurement of Rate of Decomposition of n-Butylcopper(I) at $-78{ }^{\circ} \mathrm{C}$. $n$-Butylcopper(I) was prepared by the addition of 1 mmol of $n$-butyllithium in hexane to 1.0 mmol of cuprous bromide suspended in 2 mL of hexane at $-78^{\circ} \mathrm{C}$ containing 35 mg of toluene as a GLPC internal standard. The reaction mixture was maintained at $-78^{\circ} \mathrm{C}$ and aliquots were periodically removed, hydrolyzed, and analyzed by GLPC. The yields of octan $\epsilon$ are at $5 \min 5.6 \%, 1 \mathrm{~h} 9.5 \%$, and at $3 \mathrm{~h} 21.1 \%$.

Deuteriolysis of Reaction Mixture of 9 with 10 . To a solution of 1 mmol of 10 in 2 mL of ether at $-78^{\circ} \mathrm{C}$ was added 1 mmol of 9 in 2 mL of ether. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and 1 mL of deuterium oxide was added. The reaction mixture was allowed to warm to room temperature and the organic layer was decanted, washed with water, and dried $\left(\mathrm{MgSO}_{4}\right)$. The 11 was isolated by preparative GLPC on a $10-\mathrm{ft}$ Carbowax 20 M column at $150^{\circ} \mathrm{C}$. The NMR spectrum showed $\delta 1.55(\mathrm{bm}, 6 \mathrm{H}), 2.2(\mathrm{bm}, 4 \mathrm{H})$, and 4.55 ( $\mathrm{m}, 1 \mathrm{H}$ ). The mass spectrum was identical with that of 11 except the peaks in the parent ion region were at 1 amu higher; $m / e$ calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{D} 109.1002$, found 109.1000 .

Preparation and Hydrolysis of $27 .{ }^{10}$ To $0.2 \mathrm{~g}(1.85 \mathrm{mmol})$ of 11 at $25^{\circ} \mathrm{C}$ containing 40 mg of diisopropylamine was added 1.8 mmol of $n$-butyllithium in hexane. The NMR spectrum of the resulting solution (methyllithium in ether) showed a new resonance at $\delta 4.9(\mathrm{~m})$. Hydrolysis of an aliquot produced only 11. Deuteriolysis produced 11 containing one deuterium (NMR and MS) at the allenyl position.

Hydrolysis and analysis of the reaction solution from above after stirring at $25^{\circ} \mathrm{C}$ for 4 h showed the presence of e:hynylcyclohexane and 11 in a 75:25 ratio.

Preparation and Hydrolysis of 29. To a solution 1.8 mmol of 27 in 1.0 mL of hexane at $-78^{\circ} \mathrm{C}$ was added 0.9 mmol of cuprous bromide. The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ for 10 min resulting in the formation of a dark gray suspension. An aliquot of the reaction mixture was removed and hydrolyzed giving $>9.5 \%$ recovery of 11 .

Preparation and Hydrolysis of $\mathbf{3 0}$. To the suspension of 1.8 mmol of 29 in hexane at $-78^{\circ} \mathrm{C}$ was added 1.1 mmol of $\mathrm{RLi}\left(\mathrm{R}=\mathrm{CH}_{3}\right.$ in ether or $n-\mathrm{C}_{4} \mathrm{H}_{9}$ in hexane) and the reaction mixture was allowed to warm to $\sim-20^{\circ} \mathrm{C}$ for 10 min resulting in the formation of a very dark gray solution. Hydrolysis of an aliquot of the solution gave $>95 \%$ 11.

Reaction of $30\left(R^{\prime}=\boldsymbol{n}-\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{9}}\right)$ with 1-Bromohexane. To a solution of 1.0 mmol of $30\left(\mathrm{R}=n-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ in 3 mL of hexane at $0^{\circ} \mathrm{C}$ was added 1.0 mmol of 1 -bromohexane. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and hydrolyzed by the addition of 1 mL of water. The organic layer was removed, dried $\left(\mathrm{MgSO}_{4} i\right)$, and analyzed by

## Table II. Reactions of 30 with Various Propargyl Chlorides

| $30, \mathrm{R}$ | Propargyl <br> chloride | Product $^{a}$ <br> (yield) |
| :--- | :---: | :---: |
| $\mathrm{CH}_{3}$ | 9 | $12(>80 \%)$ |
| $\mathrm{CH}_{3}$ | 14 | $16(>80 \%)$ |
| $n-\mathrm{C}_{4} \mathrm{H}_{9}$ | 5 | $6(85 \%)$ |
| $n-\mathrm{C}_{4} \mathrm{H}_{9}$ | 7 | $8(90 \%)$ |
| $n-\mathrm{C}_{4} \mathrm{H}_{9}$ | 9 | $13(80 \%)$ |

${ }^{\text {a }} 11$, formed by hydrolysis of 29 , was present in all cases.

GLPC showing the presence of decane ( $80 \%$ ) and 11 . No 13 or 32 could be detecied by GLPC.

Reaction of 30 with Various Propargyl Chlorides. To a solution of 1.0 mmol of 30 in 3 mL of ether or hexane at $0^{\circ} \mathrm{C}$ was added 1.0 mmol of the propargyl chloride. The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and hydrolyzed with 1 mL of water. The organic layer was removed, dried $\left(\mathrm{MgSO}_{4}\right)$, and analyzed by GLPC The results are given in Table -I. No reduced allenes or bisallenes could be detected by GLPC.

Preparation and Hydrolysis of 31. To a solution of $0.3 \mathrm{~g}(2.78$ mmol ) of 11 at $0^{\circ} \mathrm{C}$ was added 2.0 mmol of methyll thium in ether. After stirring at $25^{\circ} \mathrm{C}$ for 10 min , the solution of 27 was chilled to -78 ${ }^{\circ} \mathrm{C}$ and 1.0 mmol of cuprous bromide was added giving a dark green solution. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ giving a very dark solution. Hydrolysis of an aliquot of the solution and analysis by GLPC showed the presence of only 11 .

Attempted Reaction of 31 with 1-Bromobutane. To a solution of 1.0 mmol of 31 at $0^{\circ} \mathrm{C}$ was added 1.0 mmol of 1 -bromobutane and the reaction mixture stirred at $0^{\circ} \mathrm{C}$. Aliquots were periodically removed, hydrolyzed, and analyzed by GLPC showing only the presence of 11 and 1 -bremobutane.

Attempted Reaction of 31 with 5 and 9. To a solution of 1.0 mmol of 31 at $0^{\circ} \mathrm{C}$ were added 1.0 mmol of 5 and 9 . Aliquots taken immediately after the addition of 5 and 9 showed the complete consumption of 5 and 9 , but no bisallenes 33 or 34 could be detected by GLPC. ${ }^{14}$ Allene 11 was formed on hydrolysis. Hydrolysis of the reaction mixtures followed by separation of the organic phase, drying $\left(\mathrm{MgSO}_{4}\right)$, and removal of the solvent gave considerable quantities of nonvolatile residues which were not further investigated.

Registry $\mathbf{N}$ ı.- $11,5664-20-0 ; 13,20023-45-4 ; 23.65150-01-8 ; 24$, 65150-02-9; 26, 59643-61-7; 27, 65150-03-0; 29, 65150-04-1; 30 ( $\mathrm{R}=$ $\mathrm{Bu}), 65150-22-3 ; 30(\mathrm{R}=\mathrm{Me}), 65150-23-4 ; 31,6515 \mathrm{C}-24-5$; 1-bromohexane, 111-2E-1.

## References and Notes

(1) The authors acknowledge partial financial support of this research by a grant in aid to G.F.H. from Eli Lilly and Co., Indianapolis, Ind.
(2) D. J Pasto. J. A. McGrath, A. Waterhouse, S.-K. Chou, and G. F. Hennion. J. Org. Chem., accompanying article in this issue.
(3) D. J. Pasto, G. F. Hennion, R. H. Shults, A. Waterhouse, and S.-K. Chou, J. Crg. Chem., 41, 3496 (1976); D. J. Pasto, S.-K. Chcu, A. Waterhouse, R. H. Shults, and G. F. Hennion, J. Org. Chem., accompanying article in this issue.
(4) M. Kalli, P. D. Landor, and S. R. Landor, J. Chem. Soc. Perkin Trans. 1, 1347 (1973).
(5) P. Rona and P. Crabbè, J. Am. Chem. Soc., 90, 4734 (1968).
(6) P. Crabbe, E. Barreiro, J.-M. Dollat, and J.L. Luche, J. Chem. Soc., Chem. Commun., 183 (1976)
(7) The formation of alkane by dimerization of the alkyl groups attached to the copper was not reported in ref 4-6. Crabbe and co-workers ${ }^{5.6}$ used di-methyl- and diethylcuprate, in which case ethane and butane could have easily escaped detection Landor and co-workers ${ }^{4}$ used di- $n$-buylcuprate in several reactions but did not report the formation of octane.
(8) W. H. Mandeville and G. M. Whitesides, J. Org. Chem., 39, 400 (1974).
(9) (a) D. E. Bergbreiter and G. M. Whitesides, J. Org. Chem.. 40, 779 (1975): (b) D. E. Bergbreiter and J. M. Kil ough, ibid., 41, 2750 (1976).
(10) X. Creary, J. Org. Chem., in press
(11) This type of rearrangement has also been reported in ref 10
(12) C. R. Johnson and G. A. Dutra, J. Am. Chem. Soc., 95, 7783 (1973).
(13) R. G. Pearson and C. D. Gregory, J. Am. Chem. Soc., 98,4098 (1976).
(14) Bisallenes were easily detected and isolated by GLPC techniques in the previous article. ${ }^{3}$

# Synthesis of Highly Branched, $\beta$-Arylated Nitroparaffins ${ }^{1}$ 

Nathan Kornblum * Stephen C. Carlson, Jörg Widmer, Michael J. Fifolt, Barry N. Newton, and Ronald G. Smith<br>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Received August 2, 1977


#### Abstract

A synthetically useful one-step procedure for converting $\alpha$-arylated tertiary nitro compounds into highly branched $\beta$-arylated nitroparaffins is described. These reactions appear to proceed via a chain mechanism in which radical anions and free radicals are intermediates.


Ten years ago it was discovered that the aliphatic nitro group of $\alpha, p$-dinitrocumene (1) is readily displaced by a wide variety of nucleophiles as is shown in eq $1 .{ }^{2}$ A large body of

evidence now exists in support of the view that these are electron-transfer processes in which radical anions and free radicals are intermediates. ${ }^{3}$ When the chem stry of $\alpha, p$-dinitrocumene (1) was first described it was emphasized that the $p$-nitro group facilitates the displacements of eq 1 ; in no instance did $\alpha$-nitrocumene (2) react with nuc-eophiles under conditions which resulted in complete reaction when $\alpha, p$ dinitrocumene was employed. ${ }^{2}$

We have now found that the aliphatic nitro group of $\alpha$ nitrocumene (2), and of substituted $\alpha$-nitrocumenes and homologues thereof, can be displaced by nitroparaffin salts, albeit at a distinctly slower rate than when $\alpha, p$-dinitrocumene is used. What is required is the use of hexamethylphosphoramide (HMPA) as the solvent, rather than the DMF or $\mathrm{Me}_{2} \mathrm{SO}$ originally employed, and a relatively long reaction time (see Table I). Thus, in $45 \mathrm{~h} \alpha$-nitrocumene and the lithium salt of nitroethane react smoothly (eq 2). While the matter

has not been studied extensively, it appears that electronwithdrawing substituents facilitate these substitutions; for example, the reaction of eq 3 takes only 8 h and gives $94 \%$ yield. This type of reaction also proceeds at $25^{\circ} \mathrm{C}$ when the sa-ts of secondary nitroparaffins are employed. Table I summarizes our results; it should be noted that the yields given there refer to pure, isolated products.


Simple, synthetically useful methods for preparing $\alpha$-arylated tertiary nitro compounds are now available. ${ }^{4.5}$ Consequently, the facile one-step conversion of $\alpha$-arylated nitro compounds into highly branched $\beta$-arylated nitroparaffins makes the latter readily accessible. Manifestly, the synthesis of the highly ramified nitro compounds of Table I by classical means would be a matter of some difficulty. The relative insensitivity to steric hindrance of the processes of Table I is consonant with the view that they are radical anion reactions (vide infra) and serves to emphasize, once again, the utility of radical anion reactions for the preparation of highly branched structures. ${ }^{3}$

Several of the transformations listed in Table I have been studied in regard to the matter of mechanisms; in each case the characteristics of electron transfer substitution processes have been observed. Thus, the reaction of the lithium salt of nitroethane with $\alpha$-nitrocumene (2) requires 45 h to proceed to completion and produces pure 2-phenyl-2-methyl-3-nitrobutane (3) in 74\% yield (eq 2). But if di-tert-butyl nitroxide is present at the $9 \mathrm{~mol} \%$ level the reaction is completely inhibited for $45 \mathrm{~h} . m$-Dinitrobenzene ( $20 \mathrm{~mol} \%$ ) also retards this reaction; after 45 h it proceeds only $4 \%$ to completion. $m$ Dinitrobenzene is recognized as a diagnostic for radical anions, ${ }^{1}$ di-tert-butyl nitroxide is a free-radical scavenger ${ }^{1,6.7}$ and clearly the reaction of eq 2 is a chain process.

Two reactions employing $p$-cyano- $\alpha$-nitrocumene (4) have also been investigated. At $25^{\circ} \mathrm{C}$ the transformation of eq 3 requires 8 h and gives a $94 \%$ yield of the pure $\beta$-arylated nitroparaffin $\mathbf{5}$. In contrast, if di-tert-butyl nitroxide is present at the $10 \mathrm{~mol} \%$ level there is no reaction after 8 h and $91 \%$ of the $p$-cyano- $\alpha$-nitrocumene is recovered. Furthermore, $m$ dinitrobenzene ( $20 \mathrm{~mol} \%$ ) completely inhibits this reaction for at least 8 h .

The second reaction of $p$-cyano- $\alpha$-nitrocumene which was studied from the standpoint $0 \div$ mechanism is shown in eq 4; after 50 h a $68 \%$ yield of the pure $\beta$-arylated nitro compound

Table I. The Synthesis of $\beta$-Arylated Nitroparaffins at $25^{\circ} \mathbf{C}^{a}$

| $\alpha$-Arylated nitro compd employed | Registry no. | Nitroparaffin salt employed | Registry no. | Reaction time, h | Product | Registry no. | $\begin{gathered} \% \\ \text { yield } b \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3457-58-7 | $\mathrm{CH}_{3} \overline{\mathrm{C}} \mathrm{HNO}_{2} \mathrm{Li}^{+}$ | 28735-55-9 | 45 | 3 | 65253-35-2 | 74 |
| 4 | 58324-82-6 | $\mathrm{CH}_{3} \overline{\mathrm{C}} \mathrm{HNO}_{2} \mathrm{Li}^{+}$ |  | 8 | 5 | 65253-36-3 | 94 |
| 4 |  | $\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{C}} \mathrm{NO}_{2} \mathrm{Li}^{+}$ | 12281-72-0 | 50 | 6 | 65253-37-4 | 68 |
| 4 |  |  | 35818-95-2 | 46 |  | 65253-38-5 | 68 |
|  | 58324-84-8 | $\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{CNO}}_{2} \mathrm{Li}^{+}$ |  | 110 |  | 65253-39-6 | 71 |
| 7 | 58324-86-0 | $\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{CNO}}_{2} \mathrm{Li}^{+}$ |  | 16 | 8 | 65338-72-9 | 90 |
| 7 |  |  |  | 45 |  | 65253-40-9 | 50 |
|  | 58324-79-1 | $\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{CNO}}_{2} \mathrm{Li}^{+}$ |  | 72 |  | 65253-41-0 | 62 |
| ' ${ }^{\prime}$ |  |  |  | 74 |  | 65253-42-1 | 61 |
| 1 |  | $\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{CN}} \mathrm{NO}_{2} \mathrm{Li}^{+}$ |  | $2^{\text {c }}$ |  | 14851-02-7 | 84 |
| 1 |  |  |  | 6 |  | 65253-4í-2 | 74 |
|  | 65253-33-0 | $\left.\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{C}} \mathrm{NO}_{2} \mathrm{Li}^{-}$ |  | 92 |  | 65253-44-3 | 60 |
|  | 65253-34-1 | $\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{CNO}}_{2} \mathrm{Li}^{+}$ |  | 45 |  | 65253-45-4 | 60 |
|  | 58324-83-7 | $\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{C}} \mathrm{NO}_{2} \mathrm{Li}^{+}$ |  |  |  | 65253-46-5 | 76 |

${ }^{a}$ All reactions were carried out in HMPA at $25^{\circ} \mathrm{C}$ with exposure to light. ${ }^{14}{ }^{b}$ Pure, isolated product. ${ }^{c}$ M. M. Kestner, Ph.D. Thesis, Purdue University, May 1973.

experiment and $85 \%$ from the one in which nitroxide is present.

The effect of light on these reactions is also noteworthy. All the transformations of Table I are conducted with exposure to the illumination of two ordinary $20-\mathrm{W}$ fluorescent lamps. However, when $\alpha$-nitrocumene (2) and the lithium salt of nitroethane are brought together under conditions which result in the reaction of eq 2 , except that now the system is maintained in total darkness, no reaction occurs and $83 \%$ of the
$\alpha$-nitrocumene is recovered. Nor is this a unique result; the reactions of eq 3 and 4 also do not occur in the absence of light. And while the reaction of eq 5 does proceed in the dark it is unambiguously speeded up by light (cf. Experimental Section). Although many electron-transfer substitution reactions take place in the dark they are often accelerated by light. ${ }^{1}$ The dramatic light effects observed in the reactions of $\alpha$-nitrocumene and $p$-cyano- $\alpha$-nitrocumene, and the smaller one noted in the reaction of eq 5 , are consonant with an elec-tron-transfer mechanism.

The chain mechanism of eq 6-9 provides a simple basis for

understanding the foregoing facts and is consistent with what is known about related processes. ${ }^{1}$ Presumably, not only the reactions of $\alpha$-nitrocumene, $p$-cyano- $\alpha$-nitrocumene, and the fluorinated $\alpha$-nitrocumene 7, but also the reactions of the other $\alpha$-arylated tertiary nitro compounds proceed via a radical anion-free radical chain sequence such as that shown in eq 6-9 for $\alpha$-nitrocumene.
Finally, it should be pointed out that very small amounts of two byproducts are often produced in these reactions. One is the dimer of the cumyl radical (9), the other the reduction product of the $\beta$-arylated nitroparaffin (10).

9

1)

In this connection the reaction of $\alpha$-nitrocumene (2) with the lithium salt of 2 -nitropropane is of interes .. This reaction is very slow; after 6 days NMR analysis indicates that $22 \%$ of the $\alpha$-nitrocumene is still unreacted, that the $\beta$-phenylated
nitroethane (2,3-dimethyl-2-phenyl-3-nitrobutane) is formed in $30 \%$ yield, and that the bicumyl is produced in $48 \%$ yield. While these data are not definitive there can be little doubt that in this one case the desired reaction is not the major process. ${ }^{21}$ That this is so appears to derive from a combination of steric and electrical effects. In the first place, as shown in eq $2, \alpha$-nitrocumene when treated with the lithium salt of nitroethane readily gives the $\beta$-arylated nitroparaffin and not the cumyl dimer. This suggests that the enhanced steric requirement in going from the anion of nitroethane to that of 2 -nitropropane is a significant adverse influence. But, as can be seen from eq 5 and Table I, $\alpha$-nitrocumenes bearing elec-tron-withdrawing substituents react readily with the lithium salts of 2 -nitropropane and 2 -nitrobutane. Clearly, in these cases the steric factor is outweighed by a polar factor. One can only speculate as to how the polar factor operates; one possibility is that cumyl radicals bearing electron-withdrawing substituents possess heightened electrophilicity, so that the drive for reacting with a nitroparaffin anion to give a radical anion is greater than for the unsubstituted cumyl radical.

## Experimental Section ${ }^{8}$

CAUTION: HMPA should be handled with great care since it has recently been found to cause cancer in laboratory animals [Chem. Eng. News, 54 (39), 17 (1975)].
$\alpha$-Arylated Nitro Compounds. Most of the $\alpha$-arylated nitro compounds employed in this study are known and their synthesis from substituted nitrobenzenes has been described. ${ }^{4}$ The following preparations are new.
2-(p-Cyanophenyl)-2-nitrobutane. The lithium salt of 2 -nitrobutane ( $10.9 \mathrm{~g}, 100 \mathrm{mmol}$ ), ${ }^{9} p$-cyanonitrobenzene $(7.40 \mathrm{~g}, 50 \mathrm{mmol}$ ), 100 mL of HMPA, and a reaction time of 17 h were employed. ${ }^{4}$ On workup 9.6 g of an orange oil was obtained. This was chromatographed through a short column of alumina using benzene as the eluent. The resulting 8.90 g of product, when Kugelrohr distilled at 1 mm and 120 ${ }^{\circ} \mathrm{C}$, gave 8.81 g of a light yellow oil ( $87 \%$ yield): $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.90$ ( $\mathrm{t}, 3 \mathrm{H}$ ), 1.96 ( $\mathrm{s}, 3 \mathrm{H}$ ), 2.18-2.55 (m, 2 H), 7.35-7.85 (m, 4 H ); IR (neat) 4.45 (CN), 6.49, $7.40\left(\mathrm{NO}_{2}\right) \mu \mathrm{m}$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 64.69; $\mathrm{H}, 5.92 ; \mathrm{N}, 13.72$. Found: C, 64.69; H, 5.66; N, 13.54.
$\mathbf{2 - m}, \boldsymbol{m}^{\prime}$-Bis(trifluoromethyl)phenyl-2-nitrobutane. 3,5-Bis(trifluoromethyl) nitrobenzene ( $10.35 \mathrm{~g}, 39.77 \mathrm{mmol}$ ) and the lithium salt of 2-nitrobutane ( $4.70 \mathrm{~g}, 43.1 \mathrm{mmol}$ ) were allowed to react in 50 mL of HMPA under argon. Workup after 24 h and crystallization from hexane gave colorless crystals: mp $43-44{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right)$ o 0.97 ( t , $3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 6.47,6.85$, $7.25 \mu \mathrm{~m}$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~F}_{6}$ : C, 45.57; H, 3.83; $\mathrm{N}, 4.43 ; \mathrm{F}, 36.06$. Found: C, 45.35 ; H, 3.75 ; N, 4.23; F, 35.81.
$\alpha$-Nitrocumene (2) was obtained from $\alpha$-methylstyrene via the following intermediates.
$\boldsymbol{N}$ - $\alpha$-Cumylformamide. $\alpha$-Methylstyrene ( 236 g ) was subjected to the Ritter reaction; ${ }^{10} 120 \mathrm{~g}$ ( $36 \%$ yield) of slightly impure $N-\alpha$ cumylformamide was obtained. For analysis a small portion of the formamide was passed through silica gel using chloroform as the eluent; the first fraction was largely composed of an impurity. Continued elution with chloroform and then with ethyl acetate gave a yellow oil which after Kugelrohr distillation at 0.1 mm and $93^{\circ} \mathrm{C}$ is colorless: $n^{23} \mathrm{D} 1.5371 ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 7.0-8.2(\mathrm{~m}, 7$ H); IR (neat) $3.06(\mathrm{NH}), 3.65(\mathrm{O}=\mathrm{CH}), 6.0(\mathrm{C}=0) \mu \mathrm{m}$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 73.59 ; \mathrm{H}, 8.03 ; \mathrm{N}, 8.58$. Found: C, 73.44; H, 7.82; N, 8.40.
$\alpha$-Aminocumene. This was obtained on alkaline hydrolysis of the formamide; ${ }^{10}$ from 111.7 g of the slightly impure formamide, 61.9 g ( $67 \%$ yield) of pure $\alpha$-aminocumene was isolated: bp $94^{\circ} \mathrm{C}(26 \mathrm{~mm}$ ); $n^{24} \mathrm{D} 1.5174$ (lit. $\left.{ }^{11} n^{25} \mathrm{D} 1.5175-1.5185\right)$; NMR ( $\left.\mathrm{CDCl}_{3}\right) \delta 1.41(\mathrm{~s}, 8 \mathrm{H})$, 7.1-7.2 (m, 5 H); IR (neat) 2.98, 3.07 ( $\mathrm{NH}_{2}$ ) $\mu \mathrm{m}$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}: \mathrm{C}, 79.95 ; \mathrm{H}, 9.69 ; \mathrm{N}, 10.36$. Found: $\mathrm{C}, 80.03$; H, 9.74; N, 10.55 .
$\alpha$-Nitrocumene (2). Permanganate oxidation ${ }^{12}$ of 59.9 g of $\alpha$ aminocumene gave 34.6 g ( $47 \%$ yield) of pure $\alpha$-nitrocumene: bp 97 ${ }^{\circ} \mathrm{C}(5 \mathrm{~mm}) ; n^{25} \mathrm{D} 1.5178\left(\right.$ lit. $\left.{ }^{5} n^{20}{ }_{\mathrm{D}} 1.5204\right)$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.95(\mathrm{~s}, 6$ H), 7.39 (s, 5 H ); IR (neat) $6.55,7.44\left(\mathrm{NO}_{2}\right) \mu \mathrm{m}$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}: \mathrm{C}, 65.44 ; \mathrm{H}, 6.71 ; \mathrm{N}, 8.48$. Found: C, 65.60; H, 6.72; N, 8.50.
$\beta$-Arylated Nitroparaffins. General Procedure. The synthesis of compound 8 (the reaction of eq 5 ) is illustrative. The center neck of a $200-\mathrm{ml}$ three-neck flask is fitted with an adapter constructed of a male and a female ground-glass joint separated by a stopcock. Each of the other two necks is fitted with an addition tube (A). These addition tubes are so constructed that their contents may be emptied into the flask without opening the system, merely by rotating around the joint (cf. Figure 1). One of the addition tubes is charged with 2.989 $\mathrm{g}(10 \mathrm{mmol})$ of 3,5 -bis(trifluoromethyl)- $\alpha$-nitrocumene ( 7$)^{4}$ and the other contains 4.75 g ( 50 mmol ) of the lithium salt of 2 -nitropropane; ${ }^{13,9}$ a magnetic stirring bar and 100 mL of HMPA are placed in the flask.

The system is purged of air by evacuating and then bleeding in argon. This process is repeated three times and then the HMPA is frozen by liquid nitrogen. The system is evacuated to $\sim 1 \mathrm{~mm}$ and the frozen HMPA is allowed to thaw. This freeze-pump-thaw procedure is repeated two more times and then argon at 1-atm pressure is bled in. [This rigorous degassing is probably not necessary in most cases. An aliernative is to purge the system of air simply by evacuating and then bleeding in nitrogen; this procedu:e is repeated three times. A number of the reactions of Table I were run both "freeze-pump-thaw" and "under nitrogen" with identical results.]

The flask is placed under the light apparatus, ${ }^{14}$ magnetic stirring is instituted, and the 2-nitropropane salt is added. After the salt has dissolved the 3,5-bis(trifluoromethyl)- $\alpha$-nitrocumene (7) is added and the resulting solution is stirred for 16 h at room temperature. The solution is then poured into water and extracted with benzene. The benzene phase is washed with water and dried over anhydrous $\mathrm{MgSO}_{4}$, and then the solvent is removed using a rotatory evaporator under reduced pressure. The resulting yellow oil $(3.38 \mathrm{~g})$ is dissolved in 15 mL of hexane and chromatographed on alumina. Elution with hexane quickly gives 0.08 g ( $2 \%$ yield) of a colorless liquid which has an NMR spectrum identical with that of authentic 2,3 -dimethyl-2- $\left[m, m^{\prime}\right.$ bis(trifluoromethyl)phenyl]butane; ${ }^{15}$ that is immediately followed by 0.06 g ( $1 \%$ yield) of the $m, m^{\prime}$-bis(trifluoromethyl)cumyl dimer: mp $66.5-68{ }^{\circ} \mathrm{C}$ (lit. ${ }^{16} \mathrm{mp} 67-68^{\circ} \mathrm{C}$ ). Further elution with $90 \%$ hexane $-10 \%$ benzene gives 3.06 g ( $90 \%$ yield) of the $\beta$-arylated nitroparaffin 8: colorless crystals; mp $49-50^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.50(\mathrm{~s}, 6 \mathrm{H}), 1.57(\mathrm{~s}$, 6 H ), 7.77 ( $\mathrm{brs}, 3 \mathrm{H}$ ).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{NO}_{2}$ : C, 48.99; $\mathrm{H}, 4.40 ; \mathrm{F}, 33.21 ; \mathrm{N}, 4.08$; mol wt, 343. Found: C, 49.02; H, 4.41; F, 33.04; N, 4.08; mol wt, 344.

The reaction between 3,5 -bis(trifluoromethyl)- $\alpha$-nitrocumene (7) and the lithium salt of 2-nitropropane was also studied as regards the matter of mechanism. A duplicate of the foregoing experiment was carried out except that now $0.168 \mathrm{~g}(1 \mathrm{mmol})$ of $m$-dinitrobenzene was present. From the crude red-brown product ( 3.247 g ) a total of 2.975 g ( $98 \%$ recovery) of pure 3,5-bis(trifluoromethyl)- $\alpha$-nitrocumene (7) was obtained by recrystallization from lexane and chromatography on alumina: mp $54-55^{\circ} \mathrm{C}$. The NMR spectrum of this recovered material was identical with that of the starting material and it was pure by VPC. Thus, complete inhibition had occurred.

Another duplicate of the first experiment was carried out except that here di-tert-butyl nitroxide was present $(0.110 \mathrm{~g}, 0.8 \mathrm{mmol})$. On workup and purification by chromatographing on alumina 2.558 g ( $85 \%$ ) of the pure starting 3,5-bis(trifluoromethyl)- $\alpha$-nitrocumene (7) was obtained: $\mathrm{mp} 54-55^{\circ} \mathrm{C}$. Its NMR spectrum was identical with that of the starting material and it was pure by VPC. Clearly, inhibition had occurred.

Finally, the first experiment was repeated exactly as described above except that now it was conducted in a dark room and the reaction flask was wrapped with aluminum foil. The crude product was a pale $\tan$ viscous oil ( 3.185 g ). VPC anzlysis showed that $69 \%$ of this oil was unreacted $\alpha$-nitrocumene 7 and $31 \%$ was the $\beta$-arylated nitroparaffin 8. The crude product was passed through a column of alumina and the resulting mixture was analyzed by VPC and by NMR. In this way it was found that $1 . \varepsilon 95 \mathrm{~g}$ of the resulting mixture was unchanged starting material ( $63 \%$ recovery) and that 0.963 g ( $28 \%$ yield) of the $\beta$-arylated nitroparaffin 8 was presen:. Thus this reaction will take place in the dark but at a distinctly slower rate than when exposed to two $20-\mathrm{W}$ ordinary fluorescent lights.

2-Methyl-2-phenyl-3-nitrobutane. (A) Preparation. The reaction was carried out in a $25-\mathrm{mL}$ thre $こ$-neck flask according to the general procedure. Into one of the addition tubes (A) was placed 0.165 g ( 1 mmol ) of $\alpha$-nitrocumene and into the othe: addition tube was placed $0.162 \mathrm{~g}(2 \mathrm{mmol})$ of the lithium salt of nitroethane; ${ }^{17} 10 \mathrm{~mL}$ of HMPA was placed in the flask. The HMPA was subjected to the freeze-pump-thaw procedure while the $\alpha$-nitrocumene was kept frozen with dry ice. The contents of the two addition tubes were then transferred to the HMPA and the resulting mixture was stirred for 45 h under the light apparatus. ${ }^{14}$ The yellow solution was then placed


Figure 1. Addition tube (A).
in an ice bath and an ice-cold solution of urea ( 0.369 g ) in 1.8 mL of $20 \%$ acetic acid $-80 \%$ water ${ }^{18}$ was added all at once. The resulting solution was stirred for 10 min in the ice bath and then was poured into 200 mL of water containing $\sim 2 \mathrm{~g}$ of NaCl . The cloudy aqueous HMPA solution was extracted repeatedly with pentane and the pentane extracts were then washed repeatedly with water. After drying over anhydrous $\mathrm{MgSO}_{4}$ the pentane was removed on a rotary evaporator under reduced jressure. This gave 0.178 g of a colorless liquid which was separated into two fractions by preparative TLC (silica gel; $10 \%$ ethyl acetate $-90 \%$ hexane). The first fraction ( 0.018 g ) melted at $103-110^{\circ} \mathrm{C}$. On recrystallization from methanol $0.011 \mathrm{~g}(0.046 \mathrm{mmol}$; $9 \%$ yield) of 2,3 -dimethyl-2,3-diphehylbutane was obtained: white needles; mp $116-117^{\circ} \mathrm{C}$ (lit. ${ }^{19} \mathrm{mp} 118-119^{\circ} \mathrm{C}$ ); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.28$ (s, 12 H ), $7.15(\mathrm{~m}, 10 \mathrm{H})$.

Anal. Calcd or $\mathrm{C}_{18} \mathrm{H}_{22}$ : C, 90.70; H, 9.30; mol wt, 238. Found: C, 90.65; H, 9.30; mol wt, 238.

The second faction $(0.152 \mathrm{~g})$ was Kugelrohr distilled at $57^{\circ} \mathrm{C}(0.01$ mm ), whereupon 0.143 g of a colorless liquid, $n^{22} \mathrm{D} 1.5200$, was obtained; this is 2-methyl-2-phenyl-3-nitrobitane (74\% yield). By TLC and VPC analysis this is a pure compound: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.29$ ( d , $J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}), 4.86(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H})$; IR (neat) 6.52. $7.47\left(\mathrm{NO}_{2}\right) \mu \mathrm{m}$.

Anal. Calcd ©or $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$ : C, 68.37; H, 7.82; N, 7.01. Found: C, 68.14; H, 7.59; N, 7.25.
(B) The Effect of m-Dinitrobenzene. This experiment was a duplicate of the preceding one except that now a $25-\mathrm{mL}$ four-neck flask containing three addition tubes (A) was used. The third addition tube contained $0.034 \mathrm{~g}(0.20 \mathrm{mmol})$ of $m$-dinitrobenzene and after the freeze-pump-thaw procedure this was added to the reaction mixture. Workup gave 0.178 g of a red liquid which on preparative TLC yielded 0.142 g of a pale yellow liquid. Kugelrohr distillation at $57^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ gave 0.135 g of a colorless liquid which NMR analysis reveals is a mixture of $\alpha$-n trocumene and 2-methyl-2-phenyl-3-nitrobutane in a ratio of $95: 5$. Thus, the 0.135 g of distillate corresponds to a $77 \%$ recovery of $\alpha$-nitrocumene and a $4 \%$ yield of 2-met-iyl-2-phenyl-3nitrobutane. The IR of this mixture is virtually identical with that of pure $\alpha$-nitrocumene.
(C) The Effect of Di-tert-butyl Nitroxide. The first experiment of this group (A) was duplicated except that now a 5 'J-mL four-neck flask containing three addition tubes was employed. The third addition tube contained $0.013 \mathrm{~g}(0.09 \mathrm{mmol})$ of di-tert-butyl nitroxide; during the freeze-pump-thaw deoxygenation procedure the nitroxide was kept frozen in dry ice to prevent loss by evaporation. Workup gave 0.169 g of a brown liquid from which, by preparative TLC, 0.133 g of a colorless liquid was obtained. Kugelrohr distillation at $57^{\circ} \mathrm{C}(0.1$ mm ) gave 0.120 g ( $73 \%$ recovery) of $\alpha$-nitrocumene. Its NMR, IR, and $n^{25} \mathrm{D}$ are identical with that of the starting material. TLC and VPC analyses also attest to the purity of this recovered $\alpha$-nitrocumene.
(D) The Effect of Light. Experiment A of this group was repeated except that it was conducted in a dark room and the system was completely wrapped in aluminum foil. Workup, followed by the usual preparative TLC and Kugelrohr distillazion, gave 0.137 g ( $83 \%$ recovery) of a colorless liquid which by NMR analysis consisted of $\alpha$ nitrocumene contaminated by a trace ( $<2 \%$ ) of 2 -methyl-2-phenyl3 -nitrobutane. The IR spectrum and the $n^{25} \mathrm{D}$ of this material were identical with that of pure $\alpha$-nitrocumene and the VPC and TLC analyses failed to reveal the presence of any impurity. Clearly, then, little if any reaction takes place in the dark in 45 h .

2-Methyl-2-p-cyanophenyl-3-nitrobutane (5). (A) Preparation. The reaction of $p$-cyano- $\alpha$-nitrocumene ${ }^{4}(0.19 C \mathrm{~g}, 1 \mathrm{mmol})$ with $0.162 \mathrm{~g}(2 \mathrm{mmol})$ of the lithium salt of nitroethane ${ }^{1-}$ was carried out in 10 mL of HMPA according to the general procedure; a nitrogen purge was employed rather than the argon freeze-pump-thaw procedure. After 8 h the reaction flask was placed in an ice bath and a cold solution of $0.369 \mathrm{~g}(6 \mathrm{mmol})$ of urea dissolved in 1.8 mL of $20 \%$ acetic acid $-80 \%$ water was added all at once. The solution was stirred for 10
min in an ice bath, after which it was poured into 200 mL of water containing $\sim 2 \mathrm{~g}$ of NaCl . The aqueous HMPA soluzion was repeatedly extracted first with ethyl ether and then with benzene. The combined ether-benzene extracts were thoroughly washed w.th water and dried and then solvent was rem.oved under reduced pressure. The 0.246 g of yellow liquid thus obtained was Kugelrohr distilled twice at 122 ${ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. In this way $0.205 \mathrm{~g}(94 \%$ yield of pure 2 -methyl-2-( $p-$ cyanophenyl)-3-nitrobutane (5) was obtained: mp $57-58^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta(1.4(\mathrm{~d}, J=7 \mathrm{~Hz}), 1.49(\mathrm{~s}) 9 \mathrm{H}], 4.82(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.4-7.8 (q, 4 H); IR (melt) $4.48(\mathrm{C} \equiv \mathrm{N}), 6.48\left(\mathrm{NO}_{2}\right) \mu \mathrm{m}$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 66.04; H. 6.47; $\mathrm{N}, 12.84$. Found: C, 65.83: H, 6.26; N, 12.64.

On standing for 3 wee;s the melting point of 2-methyl-2-( $p$-cy-anophenyl)-3-nitrobutane changed to $62-65^{\circ} \mathrm{C}$; the IR and NMR spectra of the higher melting material were, however, identical with those of the lower melting form. After 8 months the melting points had become $65-66^{\circ} \mathrm{C}$ and an elemental analysis gave the following results: C, 66.28 ; H. 6.69 ; N, 12.98. Clearly, the high 2 melting material is a second crystalline form of 2-methyl-2-( $p$-cyanophenyl)-3-nitrobutane.
(B) The Effect of $m$-Dinitrobenzene. This experiment was a duplicate of the preceding one except that now an additional side-arm addition tube (A) was employed; it contained $10.034 \mathrm{~g}(0.2 \mathrm{mmol})$ of $m$-dinitrobenzene. After adding the lithium salt of nitroethane to the HMPA the $m$-dinitrobenzene was introduced and, finally, the $p$ -cyano- $\alpha$-nitrocumene. On workup 0.229 g of an orange solid, $\mathrm{mp} 46-55$ ${ }^{\circ} \mathrm{C}$, was obtained; this, or. Kugelrohr distillation at $90^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$, gave 0.172 of a yellow solid: mp $55-59^{\circ} \mathrm{C}$. Recrystallization from hexane produced $0.136 \mathrm{~g}: 77 \%$ recovery) of white needles: mp 61-62 ${ }^{\circ} \mathrm{C}$. That this is the pure starting material ( $F$-cyar.o- $\alpha$-nitrocumene) was further shown by a mixed melting point and by VPC and TLC. Finally, the recovered material and the starting material have identical NMR and IR spectra.
(C) The Effect of Di-tert-Butyl Nitroxide. The first experiment of this group (A) was repeated except that $0.014 \mathrm{~g}(0.1 \mathrm{mmol})$ of di-tert-butyl nitroxide (which was kept frozen during the nitrogen purge) was introduced prior to the addition of the $D$-cyano- $\alpha$-nitrocumene to the HMPA. Workup gave 0.188 g of crude procuct: $\mathrm{mp} 57-58^{\circ} \mathrm{C}$. This after two Kugelrohr distillations at $90^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ was white and had: $\mathrm{mp} 60-61^{\circ} \mathrm{C} ; 0.172 \mathrm{~g}(91 \%$ recovery). Pure $p$-cyano- $\alpha$-nitrocumene melts at $61-62{ }^{\circ} \mathrm{C}$; the melting point of a mixture was $60.5-61.5^{\circ} \mathrm{C}$. The recovered material was identical by NMR, IR. VPC, and TLC with the pure starting material.
(D) The Effect of Light. Experiment A of this group was duplicated except that it was carried out in a dark room and the reaction system was wrapped in aluminum foil. The crude product ( 0.184 g ) melted at $59-61^{\circ} \mathrm{C}$. Kugelrohr distillation at $90^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ gave 0.168 g ( $88 \%$ recovery) of white needles, $\mathrm{mp} 61-62^{\circ} \mathrm{C}$. The melting point of a mixture of this material and pure $p$-cyano- $\alpha$-nitrocumene was $61-62^{\circ} \mathrm{C}$. The recovered material was identical by NMR, IR, VPC, and TLC with the starting material.
(E) Analytical Sensitivity. Mixtures of the starting compound (4) and the product (5) of these reactions (cf. eq 4! were analyzed by NMR in $\mathrm{CDCl}_{3}$. In this way it was shown that at the $3 \%$ level 2 -methyl-2-p-cyanophenyl-3-nitrobutane (5) can unequivocally be detected. Since NMR analyses of the crude reaction products of experiments $B, C$, and $D$ of this group gave no evidence of the presence of 5 it can safely be concluded that in those experiments $<3 \%$ was produced.

2,3-Dimethyl-2-(p-cyanophenyl)-3-nitrobutane. (A) Preparation. $p$-Cyano- $\alpha$-nitrocumene ${ }^{4}(9.50 \mathrm{~g}, 50 \mathrm{mmol})$, the lithium salt of 2 -nitropropane ${ }^{9.13}(23.75 \mathrm{~g}, 250 \mathrm{mmol}), 500 \mathrm{~mL}$ of HMPA, a nitrogen atmosphere, and a reaction time of 59 h were employed. The crude reaction product ( 10.3 g ) was a yellow solid, the NMR analysis of which indicated that it was contaminated w-th p-cyanocumyl dimer. On recrystallizations from methanol 8.01 g ( $68 \%$ yield) of 2,3-dimethyl-2-(p-cyanophenyl)-3-nitrobutane was obtained: mp $166-167^{\circ} \mathrm{C}: \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.53(\mathrm{~s}, 12 \mathrm{H}), 7.2 .5-7.75(\mathrm{~m}, 4 \mathrm{H}$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 67.22; $\mathrm{H}, 6.94 ; \mathrm{N}, 12.06$. Found: C, 67.14; H, 6.89; N, 11.93.
(B) Mechanistic Studies. The reaction of $p$-cyano- $\alpha$-nitrocumene (4) with the lithium salt o: 2-nitropropane uas stcdied under argon using the freeze-pump-thaw technique (vide supra) to remove oxygen from the system. Each experiment of this set employed 0.190 g ( 1 $\mathrm{mmol})$ of $p$-cyano- $\alpha$-nitrocumene, $0.480 \mathrm{~g}(5 \mathrm{mmol})$ of the lithium salt of 2-nitropropane, 10 mL of HMPA, magnetic st rring, and a $36-\mathrm{h}$ reaction time. Except for the dark experiment (sea below) the reactions were conducted under the light apparatus. ${ }^{14}$ The reaction mixture was poured into water containing sodium chloride and extracted with ether and benzene. The combined extracts were washed
with water and dried and the solvents were removed under reduced pressure, thereby giving the crude product.

In the absence of inhibitors the crude product was a pale yellow solid $(0.211 \mathrm{~g})$ : mp $133-155^{\circ} \mathrm{C}$. Kugelrohr distillation at $60^{\circ} \mathrm{C}(0.1$ mm ) gave 0.012 g of a colorless, multicomponent liquid which was not further investigated. On raising the temperature to $100^{\circ} \mathrm{C}$ a pale yellow solid ( 0.176 g ) sublimed; on recrystallization from methanol 0.123 g of white plates were obtained: $\mathrm{mp} 167-168^{\circ} \mathrm{C}$. This is a $53 \%$ yield of pure 2,3-dimethyl-2-(p-cyanophenyl)-3-nitrobutane (6). On raising the temperature of the Kugelrohr oven to $131{ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$ a $\tan$ solid $(0.019 \mathrm{~g})$ sublimed over; two recrystallizations of this material from methanol yielded 0.010 g of a tan solid: mp $218-219^{\circ} \mathrm{C}$. The melting point of authentic 2,3-dimethyl-2,3-di(p-cyanophenyl)butane (the $p$-cyanocumyl dimer) is $218.5-220{ }^{\circ} \mathrm{C} .{ }^{20}$ From the NMR spectrum in $\mathrm{CDCl}_{3}{ }^{20}$ it appears that the 0.010 g of $\tan$ solid is a mixture of the p-cyanocumyl dimer and 2,3-dimethyl-2-(p-cyanophenyl)3 -nitrobutane (6) in the ratio $88: 1$ ?. The presence of the $p$-cyanocumyl dimer was established by exact mass spectroscopy. Calcd exact mass, 288.163; found, 288.164.

A duplicate experiment in which $0.032 \mathrm{~g}(0.20 \mathrm{mmol})$ of $m$-dinitrobenzene was present gave 0.208 g of a red liquid as the crude product. Preparative TLC, followed by recrystallization from hexane, yielded 0.143 g ( $75 \%$ recovery) of pure $p$-cyano- $\alpha$-nitrocumene (4): white needles; mp $61-62^{\circ} \mathrm{C}$. A mixed melting point was undepressed and the NMR and IR spectra were identical with those of the starting material.

A duplicate of the first experiment except that now $0.029 \mathrm{~g}(0.20$ mmol ) of di-tert-butyl nitroxide was present gave on workup 0.188 $g$ of white crystals: $\mathrm{mp} 55-61^{\circ} \mathrm{C}$. By preparative TLC and recrystallization from hexane a total of $0.144 \mathrm{~g}(76 \%)$ of the starting $p$-cyano-$\alpha$-nitrocumene (4) was recovered: mp $61-62^{\circ} \mathrm{C}$.

The final experiment of this grcup was a duplicate of the first except that it was conducted with complete exclusion of light. The crude product was a white solid: $\mathrm{mp} 58-62^{\circ} \mathrm{C}$. Kugelrohr distillation at 85 ${ }^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$, followed by preparative TLC and recrystallization from hexane gave 0.161 g ( $85 \%$ recovery) of pure $p$-cyano- $\alpha$-nitrocumene: mp 61-62 ${ }^{\circ} \mathrm{C}$.

2,3-Dimethyl-2-(p-cyanophenyl)-3-nitropentane. $p$-Cyano-$\alpha$-nitrocumene ${ }^{4}(1.90 \mathrm{~g}, 10 \mathrm{mmol})$, the lithium salt of 2-nitrobutane $(5.45 \mathrm{~g} .50 \mathrm{mmol}), 100 \mathrm{~mL}$ of HMPA, the freeze-pump-thaw procedure, and a reaction time of 46 h were employed. The crude product was orange ( 2.72 g ) and melted at $96-101^{\circ} \mathrm{C}$. It was Kugelrohr distilled at $100^{\circ} \mathrm{C}(0.003 \mathrm{~mm})$, whereupon 1.91 g of material, $\mathrm{mp} \mathrm{103-106}$ ${ }^{\circ} \mathrm{C}$, was obtained. This, on recrystallization from hexane gave 1.67 g ( $68 \%$ y yeld) of colorless crystals: mp $107-108^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.82$ (t, 3 H ), $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H})$, 7.25-7.75 (m, 4 H ).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C. 68.27; $\mathrm{H}, 7.37 ; \mathrm{N}, 11.37$. Found: C , 68.33: H. 7.60; N, 11.17.

2,3-Dimethyl-2-(p-benzenesulfonylphenyl)-3-nitrobutane. 4-Phenylsulfonyl- $\alpha$-nitrocumene ${ }^{4}(7.90 \mathrm{~g}, 26 \mathrm{mmol})$, the lithium salt of 2-nitropropane ( $26 \mathrm{~g}, 270 \mathrm{mmol}$ ), 250 mL of HMPA, under $\mathrm{N}_{2}$, and a reaction time of 110 h were employed. Workup gave 10.1 g of an off-white solid, $\mathrm{mp} 135-139^{\circ} \mathrm{C}$, which after two recrystallizations from methanol melts at $143-143.5^{\circ} \mathrm{C}\left(6.33 \mathrm{~g} ; 71 \%\right.$ yield): NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.48(\mathrm{~s}, 12 \mathrm{H}), 7.33-7.63(\mathrm{~m}, 5 \mathrm{H}), 7.70-8.05(\mathrm{~m}, 4 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.25 ; \mathrm{H}, 6.05 ; \mathrm{N}, 4.03 ; \mathrm{S}, 9.22$; mol wt, 347. Found: C, 61.98; H, 5.87: N, 3.86; S. 9.04; mol wt, 343.

2,3-Dimethyl-2-m, $m^{\prime}$-bis(trifluoromethyl)phenyl-3-nitropentane. $m, m^{\prime}$-Bis(trifluoromethyl)- $\alpha$-nitrocumene ${ }^{4}(3.40 \mathrm{~g}, 11.3$ $\mathrm{mmol})$, the lithium salt of 2 -nitrobutane $(6.15 \mathrm{~g}, 56.5 \mathrm{mmol}), 80 \mathrm{~mL}$ of HMPA, the freeze-pump-tha'w procedure, and a reaction time of 45 h were employed. The crude product was chromatographed on acid-washed alumina using cyclohexane and then benzene as eluents. Recrystallization from cyclohexane gave 2.0 g of colorless crystals $(50 \%$ yield): mp $94-96{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.83(\mathrm{t}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.58$ $(\mathrm{s}, 6 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 3 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) 6.54$, $7.32,7.85 \mu \mathrm{~m}$.

For analysis a sample was sublimed: $\mathrm{mp} 94.5-96{ }^{\circ} \mathrm{C}$.
Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~F}_{6}$ : C, 50.42; H, 4.79; N, 3.92; F, 31.90. Found: C, 50.43 ; H, 4.77; N, 3.90; F, 31.95 .

2,3-Dimethyl-2-(p-benzoylphenyl)-3-nitrobutane. 4-Ben-zoyl- $\alpha$-nitrocumene ${ }^{4}(2.69 \mathrm{~g}, 10 \mathrm{mmol})$, the lithium salt of 2 -nitropropane $(4.75 \mathrm{~g}, 50 \mathrm{mmol}), 100 \mathrm{~mL}$ of HMPA, the freeze-pump-thaw procedure, and a reaction time of 72 h were employed. On workup 2.807 g of an orange solid, $\mathrm{mp} 95-100^{\circ} \mathrm{C}$, which NMR spectroscopy indicated was contaminated with $p$-benzoylphenylcumyl dimer, was obtained. Kugelrohr distillation at $120^{\circ} \mathrm{C}(0.006 \mathrm{~mm})$ gave 2.431 g of material: $\mathrm{mp} 102-104^{\circ} \mathrm{C}$. The pure product was obtained on recrystallization from a chloroform-hexane mixture: 1.915 g ( $62 \%$ yield)
of colorless crystals；mp $109-110^{\circ} \mathrm{C}$ ；NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.53(\mathrm{~s}, 12 \mathrm{H})$ ， 7．3－7．9（m，© H）．

Anal．Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$ ：C，73．29； $\mathrm{H}, \mathrm{j} .80 ; \mathrm{N}, 4.50$ ．Found：C， 73．35；H，j．60；N， 4.48.

2，3－Dimethyl－2－（p－benzoylphenyl）－3－nitropentane．4－Ben－ zoyl－$\alpha$－nitrocumene ${ }^{4}(2.69 \mathrm{~g}, 10 \mathrm{mmol})$ ，the lithium salt of 2 －nitro－ butane ${ }^{9.1:}(5.45 \mathrm{~g}, 50 \mathrm{~mm}), 100 \mathrm{~mL}$ of HMPA，the freeze－pump－thaw procedure，and a reaction time of 74 h were employed．Workup yielded 3.31 g of an oil which，when Kugelrohr distilled at $120^{\circ} \mathrm{C}(0.004 \mathrm{~mm})$ gave 2.60 z of a pale yellow oil．Crystallization from hexane produced 1.92 g （ $61 \%$ yield）of colorless crystals：mp $73.5-94.5^{\circ} \mathrm{C}$ ；NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.82 \mathrm{it}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}), 1.6(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H})$ ， $7.3-7.9$（m，© H）．

Anal．Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}$ ：C， 73.82 ； $\mathrm{H}, 7.12 ; \mathrm{N}, 4.30$ ；Found： C ， 74．04；H，7．10；N， 4.56.

2，3－Dimethyl－2－（p－nitrophenyl）－3－nitropentane．$\alpha, p$－D：ni－ trocumene ${ }^{4}(7.00 \mathrm{~g}, 35 \mathrm{mmol})$ ，the lithicm salt of 2 －nitrobutane ${ }^{9,13}$ （ $19.07 \mathrm{~g}, 175 \mathrm{~mm} .0 \mathrm{l}$ ）， 350 mL of HMPA，a nitrogen atmosphere，and a $6-\mathrm{h}$ reaction time were employed．The crude product（ $8.6 \mathrm{~g} ; \mathrm{mp}$ $99-105^{\circ} \mathrm{C}$ ）was recrystallized from a hexane－chloroform mixture． This gave 6.93 g （ $74 \%$ yield）of pure product： $\mathrm{mp} 105.5-106{ }^{\circ} \mathrm{C}$ ；NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.80(\mathrm{t}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 2.46$ （ $\mathrm{m}, 1 \mathrm{H}$ ）， $7.52(\mathrm{~m}, 4 \mathrm{H})$ ．
Anal．Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ ：C， $58.64 ; \mathrm{H}, 6.81 ; \mathrm{N}, 10.52$ ．Found： C ， 58．85；H，7．04；N，10．47．

2，3－Dimethyl－3－（p－cyanophenyl）－2－nitropentane．2－（p－Cy－ anophenyl）－2－ni robutane $(2.04 \mathrm{~g}, 10 \mathrm{mmol})$ ，the lithium salt of 2－ nitropropane ${ }^{9,13}(4.75 \mathrm{~g}, 50 \mathrm{mmol}), 100 \mathrm{~mL}$ of HMPA，the freeze－ pump－thaw procedure，and a reaction time of 92 h were employed． On workcp 2.548 g of an orange oil was obtained；by NMR analvsis the desired product was contaminated with 3,4 －dimethyl－3，4－di－ （p－cyanophenyl）hexane．Kugelrohr distillation at $100^{\circ} \mathrm{C}$（ $0.004 \mathrm{~m} . \mathrm{m}$ ） gave 1.977 g of a yellow oil which crystallizes from hexane： mp $71.5-72.5^{\circ} \mathrm{C}$ ；yield， $1.48 \mathrm{~g}(60 \%)$ ；NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.69(\mathrm{t}, 3 \mathrm{H}), 1.50$ （s， 6 H ）， 1.56 （s， 3 H ），1．55－2．65（m， 2 H ）．7．25－7．8）（m， 4 H ）．

Anal．Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ ：C， $68.27 ; \mathrm{H}, 7.37 ; \mathrm{N}, 11.37$ ．Found：C， 68．47；H，7．36；N，11．14．

2，3－Dimethyl－3－m，m＇－bis（trifluoromethyl）phenyl－2－nitro－
pentane． $2-m, m^{\prime}$－Bis（trifluoromethyl）phenyl－2－nitrobutane（ $£ .50$ $\mathrm{g}, 7.95 \mathrm{mmol})$ and the lithium salt of 2 －nitropropane ${ }^{9.13}(3.77 \mathrm{~g}, 59.6$ mmol ）were allowed to react in 60 mL of HMPA．The freeze－pump－ thaw procedure and a reaction time of 45 ． were employed．The crude product uas distilled in the Kugelrohr apparatus at $70-80^{\circ} \mathrm{C}(1 \mathrm{~mm})$ ； this gave 1.7 g of a colorless oil（ $60 \%$ yield）：NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.74$（ t ， 3 H ）， 1.55 （ $\mathrm{s}, 9 \mathrm{H}$ ），1．65－2．80（m，2 H）， 7.78 （ $\mathrm{br} \mathrm{s}, 2 \mathrm{H}$ ）， 7.86 （ $\mathrm{br} \mathrm{s}, 1 \mathrm{H}$ ）； IR $\left(\mathrm{CHCl}_{3}\right)$ 万．52． $7.30,7.82 \mu \mathrm{~m}$ ．

Anal．Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~F}_{6}$ ：C，50．42； $\mathrm{F}, 4.79$ ；N，3．92；F， 3190. Found：C． 50.77 ；H， 5.00 ；N，3．95；F，31．85．

2，3－Dimethyl－3－（ $\boldsymbol{p}$－nitrophenyl）－2－nitropentane． 2 －（ $p$－Nitro－ phenyl）－2－nitrobutane ${ }^{4}(9.85 \mathrm{~g}, 44 \mathrm{mmcl})$ ，the lithium salt of $2-\mathrm{ni}-$ tropropane（ $20.84 \mathrm{~g}, 220 \mathrm{mmol}$ ）， 300 mL of HMPA，and a reaction t．me of 3 h we：e employed．The crude product was purified by chroma－ tography on acic－washed alumina using benzene as the eluent．This was followed by recrystallization from hexane：yield $8.9 \mathrm{~g}(76 \%)$ of pale yellow crystals；mp $94-95.5^{\circ} \mathrm{C}$ ；NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.72(\mathrm{t}, 3 \mathrm{H}), 1.55$ and 1.58 （s each，total 9 H ）， $1.72(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 7.50$ and 8.19 $\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$ system with $J_{\mathrm{AB}}=9 \mathrm{~Hz}$ ．，total 4 H$)$ ；IR $\left(\mathrm{CHCl}_{3}\right) 6.25,6.58$ ， $7.40 \mu \mathrm{~m}$ ．

For analysis a small sample was again recrystal ized from a cyclo－ hexane－benzene mixture： $\mathrm{mp} 96-97^{\circ} \mathrm{C}$ ．

Anal．Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ ：C， $58.64 ; \mathrm{H}, 6.81 ; \mathrm{N}, 10.52$ ．Found：C， 58．78；H，6．71；N゙， 10.30 ．

Solvent Effects．The effects of solvents on the reaction of $p$－ cyano－$\alpha$－nitrocumene（4）and of 3,5 －bis（trifluoromethyl）－$\alpha$－nitrocu－ mene（7）with the lithium salt of 2－nitropropane were examined in a preliminary way．In both instances the reaction is much faster in HMPA than in $\mathrm{Me}_{2} \mathrm{SO}$ or DMF．It is slowest in DMF，but the rate difference between DMF and $\mathrm{Me}_{2} \mathrm{SO}$ is not large．Thus，in one set of experiments involving 4 when the reaction is $77 \%$ complete in HMPA it has proceeded only $26 \%$ in $\mathrm{Me}_{2} \mathrm{SO}$ and $14 \%$ in DMF．Furthermore， the production of $p$－cyanocumyl dimer is highest in $\mathrm{Me}_{2} \mathrm{SO}$ ，next highest in DMF，and much the smallest in HMPA．Similar results were obtained in reactions employing 7；the rate of reaction is un－ ambiguously greater in HMPA than in the other two solvents．And here，again，the 三ormation of cumyl dimer is minimal in HMPA．

Acknowledgment．We are indebted to the National Science Foundation and the Hoffmann－LaRoche Company for support of this work．Jörg Widmer wishes to thank the Swiss Stiftung für Stipendien auf dem Gebiet der Chemie （Basel）for a fellowship．

Registry No．－3，5－Bis（trifluoromethyl）nitrobenzene，328－75－6； $N$－$\alpha$－cumylformamide，42044－69－9；$\alpha$－methylstyrene，98－83－9；$\alpha$－ aminocumene，585－32－0；$m, m^{\prime}$－bis（trifluoromethyl）cumyl dimer， 65253－47－6；2，3－dimethyl－2，3－diphenylbutane，1889－67－4；2－methyl 2－（p－cyanophen－l）－3－nitrobutane，65253－36－3；p－cyanocumyl dimer， 65253－48－7；p－cyanonitrobenzene，619－72－7．

## References and Notes

（1）Paper 17 in the series＂Substitution Reactions which Proceed via Radical Anion Intermediates＂．For the preceding paper，see N．Kornblum，Angew． Chem．，Int．Ef．Engl．，14， 734 （1975）
（2）N．Kornblum，T．M．Davies，G．W．Earl，G．S．Greene，N．L．Holy，R．C．Kerber， J．W．Manthe）．M．T．Musser，and D．H．Snow．J．Am．Chem．Soc．，89， 5714 （1967）．
（3）For a review of radical anion substitution reactions see ref 1.
（4）N．Kornblum，L．Cheng．R．C．Kerber，M．M．Kestner．B．N．Newton，H．W Pinnick，R．G Smith，and P．A．Wade，J．Org．Chem．，41， 1560 （1976）．
（5）N．Kornblum and H．J．Taylor，J．Org．Chem．，28， 1424 （1963）．
（6）A．K．Hoffmann，A．M．Feldman，E．Gelblum，and W．G．Hodgson，J．Am． Chem．Soc．，86， 642 （1964）：A．R．Forrester，J．M．Hay，and R．H．Thompson． ＂Organic Chemistry of Stable Free Radicals＂．Academic Press，London 1968，p 224；E．G．Rozantsev and V．D．Sholle，Synthesis， 406 （1971）．
（7）N．Kornblum，S．D．Boyd，and F．W．Stuchal，J．Am．Chem．Soc．，92， 5783 （1970）：N．Kcrnblum and S．D．Boyd，ibid．，92， 5784 （1970）．
（8）Our thanks are due to Dr．C．S．Yeh and her associates for the microanal－ yses．
（9）Crystalline，analytically pure salts were used inasmuch as they were available from other studies；it is highly probable that equally good results will be obtaired with salts prepared in situ．
（10）J．J．Ritter and J．Kalish，＂Organic Syntheses＇＂，Collect．Vol．V．Wiley，New York，N．Y．，1973，p 471.
（11）A．C．Cope，－．T．Foster，and R．H．Towle，J．Am．Chem．Soc．，71， 3929 （1949）．
（12）N．Kornblum and W．J．Jones，Org．Synth．，43， 87 （1963）
（13）N．Kornblum，S．D．Boyd，and N．Ono，J．Am．Chem．Soc．，96， 2580 （1974）．
（14）The＂light apparatus＂consists of two 20－W ordinary fluorescent lights．
（15）S．C．Carlson，Ph．D．Thesis，Purdue University，1976，p 91
（16）B．N．Newtor．Ph．D．Thesis，Purdue University，1972，p 39
（17）This was prepared using the procedure described for the lithium salt of 2－nitropropane（ref 13）；neutral equivalent，79．5；theoretical， 81
（18）N．Kornblum and G．E．Graham，J．Am．Chem．Soc．，73， 4041 （1951）
（19）M．S．Kharasch and W．H．Urry，J．Org．Chem．，13， 101 （1948）
（20）R．T．Swiger．Ph．D．Thesis，Purdue University，1970，p 141.
（21）Fortunately，2，3－dimethyl－2－phenyl－3－nitrobutane is readily obtained from 2．3－dimethyl－2－（p－nitrophenyl）－3－nitrobutane（cf．Table I）by reduction of the aromatic nitro group followed by replacement of the aromatic amino group by hycrogen（S．C．Carlson，unpublished work）．

# Nucleophilic Step of Ring-Opening Reactions of Cyclopropanes with Electrophiles. Electronic Substituent Effects on Stereoselectivity of Reactions of Some 1-Arylbicyclo[4.1.0]heptanes with Mercuric Salts 

C. Battistini, P. Crotti, B. Macchia, and F. Macchia*<br>Istituti di Chimica Organica e Chimica Farmaceutica, Università di Pisa, 5610 C Pisa, Italy<br>C. H. DePuy<br>Department of Cnemistry, University of Colorado, Boulder, Colorado 8 C302<br>Received July 19, 1977


#### Abstract

The stereochemistry of the nucleophilic step of the ring-opening reactions of 1-(p-tolyl)- (1b) and 1-(m-chlorophenyl) bicyclo[4.1.0]heptane (1c) with mercuric salts has been investigated and compared with that of the corresponding phenylcyclopropane (1a) in order to verify how a substituent on the phenyl of la, modifying the conjugative ability of the aromatic system, could influence the stereochemical results. The mercuration reactions of $\mathbf{l b}$ and lc have a behavior parallel to that of la: the stereoselectivity changes markedly with the salt and with the reaction conditions; however, all the percentages of syn products arising from the reactions of $\mathbf{1 c}$ and most of those obtained in the ring opening of $\mathbf{1 b}$ are slightly lower than the corresponding values obtained for the unsubstituted cyclopropane la. Possible explanations of the observed stereochemical results have been given on the basis of a mechanism, modified from that previously suggested for la, implying intermediate structures with a high degree of carbocationic character.


The ring opening of cyclopropanes by electrophiles cccurs in the direction of the more stable carbocation with either retention or inversion of configuration at the site of the electrophilic attack, depending on the nature and configuration of the ring substituents, whereas the stereochemistry of the nucleophilic step takes place with complete or strongly predominant inversion of configuration. ${ }^{1-4}$

Recently it has been shown ${ }^{5}$ that the ring opening of phenylcyclopropane 1a with mercuric salts occurs, acccrding to expectation, ${ }^{1,2,4,6}$ by attack of the electrophile on the least-substituted carbon, in the direction of the benzylic carbon. However, the stereochemistry of the nucleophiliz step was highly variable, ranging from almost complete inversion to markedly predominant retention of configuration depending on the type of mercuric salt and on the solvent. ${ }^{5}$ The results obtained, ${ }^{5}$ in agreement with kinetic results of the mercuration of arylcyclopropanes, ${ }^{6}$ pointed to transition states or intermediates with a high degree of positive charge on the benzylic carbon. In order to justify the results a mechanism was suggested (see Scheme I) ${ }^{5}$ analogous to the one prev:ously postulated to rationalize the similar stereochemical behavior of the acid-catalyzed ring opening of 1-aryloxiranes. ${ }^{7}$ Attack
of the mercury (as $\left.\mathrm{HgX}_{2}\right)^{6}$ on the least-hindered carbon ${ }^{1,2,4}$ of la leads to a corner-mercurated intermediate which can evolve through an incipient carbenium ion (like 2) to selectively interacting ion-nucleophile pairs ( 3 for reaction in nonnucleophilic solvents and 4 for reactions in nucleophilic solvents). According to the mechanistic scheme proposed, ${ }^{5}$ the anti adducts 5 or 6 should have arisen by attack of the nucleophile ( $\mathrm{X}^{-}$or SOH ) at the stage of the incipient carbenium ion 2 , whereas collapse of the ion-nucleophile pairs should have afforded the syn compounds 7 or 8 . Evidently in such a mechanism every factor affecting the relative stability of structures 2,3 , or 4 and their reactivity should also modify the syn/anti ratio; factors favoring the development of the positive charge on the benzylic carbon should increase this ratio.

It was therefore of interest to study how a substituent on

${ }^{a} \mathrm{~b}, \quad \mathrm{Ar}=p \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} ; \quad \mathrm{c}, \quad \mathrm{Ar}=m \cdot \mathrm{ClC}_{6} \mathrm{H}_{4} ; \quad \mathrm{X}=\mathrm{CH}_{3} \mathrm{COO}$, $\mathrm{CF}_{3} \mathrm{COO}, \mathrm{NO}_{3}, \mathrm{ClO}_{4}$.

Table I. Stereochemistry of the Nucleophilic Step of the Mercuration of Cyclopropane 1

| Cyclopropane | Registry no. | Mercuric salt | Registry no. | Solvent | Cis (13)/trans (14) ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 a | 2415-82-9 | $\mathrm{Hg}\left(\mathrm{OOCCH}_{3}\right)_{2}$ | 1600-27-7 | $\mathrm{H}_{2} \mathrm{O}$ | 13.5:86.5 ${ }^{\text {a }}$ |
| b | 64705-88-0 |  |  |  | 11.2:88.8 |
| c | 64705-89-1 |  |  |  | 9.2:90.8 |
| a |  | $\mathrm{Hg}\left(\mathrm{OOCCF}_{3}\right)_{2}$ | 13257-51-7 | $\mathrm{H}_{2} \mathrm{O}$ | 19.5:80.5 ${ }^{\text {a }}$ |
| b |  |  |  |  | 22.5:77.5 |
| c |  |  |  |  | 15.3:84.7 |
| a |  | $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ | 10045-94-0 | $\mathrm{H}_{2} \mathrm{O}$ | 22.5:77.5 ${ }^{\text {a }}$ |
| b |  |  |  |  | 21.4:78.6 |
| c |  |  |  |  | 16.3:83.7 |
| a |  | $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}$ | 7616-83-3 | $\mathrm{H}_{2} \mathrm{O}$ | 23.0:77.0 ${ }^{\text {a }}$ |
| b |  |  |  |  | 22.3:77.7 |
| c |  |  |  |  | 18.8:81.2 |
| a |  | $\mathrm{Hg}\left(\mathrm{OOCCH}_{3}\right)_{2}$ |  | THF- $\mathrm{H}_{2} \mathrm{O}(1: 1)$ | 25.5:74.5 ${ }^{\text {a }}$ |
| b |  |  |  |  | 18.1:81.9 |
| c |  |  |  |  | 23.4:76.6 |
| a |  | $\mathrm{Hg}\left(\mathrm{OOCCF}_{3}\right)_{2}$ |  | THF- $\mathrm{H}_{2} \mathrm{O}(1: 1)$ | $28.5: 71.5^{a}$ |
| b |  |  |  |  | 22.9:77.1 |
| c |  |  |  |  | 28.3:71.7 |
| a |  | $\mathrm{Hg}\left(\mathrm{OOCCH}_{3}\right)_{2}$ |  | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 58.0:42.0 ${ }^{\text {a }}$ |
| b |  |  |  |  | 59.1:40.9 |
| c |  |  |  |  | 52.3:47.7 |
| a |  | $\mathrm{Hg}\left(\mathrm{OOCCF}_{3}\right)_{2}$ |  | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 75.0:25.0 ${ }^{\text {a }}$ |
| b |  |  |  |  | 67.3:32.7 |
| c |  |  |  |  | 74.0:26.0 |

${ }^{a}$ Reference 5.
the phenyl of 1a, modifying the conjugative ability of the aromatic system, could influence the stereochemistry of the nucleophilic step of the cyclopropane ring opening with mercuric salts. The present investigation deals with the synthesis and the study of the mercuration reactions of cyclopropanes $1 \mathbf{b}$ and $1 \mathbf{c}$. The $p$-methyl in $1 \mathbf{b}$, because of its elec-tron-donating properties, should stabilize a benzylic elec-tron-defisient center, ${ }^{\bar{c} .8}$ whereas the overall electron-withdrawing effect of the $m$-chloro group in 1 c should have an opposite result. ${ }^{7 c, 9}$

Cyclopropanes 1b and 1c have been obtained by the Sim-mons-Smith reaction of the corresponding olefins $15 b$ and 15 c and have been purified by treatment with ozone followed by chromatography. Analogously to the unsubstituted cyclopropane $1 \mathbf{a},{ }^{5}$ the hydroxymercuration of $1 \mathbf{b}$ and $1 \mathbf{c}$ with mercuric acetate and mercuric trifluoroacetate in water yielded mixtures of the two corresponding organomercurials cis-8 and trans-6, in which the latter predominated (see below) and was obtained in a pure state by crystallization. Reductive demercuriation of the trans organomercurials $\mathbf{6 b}$ and $\mathbf{6 c}\left(\mathrm{X}=\mathrm{OOCCH}_{3}\right.$ and $\left.\mathrm{OOCCF}_{3}\right)$ gave the corresponding practically pure trans alcohols 14 b and 14 c . The diastereoisomeric cis alcohols 13 b and 13 c have been prepared in a pure form through unequivocal stereospecific syntheses. The reaction of 2 -hydroxymethylcyclohexanone (9) with an excess of the suitable arylmagnesium bromide afforded mixtures consisting mainly of the cis diols 10 b and $10 \mathrm{c}^{10}$ accompanied by small amounts of their corresponding trans isomers, from which the former were obtained by crystallization. The diols 10b ar.d 10 c were transformed into their corresponding primary monotosylates $\mathbf{1 2 b}$ and 12 c , which on reduction with $\mathrm{LiAlH}_{4}$ afforded the alcohols 13 b and 13 c having the same relative configuration as the starting diols $12 b$ and $12 c$. Pure alcohol 13b has been also obtainec by the reaction of 2 methylcyclohexanone with $p$-tolylmagnesium bromide, followed by column chromatography; in this reaction the trans isomer $14 \mathbf{b}$ is practically absent ( $<2 \%$ ). The configuration of the $p$-methyl-substituted cis diol 10 b has been proven, as has also that of the $m$-chloro analogue $10 \mathrm{c},{ }^{10}$ by its IR spectrum in the $3-\mu \mathrm{m}$ range in a dilute solution of $\mathrm{CCl}_{4}$, which showed


Figure 1. Structure of cyclopropanes (1).
a strong band at $3507 \mathrm{~cm}^{-1}$, indicative of a strong intramolecular $\mathrm{OH} \ldots \mathrm{O}$ bond ${ }^{10,11}$ possible in both chair conformers of 10b. Further confirmation of the configuration of 10 b has been given by the ${ }^{1} \mathrm{H}$ NMR spectrum of the acid 11 b obtained by Jones oxidation of 10 b . Keeping in mind that the aryl group, due to its larger steric hindrance, should occupy an equatorial position in the preferred conformation of $11 \mathbf{b}$, the relatively high half-band width $(18 \mathrm{~Hz})^{10,12}$ of the signal of the proton $\alpha$ to the carboxy group allows one to infer the relative configuration of 11 b and consequently of 10 b . The structures of alcohols 13 and 14 have been confirmed on the basis of their ${ }^{1} \mathrm{H}$ NMR spectra.

The hydroxymercuration reactions of $1 \mathbf{b}$ and $1 \mathbf{c}$ have been carried out in $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}-$ THF with several salts, and the crude mixtures of the hydroxymercurials $8 \mathbf{b}, 6 \mathbf{b}$ and $8 \mathbf{c}, 6 \mathbf{c}$ have been analyzed, as was previously done for the mercuration reactions of $1 \mathrm{a},{ }^{5}$ through reductive demercuriation of the crude reaction mixtures with $\mathrm{NaBH}_{4},{ }^{13}$ followed by GLC of the corresponcing alcohols 13 and 14 (see Table I). Mercuration of $1 \mathbf{b}$ ard 1 c with $\mathrm{Hg}\left(\mathrm{OOCCH}_{3}\right)_{2}$ and $\mathrm{Hg}\left(\mathrm{OOCCF}_{3}\right)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded mixtures of the corresponding acyloxyorganomercurials cis-7 and trans-5 ( $\mathrm{X}=\mathrm{OOCCH}_{3}$ or $\left.00 C C F_{3}\right)^{5}$ whose ratios were determined by their reduction with $\mathrm{LiAlH}_{4}$ to the alcohols $13 \mathrm{~b}, 14 \mathrm{~b}$ and $13 \mathrm{c}, 14 \mathrm{c}$, respectively, followed by GLC analysis. The results of the nucleophilic step of the mercuration reactions of cyclopropanes Ib and Ic are summarized in Table I. Furthermore, the corresponding data for the unsubstituted cyclopropane la have also been reported in the same table for the sake of comparison.

A first inspection of the results obtained (see Table I) shows that, as for the stereochemistry of the nucleophilic step, the mercuration reactions of cyclopropanes $1 \mathbf{b}$ and $1 \mathbf{c}$ have abehavior parallel to that of the phenylcyclopropane la previously studied. ${ }^{5}$ It can be observed that the stereoselectivity of the nucleophilic step of the mercuration of all the cyclopropanes la-c changes markedly with the rature of the salt and with the reaction conditions. Higher percentages of syn adducts are formed when the reactions are carried out in the aprotic solvent ( $\mathrm{CH}_{2} \mathrm{C}_{2}$ ), whereas the lower syn percentages are obtained in the reactions in $\mathrm{H}_{2} \mathrm{O}$ when less ionic mercuric salt (mercuric acetate) is used. Furthermore, it may be pointed out that all the percentages of syn products arising from the reactions of $m$-chloro-substituted cyclopropane $1 \mathbf{c}$ and most of those obtained in the ring opening of the p-methyl-substituted cyclopropane 1b are slightly lower than the corresponding values obtained in the reactions of the unsubstituted cyclopropane la, ${ }^{5}$ even if the differences observed are relatively small.

In connection with the previously proposed mechanism ${ }^{5}$ (see above), on the basis of the well-known electronic effects of the substituents ( $p$-methyl and $m$-chloro) ${ }^{9,10}$ and the known effect of such substituents on the stereochemistry of the acid-catalyzed ring opening of 1 -aryloxiranes, ${ }^{7 \mathrm{c}}$ it would be anticipated that in the case of cyclopropane le the $m$ chloro substituent, which reduces the stabili:y of the benzylic electron-deficient center, compared with the unsubstituted compound 1a, should have favored (see Scheme I; no conformational implication is given to formulas) structures of type 2 more than those of type 3 or $\mathbf{4}$, facilitating the formation of the anti adducts 5 and 6 in agreement with the experimental results. On the contrary, in the case of the cyclopropane $1 \mathbf{b}$, the $p$-methyl group should cause an opposite effect. thus favoring intermediates 3 and 4 and therefore the formation of the syn adducts 7 and 8 in contrast with the experimental results observed. Eviciently the mechanism previously suggested in order to rationalize the results of the mercuration of $1 a^{5}$ has to be modified. It must be pointed out, however, that the aryl group has to be important in determining the course of the mercuration of these compounds. As a matter of fact, apart from the clear directive effect of the aryl group in the regioselectivity of these reactions, the stereochemistry of the nucleophilic step of the mercuration of cyclopropanes carrying no aryl group on the ring is completely anti. ${ }^{1,2,4}$ Furthermore, it must be kept in mind that the lack of complete anti stereoselectivity in the reactions under consideration clearly implies intermediate structures with high degrees of carbocationic character; the intervention of structures of this type in the mercuration of arylcyclopropanes was supported by a Hammett-type plot of the mercuration rates of arylcyclopropanes. ${ }^{6}$ It could be that in the mercuration of cyclopropanes 1 , unlike the acid-catalyzed ring opening of oxiranes, ${ }^{7}$ the attack of the nucleophile on the more carbocationic structures 3 and 4 is not completely syn stereoselective and therefore that the formation of both the syn as well as the anti products and consequently the different stereoselectivity of the reactions of each cyclopropane should be mainly due to differences in solvation of the intermediates and to differences in the stability of the selectively interacting ions 3 and 4 . For example, the increase of syn adduct in the mercuration of cyclopropanes 1 in aqueous solvent when the mercuric salt is changed from mercuric acetzte to more highly ionic salts could be due to a strong interaction between mercury and the water molecule of 4 . Structures of type 2 in which the $\mathrm{C}-\mathrm{C}$ bond is not completely broken should be no longer the solely responsible structures for determining the amount of anti adducts ( 5 and 6 ); perhaps in the present case structures of type 2 could rapidly evolve to the more carbocationic ones, 3 and 4, before the attack of the nucleophile. However,
the steps $2 \rightarrow 5$ or $2 \rightarrow \mathbf{6}$ cannot be completely ruled out. In conclusion, notwithstanding some analogies found between the stereoselectivity of the acid-catalyzed ring opening of aryloxiranes and the mercuration of arylcyclopropanes, the results obtained indicate sensible differences in the mechanisms responsible for the stereochemistry of these reactions.

## Experimental Section

All melting points were taken on a Kofler micro hot stage and are uncorrected. Infrared spectra were measured with a Perkin-Elmer Infracord Model 137 on paraffin oil mulls, and the determination of OH stretching bands of $\mathbf{1 0 b}$ was rade with a Perkin-Elmer Model 257 double-beam grating spectrophotometer in dried ( $\mathrm{P}_{2} \mathrm{O}_{5}$ ) $\mathrm{CCl}_{4}$ using the indene band at $3110 \mathrm{~cm}^{-1}$ as a calibration standard: a quartz cell of $2-\mathrm{cm}$ optical length was employed, and the concentration of the solution was lower then $5 \times 10^{-3} \mathrm{M}$ to prevent intermolecular association. The NMR spectra were determined in ca. $10 \% \mathrm{CDCl}_{3}$ solutions with a Jeol C 60 HL spectrometer using tetramethylsilane as an internal standard. All GLC analyses were performed on a Carlo Erba Fractovap GV apparatus with a flame ionization detector using a dual column system with glass columns ( $1.5 \mathrm{~mm} \times 2.5 \mathrm{~m}$ ) packed with $10 \%$ Carbowax 20 M on $80-100$ mesh silanized Chromosorb W: column, 160 ${ }^{\circ} \mathrm{C}$; evaporator, $200^{\circ} \mathrm{C}$; detector, $200^{\circ} \mathrm{C}$; nitrogen flow, $30 \mathrm{~mL} / \mathrm{min}$. The order of increasing retention times was $13 b, 14 b, 13 c$, and $14 c$. The relative percentages of comp-ounds 13 and 14 were obtained from two or more separate runs on each experiment Preparative TLC was performed on $2-\mathrm{mm}$ silica gel plates (Merck $\mathrm{F}_{254}$ ) containing a fluorescent indicator; spots were detected under UV light ( 245 nm ). All comparisons between compounds were made on the basis of IR and NMR spectra and GLC. $\mathrm{MgSO}_{4}$ was always used as a drying agent. Evaporations were made in vacuo (rotating evaporator). Petroleum ether refers to the fraction boiling at $40-70^{\circ} \mathrm{C} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$.

1-(p-Tolyl)cyclohexene (15b), ${ }^{14} 1-(m$-chlorophenyl)cyclohexene ( 15 c ). ${ }^{14} 2$-hydroxymethylcyclohexanone (9), ${ }^{15}$ and 1-(m-chlorophenyl)-c-2-tosyloxymethyl-r-1-cyclohexanol (12c) ${ }^{10}$ were prepared as previously descrited.

1-(p-Tolyl)bicyclo[4.1.0]heptane (1b). A mixture of zinc dust $(34.6 \mathrm{~g} .0 .53 \mathrm{~g}$-atom) and cuprous chloride ( 5.24 g .0 .053 mol ) in anhydrous ether ( 60 mL ) was stirred rapidly and refluxed vigorously for $1 \mathrm{~h} .{ }^{16}$ After cooling, a few crystals of iodine and then $1-(p-t o l y l) c y-$ clohexene $(15 \mathrm{~b}, 20.0 \mathrm{~g}, 0.116 \mathrm{~mol})$ were added to the zinc-copper couple. The well-stirred mixture was then reated dropwise with methylene iodide ( $94.8 \mathrm{~g}, 0.353 \mathrm{~mol}$ ) to maintain spontaneous refluxing. When the addition was complete the mixture was stirred and refluxed for an additional 24 h . After cooling, the reaction mixture was treated with saturated aque ous $\mathrm{NH}_{4} \mathrm{Cl}$ and the ether layer was separated. The aqueous mixture was extracted with ether, and then the organic extracts were wastied with water, saturated aqueous $\mathrm{NaHCO}_{3}$, and water, dried, and evaporated to yield crude 1 b (19.5 g), which was ozonized in $\mathrm{CHCl}_{3}$ at $0^{\circ} \mathrm{C}$ for 1 h in order to eliminate traces of olefinic products. The chloroformic solution was washed with $2 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and water and evaporated to dryness, and the residue was chromatographed on a $3 \times 70 \mathrm{~cm}$ colurn of $\mathrm{Al}_{2} \mathrm{O}_{3}$ (activity I) using petroleum ether as the eluent and collecting $50-\mathrm{mL}$ fractions. The 5 th and the 6th fractions yielded pure 1 b (GLC): $6.5 \xi$; NMR $\delta$ 2.25 (s. 3, $\mathrm{CH}_{3}$ ), 1.05-0.42 (m. 2, cyclopropane protons); the signal of the third cyclopropane proton is overlapped with the methylenic envelope. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13}$ : C, 90.26: H, 9.73. Found: C, 90.16; H. 9.75.

1-(m-Chlorophenyl)bicyclo[4.1.0]heptane (1c). Reaction of $1-(m$-chlorophenyl)cyclohexene ( $15 \mathrm{c}, 10.0 \mathrm{~g} .0 .052 \mathrm{~mol}$ ) with a zinccopper couple. ${ }^{16}$ prepared from zirc dust $11^{7} .3 \mathrm{~g} .0 .26 \mathrm{~g}$-arom) and cuprous chloride ( $2.61 \mathrm{~g}, 0.026 \mathrm{~mol}$ ) in anhydrous ether $(30 \mathrm{~nL}$ ) with methylene iodide $(47.4 \mathrm{~g} .0 .17 \mathrm{~m} . \mathrm{ol})$ as described above for the preparation of $1 \mathbf{b}$, yielded a crude mixture which was ozonized in $\mathrm{CHCl}_{3}$ according to the procedure described for $1 \mathbf{b}$. Evaporation of the washed (saturated aqueous $\mathrm{N}_{2} \mathrm{HCO}_{3}$ and water) $\mathrm{CHCl}_{3}$ solution yielded crude Ic ( 8.9 g ). which was purified by chromatography on a $2 \times 40 \mathrm{~cm}$ column of $\mathrm{Al}_{2} \mathrm{O}_{3}$ (activity I) using pet roleum et her as the eluent and collecting $50-\mathrm{mL}$ fractions. Fractions $2-10$ yielded pure 1c (GLC): 5.2 g : NMR $\delta 1.05-0.54$ (m. 2, cyclopropane protons); the signal of the third cyclopropane proton is overlapped with the methylenic envelope. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{Cl}$ : C. 75.53: H. 7.31. Found: C, 75.45 : H. 7.59.

1-(p-Tolyl)-c-2-hydroxymethyl-r-1-cyclohexanol (10b). A solution of $9(10.0 \mathrm{~g} .0 .078 \mathrm{~mol})$ in anhydrous ether ( 20 mL ) was added dropwise to a Grignard reagent prepared from $p$-bromotoluene (29.7
$\mathrm{g}, 0.17 \mathrm{~mol})$ and magnesium ( $4.15 \mathrm{~g}, 0.17 \mathrm{~g}$-atom) in anhydrous ether $(65 \mathrm{~mL})$. When the addition was complete :he reaction mixture was refluxed fo: 3 h and then hydrolyzed with crushed ice, saturated aquecus $\mathrm{NH}_{4} \mathrm{Cl}$, and then diluted aqueocis HCl . The organic layer was separated, and the aqueous portion was extracted with ether. Evaporation of the washed ( $\mathrm{H}_{2} \mathrm{O}, 10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$ ) and dried ether extracts yielded an oily product ( 11.0 g ) from which pure $10 \mathrm{~b}(2.1 \mathrm{~g})$ was obtained by c.rystallization from petroleum ether at $-5{ }^{\circ} \mathrm{C}, \mathrm{mp} 48-49{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CCl}_{4}\right) \nu(\mathrm{OH}) 363 \varepsilon(\mathrm{~s}$, free OH$), 3500 \mathrm{~cm}^{-1}$ (s, OH ...O); NMR $\delta 3.48\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{OH}\right) 2.36\left(\mathrm{~s}, 3, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{-4} \mathrm{H}_{20} \mathrm{O}_{2}$ : $\mathrm{C}, 76.32 ; \mathrm{H}, 9.14$. Found: $\mathrm{C}, 76.21$; $\mathrm{H}, 9.27$.

2-(p-Tolyl)-c-2-hydroxy-r-1-cyclohexanecarboxylic Acid ( $11 \mathbf{b}$ ). A solation of $10 \mathrm{~b}(0.185 \mathrm{~g}, 0.84 \mathrm{mmol})$ in acetone $(20 \mathrm{~mL})$ was treated dropwise with Jones reagent ${ }^{17}(0.44 \mathrm{~mL})$ and left 10 min at room temperature. The mixture was diluted with water and extracted with ether, and the ether portion was extracted with $10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Acidification of the alkaline solution with $10 \%$ aqueous HCl , extraction with ether, and evaporation of the washed ether extracts yielded crude $11 \mathbf{b}(0.130 \mathrm{~g})$ as a solid, which was recrystallized from petroleum e:her ( $\mathrm{bp} 60-80^{\circ} \mathrm{C}$ ) to give pure $11 \mathrm{~b}(0.080 \mathrm{~g})$. mp 163-164 ${ }^{\circ} \mathrm{C}$; IR $\lambda 5.97 \mu \mathrm{~m}$; NMR $\delta 2.95(\mathrm{~m}, 1, W=18 \mathrm{~Hz}, \mathrm{CHCOOH}), 2.30(\mathrm{~s}$. 3, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ ). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$ : $\mathrm{C}, ~ 71.77 ; \mathrm{H}, 7.74$. Found: C . 72.00; H, 7.77.

1-(p-Tolyl)-c-tosyloxymethyl-r-1-cyclohexanol (12b). Tosyl chloride $(1.85 \mathrm{~g}, 9.70 \mathrm{mmol})$ was slowly added to a solution of 10 b ( 0.46 $\mathrm{g}, 2.08 \mathrm{mmol}$ ) in dry pyridine ( 6 mL ) while keeping the temperature at about $5^{\circ} \mathrm{C}$. After 4 days at room temperature the reaction mixture was treated with crushed ice and extracted with $\mathrm{CHCl}_{3}$. The organic extracts were washed with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and water and evaporated to give a crude product ( 0.56 g ) which crystallized from $\mathrm{CCl}_{4}$ to yield pure 12 b i 0.41 g ), $\mathrm{mp} 131-133^{\circ} \mathrm{C}$; IR $\lambda(\mathrm{C} \cdot \mathrm{H}) 2.86 \mu \mathrm{~m}$; NMR $\delta 3.82$ (d, $2, J=5.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$ ), $2.47\left(\mathrm{~s}, 3, \mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, 3, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 67.35 ; \mathrm{H}, 6.99$. Found: C, $67.23 ; \mathrm{H}$, 6.75.

1-(p-Tolyl)-c-2-methyl-r-1-cyclohexanol (13b). (A) A solution of 2-methylcyclohexanone ( $24.7 \mathrm{~g}, 0.22 \mathrm{~mol}$ ) in anhydrous ether ( 50 mL ) was added dropwise to the Grignard reagent prepared from $p$ bromotoluene ( $48.7 \mathrm{~g}, 0.28 \mathrm{~mol}$ ) and magnesium ( $6.8 \mathrm{~g}, 0.28 \mathrm{~g}$-atom) in anhydrous ether ( 75 mL ). When the addition was complete the resulting mixture was refluxed for 2 h and then left for 12 h at room tempe:ature. After cooling, the mixture was treated with crushed ice, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and diluted aqueous HCl . The organic layer was separated, and the aqueous portion was extracted with ether. The combired ether extracts were washed $\left(\mathrm{H}_{2} \mathrm{O}, 10 \%\right.$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. and $\mathrm{H}_{2} \mathrm{O}$ ), dried, and evaporated to yield an oily residue (38.7 g) which was distilled to give an oil ( 34.0 g ), bp $154-157^{\circ} \mathrm{C}(10 \mathrm{~mm})$, consisting essentially of 13 b ; the trans :somer 14 b was practically absent ( $<2 \%$ ). The distilled oil ( 3.0 g ) was गurified by chromatography through a $2 \times 50 \mathrm{~cm}$ column of silica gel prepared in petroleum ether. On eluting in succession with petroleum ether ( 4 L ), $98: 2$ petroleum ether-ether ( 3 L ), and $97: 3$ petroleum ether-fther ( 2 L ), pure $\mathbf{1 3 b}$ was obtained 1.1 g , eluted with $98: 2$ petroleum ether-ether) as an oil: IR $\lambda\left(\mathrm{OH}, 2.87 \mathrm{~m} ; \mathrm{NMR} \delta 2.32\left(\mathrm{~s}, 3, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 0.62(\mathrm{~d}, 3, J=6.0 \mathrm{~Hz}\right.$, $\mathrm{CHCH}_{3}$ ). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 82.30 ; \mathrm{H}, 9.86$. Found: C, 82.17; H, 9.72.
(B) A solution of $\mathbf{1 2 b}(0.35 \mathrm{~g}, 0.93 \mathrm{mmol})$ in anhydrous ether was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}(0.70 \mathrm{~g}, 18.4 \mathrm{mmol})$ in anhydrous ether $(20 \mathrm{~mL})$. When the addition was complete the reaction mixture was refluxed for 15 h , the excess hydride was decomposed with a minimum amount of water and 2 N NaOH , and the dried ether layer was evaporated to cryness to yield pure 13b (GLC).

1-(m-Chlorophenyl)-c-2-methyl-r-1-cyclohexanol (13c). A solution of $12 \mathrm{c}(0.80 \mathrm{~g}, 2.02 \mathrm{mmol})$ in anhydrous ether $(30 \mathrm{~mL})$ was added to a stirred suspension of $\mathrm{LiAlH}_{4}(1.52 \mathrm{~g}, 40.0 \mathrm{mmol})$ in anhydrous ether $(.50 \mathrm{~mL})$. When the addition was complete the reaction mixture was refluxed for 1 hr , the excess hudride was decomposed with a minimum amount of water and 2 N NaOH , and the organic layer was sejarated and dried. Evaporation o : the organic phase yielded an oily residue $(0.38 \mathrm{~g})$ consisting of 13 c , which was purified by preparative TLC; a 95:5 mixture of petroleum ether and ether was used as the eluent, yielding pure $13 \mathrm{c}(0.21 \mathrm{~g})\left(\mathrm{G}^{-} \mathrm{C}\right)$ as an oil: IR $\lambda(\mathrm{OH}) 2.90$ $\mu \mathrm{m} ; \mathrm{NMR} \delta 0.62\left(\mathrm{~d}, 3, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}$ : C. 69.47; H, 7.62. Found: C, 69.78; H, 7.55.

1-(p-Tolyl)-t-2-acetoxymercurimethyl-r-1-cyclohexanol (6b, $\left.\mathbf{X}=\mathbf{C H}_{3} \mathbf{C O O}\right)$. A stirred suspension of $1 \mathbf{b}(0.72 \mathrm{~g} .3 .86 \mathrm{mmol})$ in water $(70 \mathrm{~mL})$ was treated with mercuric acetate $(1.27 \mathrm{~g}, 3.98 \mathrm{mmol})$ and then stirred at room temperature for 3 days. After this time the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$ extracts were evaporated to give an oily residue ( 1.20 g ) which on
crystallization from benzene yielded pure $\mathbf{6 b}\left(X=\mathrm{CH}_{3} \mathrm{COO}\right)(0.97$ g). $\mathrm{mp} 142.5-143^{\circ} \mathrm{C}$; IR $\lambda(\mathrm{OH}) 2.93$, (CO) $6.30 \mu \mathrm{~m}$; NMR $\delta 2.37$ (s, 3, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ ), 1.90 (s, 3, $\mathrm{OCOCH}_{3}$ ). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Hg}$ : C, 41.51; H, 4.79. Found: C, 41.86; H, 4.93.

1-(p-Tolyl)-t-2-trifluoroacetoxymercurimethyl-r-1-cyclohexanol ( $\mathbf{6 b}, \mathbf{X}=\mathbf{C F}_{3} \mathbf{C O O}$ ). Mercuric trifluoroacetate ${ }^{18}$ ( $0.85 \mathrm{~g}, 1.99$ $\mathrm{mmol})$ was added to a stirred suspension of $1 \mathbf{b}(0.36 \mathrm{~g}, 1.93 \mathrm{mmol})$ in water ( 30 mL ). After stirring for 3 days at room temperature, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the washed ( $\mathrm{H}_{2} \mathrm{O}$ ) organic extracts yielded on evaporation a crude product ( 0.80 g ) from which pure $6 \mathbf{b}\left(\mathrm{X}=\mathrm{CF}_{3} \mathrm{COO}\right)(0.34 \mathrm{~g})$ was obtained by crstyallization from benzene-petroleum ether (bp 80-100 ${ }^{\circ} \mathrm{C}$ ): mp 132-133 ${ }^{\circ} \mathrm{C}$; IR $\lambda(\mathrm{OH}) 2.91$, (CJ) $5.95 \mu \mathrm{~m}$ : NMR $\delta 2.35\left(\mathrm{~s}, 3, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{Hg}: \mathrm{C}, 37.17$; $\mathrm{H}, 3.70$. Found: C, 37.53; $\mathrm{H}, 3.69$.

1-(m-Chlorophenyl)-t-2-acetoxymercurimethyl-r-1-cyclohexanol ( $6 \mathbf{c}, \mathbf{X}=\mathbf{C H}_{3} \mathbf{C O O}$ ). Reaction of $1 \mathbf{c}(0.50 \mathrm{~g}, 2.4 \mathrm{mmol})$ with mercuric acetate in water as described above for the analogous reaction of $1 b$ (in the present case the reaction time was 5 days) yielded an oily residue ( 0.81 g ) which crystallized from benzene, affording pure $6 \mathbf{c}\left(\mathrm{X}=\mathrm{CH}_{3} \mathrm{CCO}\right)(0.22 \mathrm{~g}), \mathrm{mp} 132-133{ }^{\circ} \mathrm{C}$; IR $\lambda(\mathrm{OH}) 2.95$, (CO) 6.35 $\mu \mathrm{m}$; NMR $\delta 1.95$ (s, 3, $\mathrm{CH}_{3}$ ). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{ClHg}: \mathrm{C}, 37.27$; H, 3.96. Found: C, 37.60; H. 4.00.

1-(m-Chlorophenyl)-t-2-trifluoroacetoxymercurimethyl-r-1-cyclohexanol ( $6 \mathbf{c}, \mathbf{X}=\mathbf{C F}_{3} \mathbf{C O O}$ ). Treatment of $1 \mathbf{c}(0.50 \mathrm{~g}, 2.41$ mmol ) with mercuric trifluoroacetate ${ }^{18}$ in water as described for the analogous reaction of $1 \mathbf{b}$ (in the present case the reaction time was 5 days) yielded a crude product ( 0.95 g ) which on crystallization from benzene-light petroleum (bp $60-80{ }^{\circ} \mathrm{C}$ ) gave pure $6 \mathbf{c}(\mathrm{X}=$ $\left.\mathrm{CF}_{3} \mathrm{COO}\right)(0.43 \mathrm{~g}): \mathrm{mp} 122-124^{\circ} \mathrm{C}$; IR $\lambda(\mathrm{OH}) 2.94$, (CO) $5.97 \mu \mathrm{~m}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{ClF}_{3} \mathrm{Hg}$ : C, 33.52; H, 3.00. Found: C, 34.07; H, 3.12 .

1-(p-Tolyl)-t-2-methyl-r-1-cyclohexanol (14b). (A) A stirred suspension of $6 \mathrm{~b}\left(\mathrm{X}=\mathrm{CH}_{3} \mathrm{COO}\right)(0.80 \mathrm{~g}, 1.72 \mathrm{mmol})$ in water $(30 \mathrm{~mL})$ was treated in succession with tetrahydrofuran $(30 \mathrm{~mL}), 4 \mathrm{~N} \mathrm{NaOH}$ $(3.5 \mathrm{~mL})$, and sodium borohydride ( $0.200 \mathrm{~g}, 5.28 \mathrm{mmol}$ ) and then stirred for $10 \mathrm{~m} . \mathrm{n}$. The reaction mixture was diluted with water and extracted with ether. Evaporation of the washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$ ether extracts yielded an oily residue ( 0.37 g ) which was purified by preparative TLC (a 95:5 mixture of petroleum ether and ether was used as the eluent and elution was repeated twice). Pure 14 b was obtained ( 0.155 g ) as a solid: $\mathrm{mp} 48-49^{\circ} \mathrm{C}$ : IR $\lambda(\mathrm{OH}) 2.88 \mu \mathrm{~m}$; NMR $\delta 2.36\left(\mathrm{~s}, 3, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, $0.65\left(\mathrm{~d}, 3, J=7.5 \mathrm{~Hz} . \mathrm{CHCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}: \mathrm{C}, 82.30 ; \mathrm{H}$. 9.86. Found: C. $\leq 2.20$ : H. 10.09 .
(B) Compound 6b ( $\left.\mathrm{X}=\mathrm{CH}_{3} \mathrm{COO}\right)(0.30 \mathrm{~g}, 0.65 \mathrm{mmol})$ was added to a stirred susfension of $\mathrm{LiAlH}_{4}(0.150 \mathrm{~g} .3 .9 \mathrm{mmol})$ in anhydrous tetrahydrofuran and then the reaction mixture was stirred for 15 min . The excess hydride was decomposed with a minimum amount of water and 2 N NaOH , and the organic layer was separated. Evaporation of the dried organic phase yielded a residue ( 0.126 g ) which consisted essentially of 14 b .
(C) Reductior of $\mathbf{6 b}\left(\mathrm{X}=\mathrm{CF}_{3} \mathrm{COO}\right)(0.25 \mathrm{~g}, 0.48 \mathrm{mmul})$ as described above in $A$ for $\mathbf{6 b}\left(X=\mathrm{CH}_{3} \mathrm{COO}\right)$ yielded a solid residue of $\mathbf{1 4 b}(0.050$ g).

1-(m-Chlorophenyl)-t-2-methyl-r-1-cyclohexanol (14c). (A) Reduction of $6 \mathrm{c}\left(\mathrm{X}=\mathrm{CH}_{3} \mathrm{COO}\right)(0.35 \mathrm{~g}, 0.72 \mathrm{mmol}$, as described above for the preparation of 14 b in A, gave crude $14 \mathrm{c}(0.165 \mathrm{~g})$, which was purified by preparative TLC (a $9: 1$ mixture of petroleum ether and ether was used as the eluent and elution was repeated twice). yielding pure $14 \mathrm{c}(0.080 \mathrm{~g})$ as an oil: IR $\lambda(\mathrm{OH}) 2.94 \mu \mathrm{~m}$ : NMR $\delta 0.66$ (d, $3, J=7.2 \mathrm{~Hz} \mathrm{CH}{ }_{z}$ ). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{OCl}$ : C, 69.47: H. 7.62. Found: C, 69.82; H, 7.70.
(B) Compound 6 c । $\left.\mathrm{X}=\mathrm{CF}_{3} \mathrm{COO}\right)(0.20 \mathrm{~g}, 0.37 \mathrm{mmol})$ was reduced as described above for the preparation of 14 b in A to yield crude oily $14 \mathrm{c}(0.057 \mathrm{~g})$.

Reaction of 16 and 1 c with Several Mercuric Salts in Water. A suspension of the cyclopropane ( $\mathbf{l} \mathbf{b}$ or $\mathbf{l c}$ ) $(0.26 \mathrm{mmol})$ in water ( 5 mL ) was treated with the appropriate mercuric salt ( 0.24 mmol ) and then stirred at room temperature ( 3 h for the reactions of $1 \mathbf{b}$ and 15 $h$ for the reactions of 1 c$)$. Then the reaction mixture was treated with tetrahydrofuran ( $4 \mathrm{~mL}, 4 \mathrm{~N} \mathrm{NaOH}(0.5 \mathrm{~mL})$, and sodium borohydride $(0.027 \mathrm{~g}, 0.73 \mathrm{mmol})$, stirred for 10 min , diluted with water. and extracted with ether. Evaporation of the washed (water) and dried ether extracts yielded a residue which was analyzed by GLC. The ratios of 13 and 14 are shown in Table I. Reactions of $1 \mathbf{b}$ and $1 \mathbf{c}$, carried out under the same conditions but reducing the mixtures after shorter reaction times ( 30 min and 1 h for 1 b and 5 h for 1 c ). yielded the same product ratio within experimental error.

Reaction of 1 b and 1 c with Mercuric Acetate and Mercuric Trifluoroacetate in Tetrahydrofuran-Water. A solution of the cyclopropane ( 1 b or Ic ) $(0.26 \mathrm{mmol})$ in a $1: 1(\mathrm{v} / \mathrm{v})$ tetrahydrofuran-
water mixture ( 5 mL ) was treated with mercuric acetate or mercuric trifluoroacetate ( 0.24 mmol ) and stirred at room temperature ( $\S$ and $\epsilon \mathrm{h}$ for the reaction of $\mathbf{1 b}$ with mercuric acetate and mercuric trifluor oacetate, respectively, and 15 h for the reactions of $1 \mathbf{c}$ ). Ther. 4 N $\mathrm{NaOH}(0.5 \mathrm{~mL})$ and sodium borohydride $(0.027 \mathrm{~g}, 0.73 \mathrm{mmol})$ were edded and stirring was continued for 10 min . The workup was carried out as described above for the reactions in water and the residue ortained was analyzed by GLC. Reactions of 1 carried out under the same conditions but stopping after relatively longer contact times ( 24 $h$ for both $1 \mathbf{b}$ and $\mathbf{l c}$ ) yielded the same product ratio within experimental error.

Reaction of 1 b and 1 c with Mercuric Acetate and Mercuric Trifluoroacetate in Anhydrous $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$. A solution of the cyclopropane ( $1 \mathbf{b}$ or $1 \mathbf{c}$ ) ( 0.26 mmol ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$; was treated with the mercuric salt ( 0.24 mmol ), stirred at room temperature ( 30 min for the react:ons of 1 b and 24 h and 15 min for the reactions of le with mercur:c acetate and mercuric trifluoroacetate, respectively), then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed immediately with water, and evaporated. The residue (in the reactions with $\mathrm{Hg}\left(\mathrm{OOCCF}_{3}\right)_{2}, \lambda(\mathrm{CO}) 5.76,6.20 \mu \mathrm{~m}$ for 1 b and 5.77 and $6.19 \mu \mathrm{~m}$ for l $\mathbf{c}$; in the reactions with $\mathrm{Hg}\left(\mathrm{OOCCH}_{3}\right)_{2}, \lambda(\mathrm{CO}) 5.62,5.95 \mu \mathrm{~m}$ for $1 \mathbf{b}$ and 5.62 and $5.92 \mu \mathrm{~m}$ for $1 \mathbf{c}$ । was taken up in anhydrus ether ( 10 mL ), reated with $\mathrm{LiAlH}_{4}(0.05(\mathrm{~g}, 1.31 \mathrm{mmol})$, stirred for 10 min at room temperature, and then ref.uxed for 10 min . The excess hydride was decomposec with a minimum amount of water and 2 N NaOH , and the dried ether layer was evaporated to dryness to yield a residue which was analyzed by GLC. The ratios between 13 and 14 are shown in Table I. Feactions of $\mathbf{1 b}$ and $1 \mathbf{c}$ with each salt carried out under the same conditions but stopping after relatively different contact times $(1,3$, and 6 h for the reaction of $\mathbf{1 b}$ with mercuric acetate, 15 min and 1 h for the reaction of 1 b with mercuric trifluoroacetate, 48 h for the reaction of $1 \mathbf{c}$ with mercuric acetate, and 8 min and 3 h for the reaction of Ic with mercuric trifluoroacetate) yielded the same product composition within experimental error. However, in the case of the reaction of $1 \mathbf{b}$ with mercuric trifluoroacetate, much longer contact times ( 3 and 6 h ) showed an increase of the percentage of the syn adduct due $t^{\text {t.) }}$ a slow epimerization at the benzylic carbon.

Acknowledgment. We are grateful to the Consiglio Nazionale delle Ricerche (Roma) and to NATO (Research Grant No. 1117) for partial support of this research.

Registry No.-6b ( $\mathrm{X}=\mathrm{CH}_{3} \mathrm{COO}$ ), 64705-90-4; $\mathbf{6 b}\left(\mathrm{X}=\mathrm{CF}_{3} \mathrm{COO}\right)$, 64705-91-5; $\mathbf{6 c}\left(\mathrm{X}=\mathrm{CH}_{3} \mathrm{COO}\right), 64705-92-6 ; 6 \mathbf{c}\left(\mathrm{X}=\mathrm{CF}_{3} \mathrm{COO}\right)$, 64705-93-7; 9, 5331-08-8; 10b, 64705-94-8; 11b, 64705-95-3; 17b, 64705-96-0; 12c, 64705-97-1; 13b, 64705-98-2; 13c, 64705-99-3; 14b, 64706-00-9; 4a, 64706-01-0; 15b, 1821-23-4; 15c, 27163-65-1 methylene iodide, 75-11-6; $p$-bromotoluene, 106-38-7; tosyl chlor de, 98-59-9; 2-methylcyclohexanone, 583-60-8.

## References and Notes

(1) For a recent review see C. H. DePuy, Fortschr. Chem. Forsch., 40, 74 (1973), and references cited therein.
(2) C. H. DePuy and R. M. McGirk, J. Am. Chem. Soc., 98, 1121 (1؟74).
(3) C. H. DePuy, A. H. Andrist, and P. C. Fünfschilling. J. Am. Chem. Soc., 98 948 (1974).
(4) F. R. Jensen, D. B. Patterson, and S. E. Dinizo. Tetrahedron Lett., 1315 (1974).
(5) A. Balsamo, C. Battistini, P. Crotti, B. Macchia, and F. Macchia, J. Org Chem., 40, 3233 (1975).
(6) R. J. Ouellette, R. D. Robin, and A. South. Jr., J. Am. Chem. Soc., 90, 1619 (1968).
(7) (a) A. Balsamo, P. Crotti, B. Macchia and F. Macchia, Tetrahecron, 29, 199 (1973); (b) A. Balsamo, P. Crotti, 3. Macchia, and F. Macchia, J. Org. Chem., 39, 874 (1974); (c) C. Battistini, A. Balsamo. G. Berti, P. Crotti, B. Macchia, and F. Macchia, J. Chem. Soc., Chem. Commun., 712 (1974); (d) C. Battistini, P. Crotti, and F. Macchia, Tetrahedron Lett., 2091 (1975), and references cited therein.
(8) H. C. Brown, J. D. Brady, M. Grayson, and W. H. Bonner, J. Am. Chem. Soc., 79, 1897 (1957).
(9) H. C. Brown, Y. Okamoto, and G. Ham, J. Am. Chem. Soc., 79, 1906 (1957).
(10) A. Balsamo, C. Battistini, P. Crotti, and F. Macchia, submitted for publication.
(11) M. Tichý, Adv. Org. Chem., 5, 115 (1965).
(12) N. S. Bhacca and D. H. Williams. "Application of NMR Spectroscopy in Organic Chemistry. Illustration from the Steroid Field' ', Holden-Day, San Francisco, Calif., 1964, pp 79, 135.
(13) H. C. Brown and P. J. Geoghegan, J. Org. Chem., 35, 1844 (1970).
(14) A. Balsamo, C. Battistini, P. Crotti, B. Macchia, anc F. Macchia, Gazz. Chim. Ital., 106, 77 (1976).
(15) H. E. Zimmerman and J. English, jr., J. Am. Chem. Soc., T6, 2285 (1954).
(16) R. J. Rawson and I. T. Harrison, i'. Org. Chem., 35, 2057 (1970!.
(17) R. G. Curtis, I. Heilbron. E. R. H. Jones, and G. F. Woods, J. Chem. Soc., 461 (1953).
(18) H. C. Brown and M. H. Rei, J. Arr. Chem. Soc., 91, 5646 (1969.

# Elimination of Tertiary $\alpha$ Hydrogens from Tosylhydrazones with Lithium Diisopropylamide: Preparation of Trisubstituted Alkenes 

Kenneth J. Kolonko and Robert H. Shapiro*<br>Department of Chemistry, University of Colorado, Boulder, Colorado 80309

Rectived August 12, 1977


#### Abstract

Tosylhydrazones containing only tertiary $\alpha$ hvdrogens react with lithium diisopropylamide (LDA) to yield trisubstituted alkenes. The reaction of these and other tosylhydrazones with LDA shows a high degree of regiospecificity which is controlled by the stereochemistry of the imino bond. The stereochemistry of the reaction is manifested by the dominance of the cis alkene except in cases where isomerization to the trans alkene has a low activation barrier. The reaction of LDA with tosylhydrazones of $\beta$-keto esters is also successful.


The reaction of tosylhydrazones with alkyllithium reagents is a convenient method of preparing terminal or disubstituted alkenes. ${ }^{1}$ This reaction has not, however, proved to be useful for the preparation of trisubstituted alkenes. Although a few isolated examples of tertiary $\alpha$-hydrogen elimination have been reported, ${ }^{2.3}$ no yield or product distribution was given. We recently reported that isobutyrophenone tosylhydrazone does not undergo elimination with methyllithium in ether $a=0^{\circ},{ }^{1}$ but at room temperature substitution at the imino carbon competes effectively with elimination. ${ }^{4}$ Although substitution can be inhibited by the use of tetramethylethvlenediame (TMEDA) as a co-solvent, the yield of isobutenvlbenzent is quite poo:.

We now wish to report that trisubstituted alkenes are conveniently prepared from tosylhydrazones which contain only tertiary $\alpha$ hydrogens by the use of lithium diisopropylamide (LDA) instead of methyllithium. ${ }^{5-7}$ The moderate product yields ( $38-66 \%$ ) are compensated by the convenience and by the mild reaction conditions. ${ }^{8}$ Table I shows the data for the production of five trisubstituted alkenes.

The data in Table I show shat for products which do not tend to undergo isomerization, TMEDA is the solvent of choice. However, in systems which do tend to isomerize, TMEDA appears to facilitate the rearrangement. For example, 2 -methyl-2-norbornene isomerizes to 2 -methylenenorbornane, ${ }^{9}$ and the tricyclic system behaves similarly. The low

Table I. Trisubstituted Alkenes from Tosylhydrazones and Lithium Diisopropylamide

| Tosylhydrazone | Registry no. | Solvent | Product(s) | Registry no. | Yield, \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 56638-11-0 | TMEDA | Isobutenylbenzene | 768-49-0 | $57^{a}$ |
|  | 17530-00-6 | TMEDA | 2,4-Dimethyl-2-pentene | 625-65-0 | $54{ }^{\text {a }}$ |
|  | 54288-47-0 | TMEDA | 1,2-Diphenyl-1-propene (cis/trans ratio, 16:84) |  | $66^{\text {b }}$ |
|  | 64884-74-¢ | Ether <br> TMEDA | 2-Methyl-2-norborne:ae <br> 2 -Methyl-2-norbornene <br> 3-Methylenenorbornene | $694-92-8$ $497-35-8$ | $\begin{aligned} & 38^{b} \\ & 81 c \\ & 19 c \end{aligned}$ |
|  | 64884-75-9 | Ether | 9-Methyltricyclo[5.2 1.0 ${ }^{2,6}$ ]-8-decene | 64937-27-5 | $43{ }^{\text {b }}$ |
| I |  | TMEDA | 9-Methyltricyclo $\left[\begin{array}{lll}5.2 & 1.0 \\ \text { 2,6 }\end{array}\right.$ ]-8-decene |  | $32{ }^{\text {b }}$ |
|  |  |  | 9-Methylenetricyclo[5.2.1.0 ${ }^{2,6}$ ]. decane | 64937-28-6 | $26^{\text {b }}$ |

${ }^{a}$ Product isolated by distillation. ${ }^{b}$ Product isolated by column chromatography. ${ }^{c}$ Ratio by gas chromatography.

Table II. Ratio of cis- and trans-Alkenes from Tosylhydrazones and LDA/TMEDA

| Tosylhydrazone | Registry no. | Product | Registry no. | Cis/trans ratio | Yield, "\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 17336-66-2 | trans-1-Phenyl-1-propene | 873-66-5 |  | $40^{b}$ |
|  | 14195-24-5 | trans-1-Phenyl-1-propene |  |  | $40^{a}$ |
| NNHTs | 36432-88-9 | 3-Heptene |  | 92:8 | $55^{\text {b }}$ |
|  | 64884-76-0 | 2,6-Dimethyl-3-heptene |  | 92:8 | $74{ }^{\text {b }}$ |
| NNHTs | 64884-77-1 | 1-Phenyl-3-butene | 768-56-9 |  | $75^{\text {b }}$ |
| $\mathrm{NaH}^{\circ} \cdot \mathrm{s}$ | 64884-78-2 | 4-Nonene |  | 94:6 | $72^{\text {b }}$ |
|  | 19816-85-4 | Stilbene |  | 80:20 | $72^{\text {c }}$ |

$a$ Yield obtained by GC standard method. $b$ Product isolated by distillation. $c$ Product isolated by column chromatography.
cis/trans ratio observed in the formation of 1,2-diphenyl-1propene also appears to be the result of some isomerization since higher ratios were observed using ether solvent. ${ }^{10}$ For this reason several other tosylhydrazones which would give stable products were tested with the LDA/TMEDA reactant. Table II shows the results of this investigation.

The exclusive formation of trans-1-phenyl-1-propene from propiophenone tosylhydrazone with LDA/TMEDA is in direct contrast with the $3: 1$ cis/trans ratio observed with MeLi / $\mathrm{Et}_{2} \mathrm{O} .{ }^{10}$ The case of phenylacetone tosylhydrazone is even more strixing since the allylbenzene product, obtained with $\mathrm{MeLi} / \mathrm{Et}_{2} \mathrm{O},{ }^{1,4}$ is not observed at all. The other tosylhydrazones shown in the table give predominantly cis products, a result consistent with the previous observations. ${ }^{10}$ From these data, it appears as if an especially active allylic hydrogen is required for product isomerization; whereas the bicyclic and tricyclic internal alkenes appear to be special cases. ${ }^{9}$ This argument is supported by the exclusive formation of 1-phe-nyl-3-butane from 1-phenyl-3-butanone tosylhydrazone.

An explanation for the dominant formation of cis products comes from the recent reports on the stereoselective $\alpha$-proton abstraction from oximes and their derivatives. ${ }^{11-13}$ Scheme

I depicts a reasonable mechanism based on the oxime results.

The tosylhydrazone syn dianion, which was proposed by us ${ }^{4}$ and confirmed by Dauben, ${ }^{14}$ can exist in conformation A or B. Since it appears that the stabilizing force ir the dianion is the $6 \pi$-electron overlap, ${ }^{13}$ it follows that the other nonbonding pair on nitrogen will be repelled and that the electropositive sulfur will be attracted by the electron density on the $\alpha$ carbon. Therefore, any group attached to the $\alpha$ carbon would prefer to be in conformation A. Alternatively, if the lone electron pair is "inside," it may sterically induce the substituent on the $\alpha$ carbon to reside preferentially on the "outside." In either even:, the cis-alkene product would be generated. ${ }^{15}$

The case of 2 -octanone tosylhydrazone represents an interesting example which again demonstrates that the stereochemistry of the carbon-nitrogen double bond controls the regiospecificity of the reaction. ${ }^{4.14}$ Highly purified 2-octanone tosylhydrazone consists of a single stereoisomer, and it yields 1 -octene exclusively upon reaction with alkyllithium reagents. ${ }^{16,17}$ However, in some preparations of 2 -(ictanone tosylhydrazone a second stereoisomer can be detected, albeit

| Tosylhydrazone of | Yield, \% | $\mathrm{Mp},{ }^{\circ} \mathrm{C}$ | MS m/e (relative intensity) |
| :---: | :---: | :---: | :---: |
| Isobutyrophenone | 84 | 103-104 | 316 ( $\left.\mathbf{M}^{+\cdot}, 6\right), 119$ (100), 117 (42), 139 (29), 91 (29), 132 (26i |
| 2,4-Dimethyl-3-pentanone | 64 | 112-113 | 282 ( $\left.\mathrm{M}^{+\cdot}, 10\right), 127$ (100), 97 (63), 41 (59), 91 (55), 55 (40) |
| 1,2-Diphenyl-1-propanone | 57 | 147-149 | 378 ( $\mathrm{M}^{++}, 4$ ), 223 (100), 91 (44), 105 (38), 194 (29), 179 (27) |
| 3-Methyl-2-norbornanone | 85 | 130-122 | $292\left(\mathrm{M}^{+}, 6\right), 137$ (100). 91 (44), 95 (38), 93 (34), 79 (32) |
| 9-Methyl-8-ketotricyclo[5.2.1.0 ${ }^{2.6}$ ]decane | 65 | 145-146 | 332 ( $\left.\mathrm{M}^{+\cdot}, 6\right), 177$ (100), 79 (40), ¢1 (25), 109 (14), 41 (14) |
| 1-Phenyl-2-propanone | 93 | 137-189 | $302\left(\mathrm{M}^{+\cdot}, 7\right), 147$ (100), 91 (67), 118 (48), 117 (35), 107 (30) |
| Propiophenone | 96 | 120-121 | $302\left(\mathrm{M}^{+}, 9\right), 147$ (100), 118 (62), 119 (60), 43 (50), 91 (43) |
| 4-Heptanone | 84 | 80-81 | $282\left(\mathrm{M}^{+\cdot}, 16\right), 127$ (100), 44 (86), 42 (63), 41 (54), 43 (42) |
| 5-Nonanone | 81 | 66 | 310 ( $\mathrm{M}^{+\cdot}, 8$ ), 113 (100), 155 (80), 58 (80), 41 (54), 55 (50) |
| Deoxybenzoin | 70 | 137-138 | 364 ( $\left.\mathrm{M}^{+-}, 6\right)$, 91 (100), 92 (33), 65 (23). 209 (20), 180 (15) |
| 2,6-Dimethyl-4-heptanone | 76 | 110-1:2 | 310 ( $\left.\mathrm{M}^{+\cdot}, 10\right) .155$ (100), 58 (65), 99 (60), 56 (60), 43 (50) |
| 1-Phenyl-3-butanone | 92 | 125-126 | 316 ( $\mathrm{M}^{+\cdot}, 25$ ), 91 (100), 161 (43), 117 (36), 131 (30), 57 (25) |

${ }^{a}$ All mass spectra obtained at $70-\mathrm{eV}$ ionizing energy.

Scheme I

in small amounts. In one preparation we were able to obtain a 76:24 mixture of the swo stereoisomers as cetermined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The major isomer has a syn relationship between the methyl group and the tosylaride function (1), and the minor isomer has an anti relationship ${ }^{18}$ (2). Decom-

position of this stereoisomeric mixture with LDA in TMEDA yields a product mixture which contains a mixture of 1 -octene
and 2-octene in the ratio of $86: 20$ as determined by yas chromatography. These results are totally consistent with elimination of a syn $\alpha$ hydrogen in the alkene-forming reaction.

## Experimental Section

Materials. Ketones, with the exception of 1,2-diphenyl-1-propanone, 3 -methyl-2-norbornanoze, and 9 -methyl-8-ketotricyclo[5.2.1.0 ${ }^{2.6}$ ]decane, were obtained from conmercial sources. 1,2-Diphenyl-1-propanone was prepared by phase-transfer alkylation of deoxybenzoin with methyl iodide. ${ }^{13} 3$-Methyl-2-norbornanone was prepared in $71 \%$ isolated yield by treating 2-no:bornanone with LDA in THF/HMPA at $-78^{\circ} \mathrm{C}$ followed by reaction with methyl iodide. 9-Methyl-8-ketotricyclo[5.2.1.0 $\left.{ }^{2.6}\right]$ decane was prepared by generating the dianion of 8 -ketotricyclo[5.2.1. $0^{2,6}$ ]decane tosylhydrazone and subsequent trapping with methyl iodide. Tosylhydrazine was prepared by treating tosyl chloride with hydrazine. ${ }^{20}$ Tosylhycrazones were prepared in $70-95 \%$ isolated yield by treating the ketone with tosylhydrazine in $95 \%$ ethanol. Best results were obtained when ketones were purified prior to use. Me:hyllithium in diethyl e:her was used to generate LDA and was purchased from Ventron Alfa Products. Diisopropylamine was dried over sodium rydroxide and distilled. Tetramethylethylenediamine (TMEDA) was dried over lithium aluminum hydride and distilled. Elimination reactions were carried out in two solvents, diethyl ether and TMEDA. Diethyl ether was employed to inhibit the isomerization of reactive alkene products. Yields were somewhat lower when diethyl ethe: was used as a solvent. In cases where alkenes were produced having the cis configuration. 10 equiv of diisopropylamine was employed per equivalent of tosylhydrazone. In all other cases 4 єquiv of diisopropylamine were employed, from which 2.5 equiv of LDA was generated. Two workup procedures were employed to remove diisopropylamine and TMEDA from alkene products. One procedure employed aqueous acid washes. In the other, neutral conditions we:e obtained by first washing the organic phase with water to remove TMEDA, followed by several washes with copper sulfate solution to remove diisopropylamine. The later procedure can be used effectively with acid-sensitive alkenes. Each procedure is outlined below. All glassware was dried at $115^{\circ} \mathrm{C}$ prior to use.

The structures of all tosylhydrazones and alkene products were assigned on the basis of their mass spectral. NMR. and IP. characteristics. The assignment of the cis configuration to alkenes derived from compounds 1 and 2 was made by comparing their carbon-13 NMR chemical shift data to known literature values. ${ }^{21}$ Mass spectral data was obtained on a Varian CH-5 mass spectrometer. 'H NMR spectra were obtained on Varian d60-A and HA-100 NMR spectrometers. Carbon-13 NMR spectra were obtained on a JEOL PFT-100 spectrometer equipped with a Nicolet Model 1080 data system. IR spectra were obtained on a Perkirı-Elmer 337 grating infrared spectrometer. Melting points were obtained on a ThomasHoover capillary melting point apparatus and are corrected.

Isobutyrophenone Tosylhydrazone (1): General Procedure. Tosylhydrazine 13.9 g ( 74 mmol ) was dissolved in 30 mL o: hot $95 \%$ ethanol and isobutyrophenone ( $10.0 \mathrm{~g}, 67.5 \mathrm{mmol}$ ), and 3 drops of concentrated HCl was added. The solution was boiled for 10 min and cooled. The tosylhydrazone was crustallized and isolated, vield 18.0 $\mathrm{g}(84 \%) ; \mathrm{mp} 103-104^{\circ} \mathrm{C}$; IR (KBr) 3200, 2950, 1600, 1340, 1160, 690 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.03(\mathrm{~d}, 6), 2.46$ (s, 3), 2.72 (septet, :), 6.9-7.9 ( $\mathrm{m}, 9$ ); mass spectrum, see Table III.

Isobutenylbenzene: General Procedure A. Tosylhydrazones were eliminated by the following general procedure. Diisopropylamine ( $10.2 \mathrm{~g}, 101 \mathrm{mmol}$ ) and 51 mL of TMEDA ( 2 mL per millimole of tosylhydrazone) were placed in a $250-\mathrm{mL}$ three-neck flask equipped with a magnetic stirrer, reflux condenser, solid addition tube, $\mathrm{N}_{2}$ inlet, and drying tube. The solution was blanketed with $\mathrm{N}_{2}$ gas and cooled to $0{ }^{\circ} \mathrm{C}$. Methyllithium in diethyl ether ( $39.5 \mathrm{~mL}, 63.3 \mathrm{mmol}$ ) was added over a period of 5 min , and the sclution was allowed to stir for 5 min . Isobutyrophenone tosylhydrazore ( $8.0 \mathrm{~g}, 25.3 \mathrm{mmol}$ ) was then added over a period of 3 min , the cold bath removed, and the solution stirred overnight at room temperature under an $\mathrm{N}_{2}$ atmosphere. Enough water was carefully added to dissolve lithium salts. The solution was poured into a separatory funnel, the layers were separated, and the aqueous phase was extracted taree times with 50 mL of diethyl ether. The organic layers were combined and washed five times with 50 mL of water. The resulting ether layer was washed with $50-\mathrm{mL}$ aliquots of 0.48 M HCl until the aqueous layer maintained a pH of 0.3 . The ether layer was washed once with 50 mL of saturated $\mathrm{NaHCO}_{3}$ solution followed by one $50-\mathrm{mL}$ water wash. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the ether removed by fractional distillation. The alkene was then distilled to yield 1.9 g of 1 -phenyl-2-methylpropene ( $57 \%$ ), bp $103-104^{\circ} \mathrm{C}(43 \mathrm{~mm}$ ); IR (neat) 3100,3000 , $1650,1600,1450,920,840,750,700 \mathrm{~cm}^{-} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 1.83$ (s, 3), 1.84 d , 3). $6.26(\mathrm{~m}, 1), 7.22(\mathrm{~s}, 5)$; mass spectrum ( 70 eV ), m/e (relative intensity) 78 (8), 65 (12), 77 (12), 39 (14), 115 (35), 91 (37), $132\left(\mathrm{M}^{+}, 80\right), 117$ (100).
2-Methyl-2-norbornene: General Procedure B. The following procedure inhibits the isomerization of alkene products. Sensitive alkene products are isolated under nonacidic conditions. Diisopropylamine ( $4.1 \mathrm{~g}, 40.8 \mathrm{mmol}$ ), TMEDA ( $2.4 \mathrm{~g}, 20.4 \mathrm{mmol}$ ), and 40 mL of anhydrous diethyl ether were placed in a $250-\mathrm{mL}$ three-neck flask equipped with a magnetic stirrer, reflux condenser, solid addition tube, $\mathrm{N}_{2}$ inlet, and drying tube. The solution was blanketed with $\mathrm{N}_{2}$ gas and cooled to $0^{\circ} \mathrm{C}$. Methyllithium in diethyl ether $(17.0 \mathrm{~mL}, 25.5$ mmol ) was added over a period of 5 min , and the resulting solution was allowed to stir for 15 min . 3-Methyl-2-norbornanone tosylhydrazone ( $3.1 \mathrm{~g}, 10.2 \mathrm{mmol}$ ) was added over a perioc of 3 min . The cold bath was removed, and the solution was stirred for 25 h at room temperature under an $\mathrm{N}_{2}$ atmosphere. Enough water was carefully added to dissolve lithium salts. The solution was poured into a separatory funnel, the layers were separated, and the aqueous phase was extracted three times with 30 mL of diethyl ether. The organic extracts were combined and washed eight times with 30 mL of water. The organic phase was washed with $60-\mathrm{mL}$ aliquots of $5 \% \mathrm{CuSO}_{4}$ solution until all the diisopropylamine had been removed; usually four washes are required. The $\mathrm{CuSO}_{4}$ extracts were suction filtered to remove a pasty emulsion, and the resulting filtrate was extracted twice with $30 \mathrm{~m} . \mathrm{L}$ of diethyl ether. The organic extracts were combined and washed once with 20 mL of $5 \% \mathrm{CuSO}_{4}$ so ution. All the ether extracts were combired, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and f.ltered, and the diethyl ether was removed by fractional distillation. Residual traces of pentane were removed under a gentle stream of nitrogen to yield 2-methyl-2-norbornene, $0.4 \mathrm{~g}(38 \%)$; IR (neat) $2940,1630,1400,880 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \dot{o} 0.70-1.70(\mathrm{~m}, 6), 1.72(\mathrm{~d}, 3), 1.65(\mathrm{~s}, 21,5.50(\mathrm{~s}, 1)$; mass spectrum ( 70 eV ), $\mathrm{m} / \mathrm{e}$ (relative intensity) 39 (14), 91 (18), $108\left(\mathrm{M}^{+}\right.$, 20), 79 (36), 80 (100).

2,4-Dimethyl-2-pentene. Following general procedure A for alkene preparation, 2,4-dimethyl-3-pentanone tosylhydrazone ( 8.0 g , 28.4 mmol ) and 70.9 mmol of LDA in 57 mL of TMEDA yielded 1.5 g of 2,4-dimethyl-2-pentene (54\%), bp $67-68^{\circ} \mathrm{C}$; IR (neat) 2950,1675 , $1470,1380,1030,840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~d}, 6), 1.60(\mathrm{~d}, 3)$, 1.63 (d, 3), 2.44 (broad septet, 1), 4.98 (broad d, 1); mass spectrum ( 70 eV ), $m / e$ ( re ative intensity) 53 (15), 67 ( -9 ), 84 (2( $)^{\prime}$, 56 (25), 98 ( $\mathrm{M}^{+}$, 28), 39 (45), 41 (65), 55 (79), 83 (100).

1,2-Diphenyl-1-propene. Following general procedure A for alkene preparation, 1,2 -diphenyl-1-propanone tosylhydrazone $(8.0 \mathrm{~g}$, 21.2 mmol ) and 53 mmol of LDA in 43 mL of TMEDA yielded 2.7 g of 1,2 -diphenyl-1-propene ( $66 \%$ ) after column chromatography through $\mathrm{Al}_{2} \mathrm{O}_{3}$ employing $100 \%$ pentane as the eluent, mp $77-79{ }^{\circ} \mathrm{C}$; IR (KBr) 3020, 1630, 1590, 1480, 1440, 1380, 930, 875, 760, 740, 700 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.17$ (d, cis isomer, 3 ), 2.22 (d, trans isomer, 3), 6.78-7.63 ( $\mathrm{m}, 10$ ); mass spectrum ( 70 eV ), $m / e$ (relative intensity) 116 (10), 77 (12), 91 (14), 103 (16), 89 (15) 195 (16), 193 (19), 165 (20), 115 (29), 180 (37), 178 (54), 194 (96), 179 (100).

2-Methyl-2-norbornene and 2-Methylenenorbornane. Following general procedure A for alkene preparatior., 3-methyl-2-norbornanone tosylhydrazone ( $3.0 \mathrm{~g}, 10.2 \mathrm{mmol}$ ) and 25.5 mmol of LDA in 20.4 mL of TMEDA yielded, after chromatography through $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $100 \%$ pentane as the eluent, 0.6 g of a mixture of 2 -methyl-2norbornene and 2 -methylenenorbornane ( $54 \%, 81: 19$ ). Each isomer
was collected by preparative gas chromatography on a $10 \%$ SE-30 column ( $3 / 8$ in $\times 16 \mathrm{ft}$ ). Each isomer was subsequently characterized. 2-Methyl-2-norbornene: IR (neat) 2940, 1630, 1400, $880 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 0.70-1.70(\mathrm{~m}, 6), 1.72(\mathrm{~d}, 3), 1.65(\mathrm{~s}, 21,5.50(\mathrm{~s}, 1) ;$ mass spectrum ( 70 eV ), m/e (relative intensity) $39(14), 91(18), 108\left(\mathrm{M}^{+}\right.$, 20), 79 (36), 80 (100).

2-Methylenenorbornane: IR (neat) 2980, 1880, 1670, 1450, 910, 740 $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 0.70-2.25(\mathrm{~m}, 8), 2.37(\mathrm{~s}, 1), 2.70(\mathrm{~s}, 1), 4.60$ ( $\mathrm{s}, 1$ ), 4.85 ( $\mathrm{s}, 1$ ); mass spectrum ( 70 eV ), $m / e$ (relative intensity) 81 (10), 78 (14), 106 (20), 41 (30), 77 (31), $39(34), 67(33), 108\left(\mathrm{M}^{+}, 45\right)$, 80 (75), 66 ( $77 \mathrm{I}, 79$ (100).
9-Methyltricyclo[5.2.1.0 $0^{2,6}$ ]-8-decene and 9-Methylenetricyclo[5.2.1.0 ${ }^{2,6}$ ]decane. Following general procedure A for alkene preparation, 9 -methyl-8-ketotricyclo $\left[5.2 .1 .0^{2,6}\right]$ decane tosylhydrazone ( $3.0 \mathrm{~g}, 9.0 \mathrm{mmol}$ ) and 22.5 mmol of LDA in 18 mL of TMEDA yielded, after chromatography through $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $100 \%$ pentane as the eluent, 0.7 g of 9 -methyltricyclo $\left[5 \cdot 2 \cdot 1.0^{2,6}\right]-8$-decene and 9 -methylenetricyclo[5.2.1.0 ${ }^{2,6}$ ]decane ( $58 \%, 55: 45$ ). Each isomer was separated and collected by preparative gas chromatography on a $10 \%$ SE-30 column and characterized. 9-Methyltricyclo [5.2.1.0 $0^{2,6}$ ]-8-decene: IR (neat) 2970, 2850, 1660, 1470, 1440, 1310, 1020, 810, $760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 0.70-2.48(\mathrm{~m}, 12), 1.72(\mathrm{~d}, 3), 5.60$ (broad s, 1); mass spectrum ( 70 eV ), m/e (relative intensity) 43 ( 10 ). 91 (13), 39 (14), 41 (14), 67 (15), 77 ( 15 ), $148\left(\mathrm{M}^{+}, 19\right), 81$ (30), 79 ( 60 ), 80 ( 100 ).

9-Methylentricyclo[5.2.1.0 ${ }^{2,6}$ ]decane: IR (neat) 2930, 2880, 1670, 1480, 1470, $14 j 0,1430,1280,1030,920,880,740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 0.80-2.50(\mathrm{~m}, 14), 4.57(\mathrm{~s}, 1), 4.83(\mathrm{~s}, 1)$; mass spectrum ( 70 eV ), $\mathrm{m} / \mathrm{e}$ (relative intensity) 93 (10), 133 (10), 66 (11), 06 (11), 39 (13), 105 (15), 78 (18 41 (19), 77 (19), 81 (19), 91 (19), 67 (23), 148 ( ${ }^{+}, 35$ ), 79 (76), 80 (100).

Gas Chromatographic Standardization of trans-1-Phenyl-1-propene vs. Bicyclohexyl. trans-1-Phenyl-1-prcpene ( 0.1021 g , 0.86 mmol ) and 0.1400 g of bicyclohexyl were carefully weighed (Mettler balance) into a vial, and 3.0 mL of diethyl ether was then added. This m.xture was subjected to the following gas chromatographic conditions: column, $1 / 8$ in $\times 8 \mathrm{ft}$. Dow Corning 550 on $80-100$ mesh Chromosorb $\mathfrak{W}$; injector temperature, $230^{\circ} \mathrm{C}$; detector temperature, $260^{\circ} \mathrm{C}$; column temperature, $80^{\circ} \mathrm{C}$ initial, $200^{\circ} \mathrm{C}$ final; program rate, $8^{\circ} \mathrm{C} / \mathrm{min}$; carrier gas rate $\left(\mathrm{N}_{2}\right), 50 \mathrm{~mL} / \mathrm{min}$; sample size, $15 \mu \mathrm{~L}$. A series of three chromatograms were obtain $\in \mathrm{d}$ from which a molar response factor of 1.026 was calculated (moles of bicyclohexyl vs. moles of trans-1-phenyl-1-propene).
trans-1-Phenyl-1-propene. Following general procedure A for alkene preparation. phenylacetone tosylhydrazone $(2.990 \mathrm{~g}, 9.87$ mmol ), bicyclohexyl ( $0.7612 \mathrm{~g}, 4.58 \mathrm{mmol}$ ), and 24.7 mmol of LDA in 20 mL of TMEDA were reacted for 23 h at room temperature. Reaction aliquots were removed after 7.5 h and subjected to the gas chromatographic conditions described above. A final reaction aliquot was removed and analyzed after 23 h of reaction time. Percent yield values were determined using the equation $M_{\mathrm{x}}=A_{\mathrm{x}} S_{\mathrm{s}} M_{\mathrm{s}} / A_{\mathrm{s}} S_{\mathrm{x}}$ and a molar response factor of $S_{\mathrm{s}} / S_{\mathrm{x}}=1.026$ ( $M_{\mathrm{x}}$, moles of substrate; $M_{\mathrm{s}}$, moles of standard: $A_{\mathrm{x}}$, peak area of substrate; $A_{\mathrm{s}}$, peak area of standard; $S_{\mathrm{x}}$, response of substrate; $S_{\mathrm{s}}$, response of standard). A $40 \%$ yield of trans-1-phenyl-1-propene was found to be produced after 7.5 h of reaction time. After 23 h of reaction time only a $20 \%$ yield of trans. 1-phenyl-1-propene was present with no new products present in a gas chromatogram of the reaction mixture

1-Phenyl-3-butene. Following general procedure A for alkene preparation, 1 -phenyl-3-butanone tosylhydrazone ( $5.9 \mathrm{~g}, 15.8 \mathrm{mmol}$ ) and 39.5 mmol of LDA in 32 mL of TMEDA yielded 1.5 g of 1 -phe nyl-3-butene ( $75 \%$ ), bp $51^{\circ} \mathrm{C}(10 \mathrm{~mm}$ ); IR (neat) 2950. 1625, 1580, 1480, 1440, 990, 910, 740, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 2.10-2.86(\mathrm{~m}$, 4), 4.80-5.20 (m. 2), $5.50-6.18$ ( $\mathrm{m}, 1$ ), 7.15 ( $\mathrm{s}, 1$ ); mas spectrum ( 70 eV ), m/e (relative intensity) 104 (10), 39 (12), 92 (14), 65 (19), $132\left(\mathrm{M}^{+}\right.$, 40), 91 (100).

1-Phenyl-1-propene. Following general procedure A for alkene preparation, propiophenone tosylhydrazone ( $5.0 \mathrm{~g}, 16.5 \mathrm{mmol}$ ) and 41.4 mmol of LDA in 66 mL of TMEDA yielded, afte: 3.0 h reaction time, 0.9 g of 1-phenyl-1-propene ( $48 \%$ ), bp $47-48^{\circ} \mathrm{C}(5.0 \mathrm{~mm}$ ); IR (neat) 2920, 2850, 1650, 1580, 1480, 1410, 960, 805, 730. $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $1.85(\mathrm{~d}, 3), 5.90-6.60(\mathrm{~m}, 2), 7.26(\mathrm{~m} .5)$ : mass spectrum ( 70 eV ), m'e (relative intensity) $63(10), 65(10), 77(10), 78$ (10). 103 (13), 51 ( 15 … 39 (16), $91(38), 116(40), 118$ ( $\mathbf{M}^{+}, 93$ ). 117 ( 100 ).
cis- and trans-3-Heptene. Following general procedure A for alkene preparation. 4 -heptanone tosylhydrazone ( $8 .(\mathrm{g}, 28.4 \mathrm{mmol}$ ) and 71 mmol of LDA in 57 mL of TMEDA yielded 1.5 g of cis- and trans-3-heptene ( $55 \%$; cis/trans ratio, $92: 8$ by ${ }^{13} \mathrm{C}$ NMR integration), bp $85-87^{\circ} \mathrm{C}$; IR (neat) $2900,1650,1450,1360,1060,960.890,870,790$, $710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.63-1.67(\mathrm{~m}, 8), 1.67-2.33(\mathrm{~m} .4) .5 .30$ ( $\mathrm{m}, 2$ ); ${ }^{13} \mathrm{C}$ NMR data was collected and compared with literature
values ${ }^{21}$ obtained on authentic samples of cis- and rans - 3 -hep-ene; mass spectrum ( 70 eV ), mie (relative intensity) $4 \approx$ (16), 70 (17), 39 (20), 42 (20). 98 ( $\mathrm{M}^{+}, 35$ ), 55 (52), 69 (55), 56 (75), 41 (100).
cis- and trans-4-Nonene. Following general procedure A for alkene preparation, 5 -nonanone tosylhydrazone ( $7.0 \mathrm{~g}, 22.5 \mathrm{mmol}$ and 56.5 mmol of LDA in 45 mL of TMEDA yielded 2.0 g of cis- and trans-4-nonene ( $72 \%$; cis/trans ratio, $94: 6$ by ${ }^{13} \mathrm{C}$ NMR integration), bp $135-137^{\circ} \mathrm{C}$; IR (neat) $2930,1650,1460,1380,1055,970,715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.64-1.73(\mathrm{~m}, 12), 1.73-2.30(\mathrm{~m}, 4), 5.37(\mathrm{~m}, 2) ;{ }^{13} \mathrm{C}$ NMR data was collected and compared with literature values ${ }^{21}$ obtained on authentic samples of cis- and trans-4-n(nene; mass spectrum ( 70 eV ), $m / e$ (relative intensity) 57 (11), 67 (12), 97 (14), 83 (17), 84 (18), 42 (16), 43 (26), 69 (28), 126 ( $\mathrm{M}^{+}, 30$ ), 70 ( $3 \varepsilon$ ), 56 ( 51 ), 41 ( 60 ), 55 (100).
cis- and trans-Stilbene. Following general procedure A for alkene y-eparation, deoxybenzoin tosylhydrazone ( $8.0 \mathrm{~g}, 21.8 \mathrm{mmol}$ ) and 54.8 $\mathrm{m} . \mathrm{mol}$ of LDA in 44 mL of TMEDA yielded 2.9 g of cis- and t:ans stilbene after chromatography through alumina ( $72 \%$ ). The cis/trans ratio was determined to be 80:20 by gas chromatography. GC conditions were the following: column, $1 / 8$ in $\times 12 \mathrm{ft}, 10 \% \mathrm{SE}-30$ (silicon rubber) on 80-100 mesh Chromosorb W; injector temperature, 230 ${ }^{\circ} \mathrm{C}$; detector temperature, $260^{\circ} \mathrm{C}$; column temperat $\lrcorner$ re, $100^{\circ} \mathrm{C}$ initial, $240^{\circ} \mathrm{C}$ final; program rate, $4^{\circ} \mathrm{C} / \mathrm{min}$; carrier gas rate $\left(\mathrm{N}_{2}\right), 50 \mathrm{~mL} / \mathrm{min}$; sample size, $5.0 \mu \mathrm{~L}$ (cis- and trans-stilbene are injected in chloroform solution). Retention times: cis-stilbene, $8 \mathrm{~min} 48 \mathrm{~s} ;$ trans-stilbene, 10 min 12 s . The trans isomer was allowed to crystallize from the cis/ trans mixture and was separated by suction filtration and washed with pentane. The cis isomer was isolated from the filtrate. cis-Stilbene: IR (neat) $3000,2930,1600,1490,1450,925,780,690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.60(\mathrm{~s}, 2), 7.22(\mathrm{~s}, 10)$; mass spectrum ( 70 eV ), m/e (relative intensity) 77 (10), 177 (11), 76 (12), 89 (21), 165 (33), 178 (54), 179 (74), $180\left(\mathrm{M}^{+}, 100\right)$.
trans-Stilbene: $\operatorname{IR}(\mathrm{KBr}) 3000,1590,1490,1450,970,770,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~s}, 2), 7.39(\mathrm{~m}, 10)$; mass ipectrum ( 7 J eV ), $\mathrm{m} / \mathrm{e}$ (relative intensity) 177 (10), 76 (14), 89 (19), 165 (30), 178 (50), 179 (74), $180\left(\mathrm{M}^{+}, 100\right)$.
cis- and trans-2,6-Dimethyl-3-heptene. Following general procedure A for alkene preparation, 2,6-dimethyl-4-heptanore tosylhydrazone ( $8.0 \mathrm{~g}, 25.8 \mathrm{mmol}$ ) and 64.5 mmol of LDA in 52 mL of TMEDA yielded 2.4 g of cis- and trans-2,6-dimethyl-3-heptene (74\%; cis/trans ratio, $92: 8$ by ${ }^{13} \mathrm{C}$ NMR integration), bp $119^{\circ} \mathrm{C}$; IR (neat) $2900.1600,1460,1360,135 \mathrm{~J}, 1160,1100,1020,970,735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.70-1.05$ (m. 12), 1.10-1.80 (septet, 1), 1.80-2.10 (m, 2), 2.25-2.90 (septet, 1), 4.95-5.40 ( $\mathrm{m}, 2$ ); ${ }^{13} \mathrm{C}$ NMR $\mathrm{CDCl}_{3}$ ) from pro-ton-decoupled spectra (see structare I), 22.4 (C-7), 23.2 (C-1), 26.5

$$
\left(\stackrel{1}{\mathrm{C}}_{\mathrm{C}}^{3}\right)_{2} \stackrel{2}{\mathrm{C}}^{\mathrm{H}} \stackrel{3}{\mathrm{C}} \mathrm{H}=\stackrel{4}{\mathrm{C}} \mathrm{H} \stackrel{5}{\mathrm{C}} \mathrm{H}_{2} \stackrel{6}{\mathrm{C}} \mathrm{H}\left(\stackrel{7}{\mathrm{C}} \mathrm{H}_{3.2}\right.
$$

I
(C-6), 28.7 (C-2, cis isomer), 31.2 (C-2, trans isomer), 36.6 (C-5, cis isomer ), 41.8 (C-5, trans isomer), 126.1 (C-4, cis isomer), 137.7 (C-4, trans isomer), 138.1 (C-3, cis isomer), 138.8 ppm (C-3, trans is $\lrcorner$ mer); mass spectrum (70 ev), m/e (relative intensity) 42 (12), 67 (13), 99 (20), $83(23), 57(31), 126\left(\mathrm{M}^{+}, 32\right), 70(43), 43(57), 41(75), 56(85), 69(95)$, 55 (100).

1-Octene and cis- and trans-2-Octene. Following gener al procedure A for alkene preparation, 2 -octanone tosulhydrazone $(8.0 \mathrm{~g}$, 27 mmol ) and 70 mmol of LDA in 56 mL of TMEDA yielded 2.4 g of a mixture of 1-octene and cis - and trans-2-octene ( $80 \%$ ), bp $110^{\circ} \mathrm{C}$; IR (neat) $2920,1640,1460,1375,1000,910,725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.70-2.30(\mathrm{~m}, 13), 4.72-5.20(\mathrm{~m}, 2), 5.30-6.20(\mathrm{~m}, 1 ; 1$-oc-tene/cis-2-octene/trans-2-octene ratio, 80:10:10 by GC (GC conditions: column, $1 / 8$ in $\times 12 \mathrm{ft}, 10 \% \mathrm{SE}-30$ (silicone rubber) on 80-100 mesh Chromosorb W; injector temperature, $50^{\circ} \mathrm{C}$ initial, $200^{\circ} \mathrm{C}$ final; program rate, $4^{\circ} \mathrm{C} / \mathrm{min}$; carrier gas rate $\left(\mathrm{N}_{2}\right), 50 \mathrm{~mL} / \mathrm{min}$; sample size, $5.0 \mu \mathrm{~L}) ; \mathrm{GC}-\mathrm{MS}$ was performed on the reaction mixture and found to be consistent with that obtained for authentic samples; ${ }^{22}$ mass
spectrum ( 70 eV ), $m / e$ (relative intensity) 1 -octene, $112\left(\mathrm{M}^{+} .10\right), 70$ (62), 42 (73), 56 (87), 55 (87), 41 ( ( 2 ), 43 (100); m/e cis -2-oct $\mathrm{me}, 112$ ( $\mathrm{M}^{+}, 19$ ), 43 (21), 42 (53), 70 (51), 56 (53), 41 (95), 55 (100); m/e trans-2-octene, $112\left(\mathrm{M}^{+}, 24\right), 43(19), 42(44), 70(49), 56$ (65), 41 (91), 55 (100).

Registry No.-Isobutyrophenone, 611-70-1; 2,4-dimethyl-3pentanone, $565-80-0$; 1,2-diphenyl-1-propanone, 2042-85-5; 3-methyl-2-norbornanone, 643-51-6; 9-methyl-8-ketotricyclo[5.2.1. $0^{2,6}$ ]decane, 64884-79-3; 1-phenyl-2-propanone, 103-79-7; propiophenone, 93-55-0; 4-heptanone, 123-1G-3; 5-nonano-e, 502-56-7; deoxybenzoin, 451-40-1; 2,6-dimethyl-4-heptanone, 1 38-83-8; 1-phenyl-3-butanone, 2550-26-7; tosylhydrazine, 1576-3E-8; cis-1,2-diphenyl-1-propene, 1017-22-7; trans-1,2-diphenyl-1-propene, 833-81-8; cis-3-heptene, 7642-10-6; trans-3-heptene, 14636-14-7; cis-4-nonene, 10405-84-2; trans-4-nonene, 10405-85-3; cis-stilbene, 645-49-8; trans-stilbene, 103-30-0; cis-2,6-dimethyl-3-heptene, 20488-35-1; trans-2,6-dimethyl-3-heptene, 64884-80-6; 2-octanone tosylhydrazone, 54798-76-4; 1-octene, 111-66-0; cis-2-octere, 7642-04-8; trans-2-octene, 13389-42-9; 2-octanone, 111-13-7; lithium diisopropylamide, 4111-54-0.

## References and Notes

(1) R. H. Shapiro, Org. React., 23, 405 (1976).
(2) Y. Chretien-Bessiere and J. P. Bras, C. R. Hebd. Seances Acad. Sci., Ser. C. 268, 2211 (1969).
(3) (a) K. Mori and M. Matsui, Tetrahedrcn, 26, 2801 (1970); (b) Tetrahedron Lett., 2729 (1969).
(4) R. H. Shapiro, M. F. Lipton, K. J. Kolonko, R. L. Buswell, and L. A. Capuano, Tetrahedron Lett., 1811 (1975).
(5) (a) G. E. Gream, J. Meinwald. and L. R. Smith, J. Org. Chem., 39, 3461 (1974): (b) L. R. Smith, G. E. Gream, and J. Meinwald, J. Org. Chem., 42, 927 (1977).
(6) (a) C. A. Bunnell and P. L. Fuchs, J. Am. Chem. Soc., 99, 5184 (1977); (b) E. Vedejs and R. A. Shepherd. J. Org. Chem., 41, 742 (1976); (c) E. Vedejs and W. T. Stolle. Tetrahedron Lett., 135 (1917).
(7) P. A. Grieco and M. Nishizawa, J. Org. Chem., 42, 1717 (1977).
(8) 2-Carbomethoxycyclopentanone tosylhydrazone yields 3-carbomethoxycyclopentene, demonstrating that esters will survive these reaction conditions. Professor Grieco has pointed out several other exemples of the same phenomenon (ref 7 ). Since the very acidic hydrogen attached to $\mathrm{C}-2$ is not eliminated under these conditions, the tosylamide group appears to be anti to the carbomethoxy group for steric reasons. $t$ is interesting to note that the double bond does not migrate into conjugation under these reaction conditions. Since this manuscrip: was submitted for publication, Bunnell and Fuchs (ref 6a) have published a communication describing this reaction in more detail.
(9) Yu. I. Rannera, N. A. Belikoua, I. O. Shapiro, A. I. Shateushtein, and A. F. Plate, Zh. Org. Khim., 10, 2119-2124 (1974); Chem. Abstr., 83, 307242 (1975).
(10) R. H. Shapiro, Tetrahedron Lett., 345 (1968). In these experiments it was shown that the cis isomer is slowly converted to the trans isomer under the reaction conditions. Moreover, allylbenzene is converted to trans-1-phenyl-1-propene on prolonged treatment with methyllithium.
(11) T. A. Spencer and C. W. Leong, Tetrahedron Lett., 3889 (1975)
(12) W. G. Kofron and M. K. Yeh, J. Org. Chem., 41, 439 (1976).
(13) M. E. Jung, P. A. Blair, and J. A. Lowe, Tetrahedron Lett., 143؟ (1976).
(14) W. G. Dauben, G. T. Rivers, W. T. Zimmerman, N. C. Yang. B. Kim, and J. Yang, Tetrahedron Lett., 2951 (197ら).
(15) M. E. Jung, private communication.
(16) J. E. Stemke and F. T. Bond, Tetrahedron Lett.. 1815 (1975)
(17) J. E. Stemke, A. R. Chamberlin, and F. T. Bond, Tetrahedron Lett., 2947 (1976).
(18) The syn-methyl group absorbs at 1.78 ppm . and the anti-methyl group absorbs at 1.90 ppm . The full details of the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of stereoisomeric tosylhydrazones are the sub ect of a forthcoming publication.
(19) E. V. Dehmlow. Angew. Chem., Int. Ed. Engl., 13, 170 (1974).
(20) L. Friedman. R. L. Little, and W. R. Richle, Org. Synth., 40, 93 (1960).
(21) J. W. deHaan and L. J. M. van de Ven, Org Magn. Reson., 5. 147-154 (1973).
(22) Imperial Chemical Industries Lit., Dyestuffs Division, "Eight Peak Index of Mass Spectra". Mass Spectrometry Data Center, Aldermastron, Reading. RG 74 PR. U.K., p 50.

# Regiospecific Synthesis of Homoallylic Alcohols from Tosylhydrazones 

Michael F. Lipton and Robert H. Shapiro*<br>Department of Chemistry, University of Colorado. Boulder. Colorado 80309

Received August 12, 1977


#### Abstract

Regiospecifically generatec tosylhydrazone dianions are trapped with aldehydes and ketones yielding $\beta$-hydroxytosylhydrazone dianions. Neutralization affords $\beta$-hydroxytosylhydrazones, which may be converted with or with out isolation cleanly and in good yield to homoallylic alcohols upon trea:ment with alkyllithium reagents. A rationale is provided for the regiochemistry of this elimination. All attempts to obtain $\beta$-hydroxy ketones from the corresponding tosylhydrazone were unsuccessful.


The Eormation of alkenes from tosy hydrazones and alkyllithium reagents, ${ }^{1}$ or lithium diisopropylamide, ${ }^{2}$ has proved to be a useful reaction. In the alkyllithium reaction, alkene formation is known to proceed via a syn dianion, ${ }^{3}$ through a vinyldiimide anion, ${ }^{3}$ and to a vinyl anion, ${ }^{3,4}$ with subsequent protonation to give the product. It is also known that proton abstraction from solvent may occur, ${ }^{5}$ and in favorable cases under the influence of excess base an allyl anion may be generated. The high cis/trans ratios previously observed in acyclic systems ${ }^{6}$ coupled with the fact that a primary deuterium isotope effect is observed for the abstraction of a syn $\alpha$ proton ( $7.5 \pm 2.2$ determined for pinacolore tosylhydrazone- $\alpha-d$ by mass spectrometry) point to an E1cB mechanism for the elimination reaction. We now wish to report that the syn dianion is readily trapped on carbon with aldehydes and ketones, yielding $\beta$-hydroxytosylhydrazones (3) after protonation (Scheme I).
Our init:al report concerning the regiochemistry of dianion formation ${ }^{3}$ has been followed by much work in similar systems which also produce syn dianions upon treatment with alkyllithium reagents. ${ }^{7-9}$ Tosylhydrazones lacking $\alpha$ protons undergo reductive alkylation, ${ }^{10}$ as do aldehyde tosylhydrazones. ${ }^{11}$ The enhanced acidity of the sym $\alpha$ protons in oximes ${ }^{7,8}$ has beer: attributed to the chelation effect ${ }^{12.13}$ and a $6 \pi$ electron nonbonded through space interaction. ${ }^{14}$ Since the observed regiochemistry of proton abstraction in both oximes and tosylhydrazones is a result of kinetic control, we feel that the intermediate nitrogen monoanion (4, Scheme II) is exerting a directional effect on the incoming second equivalent of alkyllithium reagent. It is well-known that heteroatoms, by virtue of their nonbonding electron pairs, may direct lithium bases to a nearby site via a transient coordinated species (5). The dianion is reluctant to invert configuration, which strongly suggests that it is present as the internally coordinated metallocycle (6). For instance, phenylacetone tosylhydrazone yields allylbenzene in the elimination reaction. ${ }^{3}$ Internally coordinated metallocyclic intermediates have ample precedent, ${ }^{7,8,13.15}$ and their formation has been proposed only in systems which bear a 1,4 relationsinip between heteroatom and the carbon bearing the incipient negative charge.

Scheme I



3

Scheme II


The regiochemistry of tosylhydrazone dianion formation toward the less hindered side of the imino carbon has been found to be a general phenomenon, and since a strong steric bias exists in the formation of tosylhydrazones from unsymmetrical ketones, the route ketone $\rightarrow$ tosylhydrazone $\rightarrow$ dianion represents a convenient method for the regiospecific generation of enolate equivalents. In order to further test the regioselectivity of dianion formation, a symme-rical system, dibenzyl ketone tosylhydrazone, was chosen for study. The $60-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of this tosylhydrazone ( $\mathrm{CDCl}_{3}$ ) shows the methylene signals separated by 10 Hz . Conversion to dianion ( $>2$ equiv of $n$-butyllithium. THF, $0^{\circ} \mathrm{C}$ ) ${ }^{16}$ followed by quenching with $\mathrm{D}_{2} \mathrm{O}$ affords the $\alpha$-deuteriotosylhydrazone ( $>97 \%$ labeled by MS) in $83 \%$ yield. The $60-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum indicates that deuteration has occurred, within the limits of detection, only on the upfield methylene group. Similar results have been obtained at $-78^{\circ} \mathrm{C}$ with acetone tosylhydrazone. That the upfield signal in the ${ }^{1} \mathrm{H}$ NMR spectrum corresponds to the syn $\alpha$ protons mav be inferred from the $60-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of the series of tosylhydrazones of acetone, 2-butanone, 3 -methyl-2-butanone, and pinacolone, the methyl absorptions of which are displayed in Table I. The assignments of syn and anti (entries 2,3 , and 4) are in accord with the known isomer ratios for the corresponding oximes. ${ }^{17}$

Further support for the syn regiospecificity of dianion formation comes from the deuteration of a syn/anti mixture (83:17) of 2-butanone tosylhydrazone. Conversion to the dianion ( $>2$ equiv of $n$-butyllithium, THF, $-50^{\circ} \mathrm{C}$ ) followed by $\mathrm{D}_{2} \mathrm{O}$ quench ng yields a mixture of labeled tosylhydrazones. Mass spectral analvsis indicates that the mixture is labeled $81 \%$ on methyl and $19 \%$ on methylene.

Our prelimirary report ${ }^{3}$ indicated that tosylhydrazone dianions may be trapped with alkyl halides and that a large steric requirement accompanies dianion formation. Oxime dianions behave similarly. ${ }^{7,8}$ In view of the fact that attempts to trap tosylhydrazone dianions with secondary alkyl halides were unsuccessful, a large steric requirement must also be present in the reaction of the electrophile with the dianion,

Table I

| Tosylhydrazone of (syn/anti) | ${ }^{1} \mathrm{I}$ NMR absorption, $\delta$ |  |
| :---: | :---: | :---: |
|  | $\begin{gathered} \text { syn- } \\ \alpha \text {-Methyl } \end{gathered}$ | $\begin{gathered} \text { anti- } \\ \alpha \text {-Metnyl } \end{gathered}$ |
| (1) Acetone (50:50) | 1.80 | 1.92 |
| (2) 2-Butanone (83:17) | 1.80 | 1.92 |
| (3) 3-Methyl-2-butanone ( $>92:<8$ ) | 1.80 | 1.92 |
| ( $¢$ ) Pinacoone (100:0) | 1.75 |  |

and it is consistent with syn dianion formation. That the alkylated tosylhydrazone obtained upon treaiment of cyclohexanone tosylhydrazone dianion with methyl iodide bears an anti relationship for tosylamido and methyl groups and is identical to the tosylhydrazone made from the treatment of 2-methylcyclohexanone with tosylhydrazine in hot acidic ethanol may be explained in terms of an acid-catalyzed isomerization during the isolation procedure (Scheme III.)
Acetone tosylhydrazone dianion yields an equilibrium mixture (syn/anti, 83:17) of 2-butanone tosylhydrazone in $67 \%$ yield when trapped with methyl iodide and subjected to neutral isolation. Also, dibenzyl ketone tosylhydrazone-syn-$\alpha-d$ quickly isomerizes upon treatment with dilute mineral acid to a mixture of syn- and anti-labeled material. Such isomerization has not been reported for oximes.

Tosylhydrazone dianions formed at $-50^{\circ} \mathrm{C}$ with $n$-butyllithium in THF when trapped with aldehydes and ketones afford $\beta$-hydroxytosylhydrazones in good $t_{0}$ excellent yield as shown in Table II. We anticipated that based on the demonstrated regiospecificity of dianion formation (vida supra) such a reaction would provide a convenient modified crossed-aldol reaction since published procedures are available for the regeneration of ketones from tosylhydrazones. ${ }^{18-20}$ Unfortunately, all attempts to generate $\beta$-nydroxy ketones

Scheme III

from $\beta$-hydroxytosylhydrazones resulted in a retro-aldol reaction under acidic conditions or no reaction under basic conditions. Other routes to effect this seemingly facile conversion are currently under investigation.

However, treatment of $\beta$-hydroxytosylhydrazones with $>3$ equiv of alkyllithium reagent results in their smooth elimination at room temperature. For instance, acetophenone tosylhydrazone may be converted to the dianion at $-50^{\circ} \mathrm{C}$ and trapped with acetone to give 1-phenyl-3-hydroxy-3-methyl-1-butanone tosylhydrazone. Elimination of this $\beta$-hydroxytosylhydrazone with alkyllithium reagent leads to 1-phenyl3 -hydroxy-3-methyl-1-butene (cis and trans) in $76 \%$ yield.
The preferred regiochemistry of elimination in these systems, however, was found to be away from oxygen to form the homoallylic alcohol, as the data in Table III demonstrazes. The uniformly good yields, regiospecificity, convenience, ard ready availability of starting materials, as well as the apparent paucity of reliable methods for the generation of homoallylic alcohols, ${ }^{21-24}$ prompted this report.

It appears that the steric factors which govern the regiochemistry of dianion formation, and hence elimination, in tosylhydrazones are not operative in 8 -hydroxytosylhydra-

Table II. $\boldsymbol{\beta}$-Hydroxytosylhydrazones from Tosylhydrazones ${ }^{a}$

| Tosylhydrazone of | Electrophile | Product (tosylhydrazone of) | Yield, \% | $\begin{gathered} \mathrm{Mp} \\ \text { (dec), }{ }^{\circ} \mathrm{C} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Acetone | Acetone | 2-Hydroxy-2-methyl-4-pentanone | 57 | 134.0-135.5 |
|  | Propionaldehyde | 4-Hydroxy-2-hexanone | 78 | 131.5-132.0 |
| 2-Butanone | Acetone | 2-Hydroxy-2-methyl-4-hexanone | 61 | 130.5-132.5 |
|  | Propionaldehyde | 5-Hydroxy-3-heptanone | 74 | 132.0-133.0 |
| Cyclohexanone | Acetone | 2-(2-Hydroxy-2-propyl)cyclohexanone | 79 | 153.5-155.0 |
|  | Propionaldehyde | 2-Propyl(1-hydroxy)cyclohexanone | 74 | 138.0-141.0 |
| Phenylacetone | Acetone | 1-Phenyl-4-hydroxy-4-methyl-2-pentanone ${ }^{\text {b }}$ | 80 | 128.0-130.0 |
|  | Propionaldehyde | 1-Phenyl-4-hydroxy-2-hexanone | 77 | 136.5-38.0 |
| Acetophenone | Acetone | 1-Phenyl-3-hydroxy-3-methyl-1-butanone | 80 | 134.0-37.0 |

${ }^{a}$ All $\beta$-hydroxytosylhydrazones had spectral data consistent with the assigned structure (see Experimental Section). ${ }^{b}$ This was the only compound obtained as a single isomer; all others were syn/anti mixtures by NMR.

Table III. Homoallylic Alcohols ${ }^{a}$ from Tosylhydrazones ${ }^{b}$

| Tosylhydrazone <br> of | Electrophile |  | Yield, <br> $\%$ | Product |
| :--- | :--- | :--- | :--- | :--- |

${ }^{a}$ All homoallylic alcohols had spectral data consistent with the assigned structure (see Experimental Section). ${ }^{6}$ The intermediate $\beta$-hydroxytosylhydrazones were not isolated ${ }^{c}$ Pressures are indicated in parentheses.


Scheme IV
Scheme V

zones. Alth.ough $\beta$-branching effects cannot be ruled out from the above series of $\beta$-hydroxytosylhydrazones, elimination of 2 -methyl-5-hydroxy-3-heptanone tosylhydrazone dianion (12, Scheme IV) should produce allylic alcohol 13 in a sterically controlled reaction. In fact, elimination of this dianion (generated in situ by trapping 3 -methyl-2-butanone tosylhydrazone dianion with aceteldehyde) with methyllithium leads to a 1.0:1.1 mixture of allylic alcohol 13 and homoallylic alcohol 14. Since the tertiary side of both tosylhydrazones ${ }^{3}$ and oximes $^{7,8}$ is reluctant to form a syn dianion, it appears that the elimination of $\beta$-hydroxytosylhydrazones may involve the abstraction of an anti $\alpha$ proton. Such an interpretation is not unreasonable in view of the fact that the negatively charged oxygen atom should by the inductive effect decrease the acidity of the $\operatorname{syn} \alpha$ protons. Although an isomerization to form 16 under the reaction conditions has not been ruled out, it seems unlikely in view of the results obtained for elimination of 12 above, and those of Kofron. ${ }^{7}$ The possible elimination pathways are depicted in Scheme V. Although a concerted elimination involving the generation of a trianion intermediate may be envisioned, no trianion has teen trapped, and no evidence is presented for its formation.

We also wish to report that chloro=ormates make excellent traps for tosylhydrazone dianions. For example, cyclopentanone tosylhydrazone is converted via the dianion and trapping with ethyl chloroformate into the ccrresponding ethyl ester in $76 \%$ yeld. Since lithium diisopropylamide is effective in tosylhydrazone eliminations in the presence of ester functions, ${ }^{2}$ this method appears to be promising for the production of $\beta, \gamma$-unsaturated esters.

## Experimental Section

Materials. Tosylhydrazine was conveniently prepared according to the procedure of Friedman. ${ }^{25}$ Ketones were purchased from commercial suppliers and used without purifization. $n$-Butyllithium was purchased as pentane solutions from Ventron and stored at $-5^{\circ} \mathrm{C}$. Methyllithium was purchased from Ventron as ethereal solutions and stored at ambient temperature. Reagent grade tetrahydrofuran was purchased from Mallinckrodt and distilled from lithium aluminum hydride prior to use. $\mathrm{D}_{2} \mathrm{O}$ was purchased from Merck. Acetone was distilled foor $\mathrm{KMnO}_{4}$ prior to use in the trapping experiments. Propionaldehyde was distilled prior to use. Reactions were carried out under a stream of dry nitrogen in glassware oven-dried at $140^{\circ} \mathrm{C}$ overnight.

Instrumentation. All analytical gas chromatography analyses were done on a Varian Aerograph instrument (FID). Preparative gas chromatography work was done on a Varian 1600 instrument using a $6 \mathrm{ft} \times 0.25 \mathrm{in} .8 \%$ DC-550 column. Infrared spectra were recorded on a Perkin-Elmer Infracord spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained with either a Varian A-60A instrument or a Varian T-60. Mass spectra were obtained on a Varian $\mathrm{CH}-\jmath$ mass spectrometer at $70-\mathrm{eV}$ :onzing energy. Melting points were determined using a Thomas-Hoover capillary melting point apparatus and are uncorrected.

Procedures. Tosylhydrazones: General Procedure. In a $50-\mathrm{mL}$ Erlenmey $\in \mathrm{r}$ flask. tosylhydrazine $(9.3 \mathrm{~g}, 50 \mathrm{mmol})$ is dissolved in 20 mL of ethanol containing 1 drop of concentrated HCl on a steam bath.


The flask is allowed to cool briefly, the ketone ( 50 mmcl ) is added, and the flask is swirled and heated for 1 min . After cooling to room temperature, the flask is cooled to $-15^{\circ} \mathrm{C}$ in the freezer, and the colorless crystals are isolated by suction filtration. Recrystallization from ethanol affords the tosylhydrazone in $78-95 \%$ yield.
$\beta$-Hydroxytosylhydrazones: General Procedure. The tosylhydrazone ( 10 mmol ) is dissolved in 50 mL of THF in a $100-\mathrm{mL}$ two-neck round-bottom flask protected from moisture and equipped with a rubber serum cap and magnetic stirrer. The solution is cooled to $-50^{\circ} \mathrm{C}$ by means of a dry ice/2-propanol bath and titrated to pale yellow with 10 mmol of $n$-butyllithium solution. Ar additional 10 mmol of $n$-buty $\cdot$ lithium solution is added, the orange to deep red solution is alloued to stir for 1 min , and 11 mmol of acetone or propionaldehyde is added neat. The color bleaches immediately, and the pale yellow to colorless solution is allowed to warm with stirring to room temperature. It is then treated with 25 mL of $10 \% \mathrm{HCl}$ and salted, the layers are separated, and the aqueous phase is extracted with 25 mL of THF. The combined organic extracts are dried ( $\mathrm{MgSO}_{4}$ ), and the solvent is removed on the rotory evaporator, leaving pale yellow crys-als. The crude material is recrystallized from warm aqueous ethanol.

Homoallylic Alcohols: General Procedure. In a $100-\mathrm{mL}$ twoneck round-bottom flask protected from moisture and equipped with a magnetic stirrer, reflux condenser, and rubber serum cap is placed 10 mmol of the -osylhydrazone and 50 mL of THF. The solution is cooled to $-50^{\circ} \mathrm{C}$ by means of a dry ice/2-propanol bath and is titrated to pale yellow with 10 mmol of $n$-butyllithium solution An additional 10 mmol of $n$-butyllithium solution is added, the orarge to deep red solution is allowed to stir for 1 min , and the mixture is then quenched with acetone or propionaldehyde. After warming to room temperature, 20 mmol of metriyllithium solution is added, and the crange solution is allowed to stir for 6.0 h at room temperature. Hydrolysis is effected with dilute HCl at $0^{\circ} \mathrm{C}$, and the aqueous phase is saturated with salt and extracted with three $10-\mathrm{mL}$ portions of THF. The combined organic phase is extracted with two $16-\mathrm{mL}$ portions of 1 M NaOH , saturated with salt, washed with brine, and concentrated to $\sim 5 \mathrm{~mL}$ by flash evaporation. The product is obtained by chromatography on alumina or by distillation.

Spectral data for the $\beta$-hydroxytosylhydrazones are as follows ("exchanges" refers to protons exchangeable with $\mathrm{D}_{2} \mathrm{O}$ ).

2-Hydroxy-2-methyl-4-pentanone tosylhydrazone: 'H NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \dot{c} 1.11,1.23(6 \mathrm{H}$, pair of s$), 1.87,1.93(3 \mathrm{H}$, pair of s$)$, 2.33-2.53 ( $3 \mathrm{H}, \mathrm{m}, 1$ exchanges), $2.42(3 \mathrm{H}, \mathrm{s}), 7.20-8.00(5 \mathrm{H}, \mathrm{m}, 1$ exchanges); IR ( $\overline{\text { IIlm}}$ ) $3325,3000,2840,1600,1565,1310,1145,935$, $810,720 \mathrm{~cm}^{-1}$; NS mie (relative intensity) $284\left(\mathrm{M}^{++}, 1\right), 157(7), 111$ (8), 139 (9), 91 ( 23 ), 31 (28), 226 (36), 59 (59), 71 (100).

4-Hydroxy-2-hexanone tosylhydrazone: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.89(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.13-1.61(2 \mathrm{H}, \mathrm{m}), 1.83,1.91(3 \mathrm{H}$, pair of s), 2.18-2.49' $2 \mathrm{H}, \mathrm{m}$ ), $2.41(3 \mathrm{H}, \mathrm{s}), 2.84(1 \mathrm{H}, \mathrm{s}$, exchanges), 3.50-3.93 ( $1 \mathrm{H}, \mathrm{m}$ ), 7.15-7.96 ( $5 \mathrm{H}, \mathrm{m}, 1$ exchanges); IR (film) 3340, $3000,2800,1660,1570,1325,1155,1075,920,840,815,700 \mathrm{~cm}^{-1}$; MS $m / e$ (relative intensity) $284\left(\mathrm{M}^{+}, 1\right), 92(10), 157(10), 111(16), 41$ (19), 46 (22), 91 (25), 226 (27), 45 (33), 43 (35), 59 (52), 31 (56), 71 (100). 2-Hydroxy-2-methyl-4-hexanone tosylhydrazone: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \& 0.98(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 1.15(6 \mathrm{H}, \mathrm{s},, 2.13(2 \mathrm{H}, \mathrm{q}$, $J=7.5 \mathrm{~Hz}), 2.35(3 \mathrm{H}, \mathrm{s}), 2.35(2 \mathrm{H}, \mathrm{s}), 3.45(1 \mathrm{H}, \mathrm{s}$, exchanges), 7.27 $(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.90(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.92(1 \mathrm{H}$, broad s, exchanges); IR (film) $3300,2950,2880,1610,1565,1355,1305,1150,940$, $810,755,705 \mathrm{~cm}^{-1}$; MS m/e (relative intensity) $298\left(\mathrm{M}^{+}, 2\right), 125(4)$, 143 (6), 59 (7), 169 (8), 157 (9), 240 (23), 91 (28), 85 (100).
5-Hydroxy-3-heptanone tosylhydrazone: ' $11 \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.89(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 0.99(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.43(2 \mathrm{H}$, broad $\mathrm{q}, J=7 \mathrm{~Hz}), 2.03-2.52(4 \mathrm{H}, \mathrm{m}), 2.41(3 \mathrm{H}, \mathrm{s}), 3.22(1 \mathrm{H}, \mathrm{s}$, exchanges), $3.74(1 \mathrm{H}, \mathrm{m}), 7.20(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.75(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$,
7.78 (1 H, s, exchanges); IR (film) 3490. 3100. 2980. 1660, 1595, 1315, $1160,910,815,700 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{e}$ (relative intensi:y) $298\left(\mathrm{M}^{+\cdot}<1\right)$, 1.57 (10), 226 (12), 92 (13), 39 (16), 59 (16), 65 (18), 67 (18), 70 (18), 41 (30), 42 (33), 91 (34), 43 (51), 71 (64), 111 (100).

2-(2-Hydroxy-2-propyl)cyclohexanone tosylhydrazone: ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.16 .1 .31$ ( 6 H. pair of s$), 1.16-2.51(8 \mathrm{H} . \mathrm{m})$, $2.41(3 \mathrm{H}, \mathrm{s}), 2.86(1 \mathrm{H}, \mathrm{t} . J=6 \mathrm{~Hz}), 3.04(1 \mathrm{H}, \mathrm{s}$, exc.anges), $7.0 \mathrm{f}-8.04$ ( $5 \mathrm{H}, \mathrm{m}, 1$ exchanges); IR (film) 3320, 2850. 1575. 1550, 1310. 1155, 1025, $955,810,700 \mathrm{~cm}^{-1}$; MS m/e (relative intensity) $324\left(\mathrm{M}^{+},<1\right.$ ), 112 (9), 266 (11), 81 (12), 41 (13), 67 (16), 91 (16), 43 (22), 31 (25), 151 (81), 111 (100).

2-Propyl(1-hydroxy)cyclohexanone tosylhydrazone: 'H NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.90,1.00(3 \mathrm{H}$, pair of $\mathrm{t}, J=7 \mathrm{~Hz}), 1.10-2.65 \cdot 10 \mathrm{H}$, $\mathrm{m}), 2.43(3 \mathrm{H}, \mathrm{s}), 2.82(1 \mathrm{H}$, broad t), $3.02(1 \mathrm{H}, \mathrm{s}$, exchanges). §. 67 (1 $\mathrm{H}, \mathrm{m}), 7.12-8.14$ ( $5 \mathrm{H}, \mathrm{m}, 1$ exchanges); IR (film) 3400. 2900. 2810. $1650,1575,1325,1160,1030,815,705 \mathrm{~cm}^{-1}$; MS m/e (relative ntensity) 324 ( $\mathrm{M}^{+\cdot},<1$ ), 112 (9), 139 (11), 67 (15), 41 (16), 266 (16), 81 (18), 91 (19), 151 (20), 154 (29). 31 (34), 111 (100).

1-Phenyl-4-hydroxy-4-methyl-2-pentanone tosylhydrazone: $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{( } \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \dot{\varepsilon} 1.14(6 \mathrm{H}, \mathrm{s}), 2.31(2 \mathrm{H} . \mathrm{s}), 2.43(3 \mathrm{H}$, s). 3.06 ( $1 \mathrm{H}, \mathrm{s}$, exchanges), 3.47 ( $2 \mathrm{H} . \mathrm{s}$ ) $, 6.95-7.97110 \mathrm{H} . \mathrm{m}, 1$ exchanges); IR (film) 3300, 2870, 2750, 1700, 1570, 1300, 1145, 1040, 810, 740, 695 $\mathrm{cm}^{-1}$; MS m/e (relative intensity) $360\left(\mathrm{M}^{+}, 2\right), 31(13), 115(: 3), 92$ (15), 65 (17), 187 (17), 43 (18), 117 (24), 118 (29), 130 (31), 302 (37), 59 (76), 91 (87), 147 (100).

1-Phenyl-4-hydroxy-2-hexanone tosylhydrazone: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.90(3 \mathrm{H}$. broad $\mathrm{t}, J=7 \mathrm{~Hz}) .1 .45(2 \mathrm{H}$, broad q. $J$ $=7 \mathrm{~Hz}) .2 .37(3 \mathrm{H}, \mathrm{s}), 2.81(2 \mathrm{H}$, broad s$), 2.90(2 \mathrm{H} . \mathrm{d}, J=6.5 \mathrm{~Hz}), 3.18$ (1 H, s, exchanges), $3.82(1 \mathrm{H}$. broad $\mathrm{t} . J=6.5 \mathrm{~Hz}), 7.20-8.06110 \mathrm{H}$. $\mathrm{m}, 1$ exchanges); IR (film.) $3320,2950,2850,156 \mathrm{C}, 1540.1310,1150$, $1065,930,810,750,690 \mathrm{~cm}^{-1}$; MS m/e (relative intensity) $360\left(\mathrm{M}^{+\cdot}\right.$. 4), 191 (13). 59 (14), 53 (15), 172 (15), 39 (17), 41 (17), 129 (19), 1::1 (20), 115 (22), 105 (29), 92 (30), 67 (34), 61 (35). 176 (38), 104 (39). 79 (46), 103 (64), 173 (75), 91 (90', 133 (100).

1-Phenyl-3-hydroxy-3-methyl-1-butanone tosylhydrazone: $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.20(6 \mathrm{H}, \mathrm{s}), 2.42(3 \mathrm{H} . \mathrm{s}), 2.93(2 \mathrm{H}, ;), 3.03$ (1 H, s, exchanges), 7.17-8.06 ( $9 \mathrm{H}, \mathrm{m}, 1$ exchanges); IR (film) 3450. $3100,3000,1600,1340.1170,1090.910,820.805,760,695 \mathrm{~cm}^{-1}$ : MS $\mathrm{m} / \mathrm{e}$ (relative intensity) $346\left(\mathbf{M}^{+}, 3\right), 152(10), 1 \mathrm{C} 5(11), 132(11), 78$ (12), 134 (14), 173 (22), 65 (24), 77 (25), 288 (26), 92 (39), 59 (47), 91 (47), 103 (50), 104 (50), 43 (54), 133 (100).

Spectral data for the t.omoallylic alcohols are as follows.
4-Hydroxy-4-methyl-1-pentene: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.17$ ( 6 H. s) $2.12(1 \mathrm{H}, \mathrm{s}$, exchanges), $2.18(2 \mathrm{H}$, broad d, $J=7 \mathrm{~Hz}) .4 .92(1$ $\mathrm{H}, \mathrm{m}), 5.18(1 \mathrm{H}, \mathrm{m}), 5.5(1-6.27(1 \mathrm{H}, \mathrm{m}): \mathrm{MS} \mathrm{m} / \mathrm{e}$ (relative intensity) $100\left(\mathrm{M}^{+},<1\right), 41(6), 7:(10), 57(14), 43(20), 44$ (39), 42 (83), 59 (100).

4-Hydroxy-1-hexene: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4}, \mathrm{Me}_{4} \mathrm{~S}\right) \delta 0.91(3 \mathrm{H}, \mathrm{t}, J=$ 7 Hz ). 1.12-1.71 (2 H. m ). 2.18 ( 2 H , broad t ). 3.33 ( $1 \mathrm{H} . \mathrm{s}$, exchanges), $3.50(1 \mathrm{H}, \mathrm{m}), 4.73-5.23 \mathrm{i} 2 \mathrm{H}, \mathrm{m}) .5 .50-6.21(1 \mathrm{H}, \mathrm{m})$; IR (film) 3200 . 2950.2800, 1710, 1430, $100.955 .910,77.5 \mathrm{~cm}^{-}:$MS m/e (relative intensity) $100\left(\mathrm{M}^{+},<1\right) 58(4), 60(4), 28$ (6). 42 (9), 57 (10), 71 (10), 39 (11), 27 (12), 29 (12), 43 (14), 41 (31), 31 (46), 59 (100).

5-Hydroxy-5-methyl-2-hexene (cis and trans): ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CCl}_{4}$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.13,1.17(6 \mathrm{H}$, pair of s$), 1.25(2 \mathrm{H}, \mathrm{s}), 1.62(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz})$, 2.04-2.30 ( $2 \mathrm{H}, \mathrm{m}$ ), 3.30 ( $1 \mathrm{H} . \mathrm{s}$, exchanges), $5.37-5.68(2 \mathrm{H}, \mathrm{m})$; IR (film) 3300, 2900. 1640, 1450, 1365, 1145, 1080, 1050. 965, ᄃ05, 780 $\mathrm{cm}^{-1} ; \mathrm{MS} \mathrm{m} / e$ (relative intensity $114\left(\mathrm{M}^{+} .<1\right) .79$ (5). 42 (7). 60 (8). 99 (8), 53 (9), 96 (10), 55 17), 39 (18), 56 (21), 81 (23), 41 (32), 43 ( 65 ), 59 (100).

5-Hydroxy-2-heptene (cis and trans): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CCl}_{4} . \mathrm{Me}_{4} \mathrm{Si}\right)$ $\delta 1.08(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.23(2 \mathrm{H}, \mathrm{m}), 1.54-1.78(3 \mathrm{H}, \mathrm{m}), 2.13(2 \mathrm{H}$, $\mathrm{q}, J=7 \mathrm{~Hz}$ ), $3.42(1 \mathrm{H}, \mathrm{s}$, exchanges), $3.25-3.71(1 \mathrm{H}, \mathrm{m}), 5.35-5.67$ ( $2 \mathrm{H}, \mathrm{m}$ ); IR (film) 3350, 2900. 1650, 1460, 1360, _045, 1025, 960, 900, $780,680 \mathrm{~cm}^{-1} ;$ MS $m / e$ (relative intensity) $114 \mathrm{I}^{++\cdot},<1$ ), $39(5), 51$ (5), 54 (5), 41 (6), 45 (6), 81 (6), 58 (8), 87 (8), 53 (10), 67 (12), 38 (20), 69 (22), 85 (23), 55 (27), 57 (35), 43 (37), 56 (80), 40 ( 87 ), 59 100).

3-(2-Propyl-2-hydroxy)-1-cyclohexene: ${ }^{1} \mathrm{H}$ NMR (CCl ${ }_{4} . \mathrm{Me}_{4} \mathrm{Si}$ ) $\delta 1.10,1.15(6 \mathrm{H}$, pair of s), 1.18-2.35 ( $6 \mathrm{H}, \mathrm{m}$ ), $3.13(1 \mathrm{H}, \mathrm{s}$, exchanges), 3.23-3.79 ( $1 \mathrm{H}, \mathrm{m}$ ), $5.75(2 \mathrm{H}, \mathrm{m})$; IR (film) 3250, 2830, 1620, 1420, $1360,1140,1040,950,910,890,825,765,720 \mathrm{~cm}^{-1} ; \mathrm{MS}$ m/e (relative intensity) $140\left(\mathrm{M}^{+\cdot}, 1\right), 53(5), 81(5), 107(5), 122(5), 31(6), 82(6), 54$ (7), 41 (9), 79 (10), 67 (13), 59 (100).

3-(1-Hydroxy-1-propyl)-1-cyclohexene: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4} . \mathrm{Me}_{4} \mathrm{Si}\right)$ $\delta 0.94(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.11-2.40(8 \mathrm{H} . \mathrm{m}), 3.13(1 \mathrm{H} . \mathrm{s}$, exchanges), 3.02-3.93 ( $2 \mathrm{H}, \mathrm{m}$ ), 5.77 ( $2 \mathrm{H}, \mathrm{m}$ ); IR (film) $3250,2830,1620,1440$, 1110, $965,930,875,780,720 \mathrm{~cm}^{-1}$; MS m/e (re-ative intensity) 140 $\left(\mathrm{M}^{+\cdot},<1\right), 66(5), 83$ (5), 93 (5), 122 (5), 65 (6), 68 (6), 80 (7), 44 (8), 51 (8), 57 (11), 77 (11), 55 (13). 79 (17), 81 (17), 53 (19), 54 (49). 59 (63), 52 (82), 67 (100).

1-Phenyl-4-hydroxy-4-methyl-1-pentene (cis and trans): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.17(6 \mathrm{H}, \mathrm{s}), 2.45(2 \mathrm{H}, \mathrm{dd}, J=7,2 \mathrm{~Hz}), 3.05(1$ H, exchanges), $5.57-6.67(2 \mathrm{H}, \mathrm{m}), 7.23(5 \mathrm{H}, \mathrm{s})$ : IR (film) 3300,2900 , $1625,1580,1555,1480,1365,1130,1070,1020,945,910,760,695 \mathrm{~cm}^{-1}$; MS $m / e$ (relative intensity) $176\left(\mathrm{M}^{+-},<1\right), 119(6), 129$ (7), 116 (8), 39 (9), 128 (9), 158 (10), 41 (13), 91 ( 25$), 115$ (18), 143 (19), 117 (29), 43 (33). 118 (59), 59 (100).

1-Phenyl-4-hydroxy-1-hexene (cis and trans): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right.$, $\left.\mathrm{Me}_{4} \mathrm{Si}\right) \delta 0.78(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.30(2 \mathrm{H}, \mathrm{m}), 2.19(2 \mathrm{H}, \operatorname{broad} \mathrm{q}), 3.19$ ( $1 \mathrm{H}, \mathrm{s}$, exchanges), $3.35(1 \mathrm{H}, \mathrm{m})$, , $.17(2 \mathrm{H}, \mathrm{m}), 7.05(5 \mathrm{H}, \mathrm{m})$; IR (film) $3400,2950,2750,1625,1560,130 \mathrm{C}, 1140,1000,935,900,810,760,700$ $\mathrm{cm}^{-1}$; MS m/e (relative intensity) $78(5), 43(5), 129(6), 10 Ђ(6), 51$ (7), 57 (8), $105(10), 77(10), 41(10), 119(11), 116(11), 176\left(\mathrm{M}^{+}, 12\right)$, 31 (15), 115 (18), 91 (20), 59 (33), 117 (53), 118 (100).

Cyclopentanone Tosylhydrazone. In a $50-\mathrm{mL}$ Erlenmeyer flask, tosylhydrazine ( $9.3 \mathrm{~g}, 50 \mathrm{mmol}$ ) was dissolved in 20 mL of ethanol containing 1 drop of concentrated HCl on a steam bath. The flask was allowed to cool briefly, and $4.2 \mathrm{~g}(50 \mathrm{mmol})$ of cyclopentanone was added and the flask swirled. Vigorous boiling occured, and on cooling to room temperature a colorless precipitate formed. Furthe: cooling in the freezer followed by suction filtration afforded $12.7 \mathrm{~g}(94 \%)$ of cyclopentanone tosylhydrazone mp $180-184{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.75(4 \mathrm{H}, \mathrm{m}), 2.22(4 \mathrm{H}, \mathrm{m}), 2.45(3 \mathrm{H}, \mathrm{s}), 7.33(2 \mathrm{H}$, $\mathrm{d}, J=8 \mathrm{~Hz}$ ), $7.75(1 \mathrm{H}$, broad si), $7.92(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$; MS m/e (relative intensity) $140(10), 157(10), 53(14), 252\left(\mathbf{M}^{+\cdot}, 16\right) .80(17)$, 65 (18), 68 (21), 91 (32), 96 (34), 41 (38), 67 (56), 97 (100).

2-Carboethoxycyclopentanone Tosylhydrazone. Cyclopentanone tosylhydrazone ( $1.26 \mathrm{~g}, 5.0 \mathrm{mmcl}$ ) was dissolved in 25 mL of THF in a $50-\mathrm{mL}$, two-neck round-bottom fask protected from moisture and equipped with a reflux condenser, rubber serum cap, and magnetic stirrer. The solution was cooled to $-50^{\circ} \mathrm{C}$ by means of a dry ice/2propanol bath, and $5.0 \mathrm{~mL}(10 \mathrm{mmol})$ of a 2.0 M solution of $n$-butyllithium in pentane was added slowly with a syringe. After $\sim 1 \mathrm{~min}$ of stirring, the red solution was treated with $0.55 \mathrm{~g}(5 \mathrm{mmol})$ of freshly distilled ethyl chloroformate, the ccld bath removed, and the yellow solution allowed to stir for 30 min . Neutralization with dilute HCl , salting, and separation of the layers were followed by extraction of the aqueous phase with THF $(3 \times 10 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$ and removal of the solvent on the rotoevaporator afforded a yellow oil which on recrystallization from ethanol/water yielded $1.22 \mathrm{~g}(76 \%)$ of 2 carboethoxycyclopentanone tosylhydrazone (syn/anti mixture) as pale vellow crystals, $\mathrm{mp} 134-135^{\circ} \mathrm{C}$ dec. Major isomer [minor isomer]: ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) \delta 1.23[1.17],(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.50-2.83(7$ H. m). $2.45(3 \mathrm{H}, \mathrm{s}), 4.12[4.09](2 \mathrm{H} . \mathrm{d}, J=7 \mathrm{~Hz}), 6.80-8.24$ symmetrical complex ( $4 \mathrm{H} . \mathrm{m}$ ), $8.45(1 \mathrm{H}$. broad s); MS m/e (relative intensity) $251(5), 140(6), 122(7), 139(8), 1419), 124(19), 155(11), 4 乏(12), 121$ (12), 168 (13), $80(16), 65(17), 324\left(\mathrm{M}^{+}, 20\right), 95(25), 41(26), 91(28)$, 67 (79), 123 (99), 169 (100).

Registry No.-Acetone tosylhydrazone, 3900-79-6, (E)-2-butanone tosylhydrazone, 62460-90-6; ( $Z$ )-2-butanone tosylhydrazone, 62460-91-7: (E)-3-methyl-2-butanone tosylhydrazone, 64884-92-0; (Z)-3-methyl-2-butanone tosylhydrazone, 64884-93-1; ( $Z$ )-pinacolone tosylhydrazone, 64884-94-2; 2-butanone tosylhydrazone, 4031-16-7; cyclohexanone tosylhydrazone, 4545-18-0; phenylacetone tosylhydrazone, 14195-24-5; acetophenone tosylhydrazone, 4545-21-5; propionaldehyde. 123-38-6; $(E)$-2-hycroxy-2-methyl-4-pentanone tos-- Ihydrazone. 64884-95-3: (Z)-2-hydroxy-2-methyl-4-pentanone tosylhydrazone, 64884-96-4; (E)-4-hydroxy-2-hexanone tosylhydrazone, 64884-97-5; ( $Z$ )-4-hydroxy-2-hexanone tosylhydrazone, 64884-98-6; (E)-2-hydroxy-2-methyl-4-hexanone tosylhydrazone, 64884-99-7; (Z)-2 hydroxy-2-methy-4-hexanone tosylhydrazone, 64885-00-3; (E)-5-hydroxy-3-heptanone t-sylhydrazone, 64885-01-4; (Z)-5-hydroxy-3-heptanone tosylhydrazone, 64385-02-5; (E)-2-(2-hy-droxy-2-propyl)cyclohexanone tosylhydrazone, 64885-03-6; (Z)-2-(2-hydroxy-2-propyl)cyclohexanone tosylhydrazone, 64885-04-7; 2-propyl(1-hydroxy)cyclohexanone tosylhydrazone, 64885-05-8; 1-phenyl-4-hydroxy-4-methyl-2-pentanone tosylhydrazone, 64885-06-9; (E)-1-phenyl-4-hydroxy-2-hexanone tosylhydrazone, 64885-07-0; (Z)-1-phenyl-4-hydroxy-2-hexanone tosylhydrazone, $6 \leq 885-08-1$; (E)-1-phenyl-3-hydroxy-3-methyl-1-butanone tosylh ${ }^{-1}$ drazone, 64885-09-2; ( $Z$ )-1-phenyl-3-hydrozy-3-methyl-1-butanone tosylhydrazone, 64884-85-1; 2-hydroxy-2-methyl-4-pentene, 624-97-5; 4-hydroxy-1-hexene, 688-99-3; ( $Z$ )-2-hydroxy-2-methyl-4-hexene, 19639-96-4; $(E)$-2-hydroxy-2-met hyl-4-hexene. 19639-97-5; ( $Z$ )-5-hydroxy-2-heptene. 64884-86-2; ( $E$ )-5-hydroxy-2-heptene, 64884 -87-3; 3-(2-propyl-2-hydroxy)-1-cyclohexene, 5723-91-1; 3-(1-hy-droxy-1-propyl)-1-cyclohexene, 64884-88-4; (Z)-1-phきnyl-4-hy. droxy-4-methyl-1-pentene, $6 \div 884-89-5$; (E)-1-phenyl-4-hydroxy-4-methyl-1-pentene, 55552-33-0: (Z)-1-phenyl-4-hydroxy-1-hex-
ene, 54C85-30-7; ( $E$ )-1-phenyl-4-hydrcxy-1-hexene, 54985-35-2: tosylhydrazine, 1576-35-8; 3-methyl-2-butan one, 563-80-4; pinacolone, 75-97-8; acetone, 67-64-1; 2-butanone, 78-93-3; cyclohexanone, 108-94-1; phenylacetone, 103-79-7; acetophenone, 98-86-2; cyclopentanc ne, 120-92-3; cyclopentanone tosylhydrazone, 17529-98-5; ethyl chloroformate, 541-41-3; ( $Z$ )-2-carboethoxycyclopentanone tosylhydrazone, 64884-90-8; ( $E$ )-2-carboethoxycyclopentanone tosylhydrazone, 64884-91-9.

## References and Notes

(1) For a review, see R. H. Shapiro. Org. Reac!.. 23, 405 (1976).
(2) 1a) F. J. Kolonko and R. H. Shapiro, J. O־g. Chem., companion paper, this issue; (b) C. A. Bunnell and P. L. Fuchs, J. Am. Chem. Soc., in press; (c) P. L. Fuchs, J. Org. Chem., 41, 2937 (197ら)): (d) S. D. Yound and W. T. Burden. Tetrahedron Lett., 4019 (1976).
(3) R. H. Shapiro, M. F. Lipton, K. J.Kolonko, R. A. Buswell, and L. A. Capuano. Tetrahedron Lett., 1811 (1975).
(4) J. E. Stemke and F. T. Bond, Tetrahedron Lett., 1815 (1975).
(5) R. H. Shapiro and M. J. Heath, J. Am. Chem. Soc., 89, 5734 (1967).
(6) R. H. Shapiro, Tetrahedron Lett., 345 (1968).
(7) W. G. Kofron and M. K. Yeh, J. Org. Chem., 41, 439 (1976).
(8) M. E. Jung, P. A. Blair, and J. A. Lowe, Tetrahedron Lett., 1439 (1976).
(9) R. M. Sancifer. S. E. Davis. and C. F. Beam. Synth. Commun., 6, 339 (1976).
(10) R. H. Shapiro and T. Gadek. J. Org. Chem., 39, 3418 ; 1974).
(11) E. Vedejs and W. T. Stolle, Tetrahedron Lett., 135 (1977).
(12) F. E. Henocn. K G. Hampton, and C. R. Hauser. J. Am. Chem. Soc.. 91, 676 (1969)
(13) F. N. Jones and C. R. Hauser, J. Org. Chem., 27, 701 (1962).
(14) N. D. Epiotis. J. Am. Chem. Soc., 95, 3087 (1973).
(15) W. C. Still and T. L. Mcdonald, J. Am. Chem. Soc.. 96, 5561 (1974).
(16) Due to solusility problems, the reaction was run at the elevated temperature.
(17) G. J. Karabatosos and R. A. Taller, Tetrahedron. 24, 3347 (1968).
(18) T. Ho and C M. Wong. J. Org. Chem., 39, 3453 (1974).
(19) G. Rosini, u. Org. Chem., 39, 3504 (1974).
(20) A. Bahati, Chem. Commun.. 476 (1965).
(21) M. P. Dryfuss. J Org. Chem., 28, 3269 (1963). anc references cited therein.
(22) E. J. Corev and M. F. Semmelhack, J. Am. Cherr. Soc.. 89, 2755 (1967).
(23) J. A. Katzenellenbogen and R. S. Lenox. J. Org. Cherr., 38, 326 (1973).
(24) M. Naruse, K. Utimoto, and H. Nozaki, Tetrahedron Lett., 2741 (1973).
(25) L. Friedmar. R. L. Little, and W. R. Reichle, Org. Synth., 40, 93 (1960).

# Studies on Selective Preparation of Aromatic Compounds. <br> 15. The Lewis Acid Catalyzed Transalkylation of Some tert-Butyldiphenylmethanes and -ethanes in Aromatic Solvents ${ }^{1}$ 

Masashi Tashiro,* Takehiko Yamato, and Gouki Fukata<br>Research Institute of Industrial Science, Kyushu University 86, Hakozuki, Higashi-ku, Fukuoka 812, Japar.

Receiced April 27, 1977


#### Abstract

The Lewis acid catalyzed transakylation of tert-butyl derivatives of diphenylmethanes (2a-f) and -ethanes (25a-g) in benzene or toluene was carried out under various conditions. It was found in the transalkylation of 2 that the $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transbenzylation with trans-tert-butylation was observed and the $\mathrm{TiCl}_{4}$ transbenzylation of electron-rich tert-butyldiphenylmethanes having highly steric crowdedness such as $2,2^{\prime}, 6,6^{\prime}$-tetramethyl(2d) and $2,2^{\prime}, 3,3^{\prime}$-tetramethyldiphenylmethane (2f) took place without trans-tert-butylation. However, no $\mathrm{AlC}_{-3} \mathbf{3}^{-}$ $\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transalsylation of 25 was observed and only trans-tert-butylation in benzene took place to afford the desired $2,2^{\prime}$-dimethyl-(27b), 2, $2^{\prime}$-diethyl-(27c), $2,2^{\prime}$-dimethoxy-(27d), 2, $2^{\prime}, 3,3^{\prime}$-tetramethyl-(27e), and $2,2^{\prime}, 6,6^{\prime}$-tetramethyldiphenylethane (27f). Based on the above result it could be concluded that tert-butyl grcup can be used as a positional protective group for the preparation of some diphenylethanes but not diphenylmethanes.


Although $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ does not catalyze the transbenzylation and isomerization of diphenylmethanes, ${ }^{2-8}$ it catalyzes transbenzylation of some $4,4^{\prime}$-dihydroxydiphenylmethane derivatives in toluene as was recently reported. ${ }^{9}$
We undertook the present study to obtain more detailed information about factors influencing the above novel transbenzylation of diphenylmethanes and in general to gain a better understanding of the mechanism of transalkylation.

## Results and Discussion

Preparation of Some tert-Butyldiphenylmethanes. The $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed tert-butylation of diphenylmethane (1) with 2,6 -di-tert-butyl-p-cresol ${ }^{10}$ afforded $4.4^{\prime}$-di-tert butyldiphenylmethane (2a) in good yield. 4,4'-Di-tert-butyl-2, $2^{\prime}$-dimethyldiphenylmethane ( $2 b$ ) was prepared from 2a via 3. The chloromethylation of 4 -tert -butyltoluene (4a) and 5-tert-butyl-1,3-dimethyl- (4b) and 4-tert-butyl-1,2dimethylbenzene ( 4 c ) afforded the corresponding 5 -tert-butyl-2-methyl- (5a), 4-tert-butyl-2,6-dimethyl- (5b), and 5-tert-butyl-2,3-dimethylbenzyl chloride (5c), respectively, in good vields.
In the $\mathrm{TiCl}_{4}$ catalyzed benzylation of $\mathbf{4 a}, \mathbf{4 b}$, and $\mathbf{4 c}$ with the chlorides, $5,5^{\prime}$-di-tert-butyl-2,2'-d methyl- (2c), 4, $4^{\prime}$-di-tert-butyl-2, $2^{\prime}, 6,6^{\prime}$-tetramethyl- (2d), 4,5'di-tert-butyl-


1


3


2b

## Scheme I


$2,2^{\prime}, 3^{\prime}, 6$-tetramethyl- (2e), and $5,5^{\prime}$-di-tert-butyl- $2,2^{\prime}, 3,3^{\prime}$ tetramethyldiphenylmethane (2f) were obtained in good yields (Scheme I).

However, the expected product, 4-tert-butyl-2,6-dimethyldiphenylmethane ( 2 g ), in the benzylation of benzene with $\mathbf{5 b}$ was formed in only $43 \%$ yield with formation of 1,4 -bis ( 4 -tert-butyl-2,6-dimethylbenzyl)benzene (6) in $50 \%$ yield even in excess benzene.

The compounds 2 g and 6 were also obtained by the $\mathrm{TiCl}_{4}$ catalyzed benzylation of $\mathbf{4 b}$ with benzyl chloride ( $7 a$ a) and 1,4-bis(chloromethyl)benzene (8) in 93 and $60 \%$ yie!ds, respectively.

Transalkylation of 2. The Lewis acid catalyzed transalkylation of 2 was carried out under various conditions and the results are summarized in Table I. The tert-butyl group is transferred from 2a to toluene.


9a
This result suggests that the trans-tert-butylation occurred selectively without the transbenzylation as expected from the previous papers. ${ }^{2-8}$ However, the $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transalkylation of $\mathbf{2 b}$ and $2 \mathbf{c}$ in benzene afforded 2-methyldiphenylmethane (10) and toluene (12a) besides the expected products $2,2^{\prime}$-dimethyldiphenylmethane (11) and tert -butylbenzene ( 9 b ). These results show clearly that the transbenzylation and trans-tert -butylation of $\mathbf{2 b}$ and 2 c took place simultaneously to afford 10 and 11 .


10


The latter compound 11 seems to be the intermediate in the formation of the former 10 and 12a.

However, when 11 or 10 was treated under same conditions, only the starting compound 10 or 11 was recovered in quantitative yield.

$$
\begin{aligned}
& 11 \frac{\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}}{\text { in benzene }} H \rightarrow 10+12 \mathrm{a} \\
& 10 \xrightarrow[\text { in benzene }]{\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}} H-1+12 \mathrm{a}
\end{aligned}
$$

Although intermediates 13 and 14 could not be isolated when $2 b$ and $2 c$ were transalkylated, the reaction pathways in Scheme II might be proposed.

In fact, the $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed reaction of $14 \mathbf{b}$, which was prepared by the benzylation of 4 a with 2-methylbenzyl chloride ( $\mathbf{7 b}$ ), afforded 10 and 11 in 81.1 and $10.3 \%$ yields.



7b

Table I. The Lewis Acid Catalyzed Transalkylation of $2^{\boldsymbol{a}}$

| Run | Substrate | Catalyst ${ }^{\text {b }}$ | Solvent | Time, h | Product (\%) ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2a | A | Toluene | 3 | 1 (100), 9a (100) |
| 2 | 2a | B | Toluene | 3 | No reaction |
| 3 | 2b | A | Benzene | 0.5 | 10 (75), 11 (25), 9b (100), 12a (75) |
| 4 | 2b | B | Benzene | 3 | No reaction |
| 5 | 2c | A | Benzene | 0.5 | 10 (40), 11 (60), 9b (100), 12a (75) |
| 6 | 2c | B | Benzene | 3 | No reaction |
| 7 | 2d | A | Benzene | 3 | 16 (80). 1 (20), 9b (100), 12b (80) |
| 8 | 2d | B | Benzene | 3 | 2g (89), 4b (77) |
| 9 | 2d | B | Toluene | 2 | 18 (93). 4b (95), 9a (90) |
| 10 | 2d | B | $m$-Xylene | 0.5 | 19 (99), 4b (90) |
| 11 | 2d | C | Toluene | 5 | No reaction |
| 12 | 2d | C | $m$-Xylene | 5 | No reaction |
| 13 | 2 e | B | Benzene | 3 | 21 (73). 2g (23), 4b (70), 4c (30) |
| 14 | $2 f$ | A | Benzene | 3 | 22 (75), 9b (80), 12b (78) |
| $15^{\text {d }}$ | 2f | B | Benzene | 3 | 21 (20), 23 (40), 9a (38), 4b (22), 1 (+)e |
| 16 | 2g | A | Benzene | 1.5 | 16 (88), 1 (12), 9b (100) |
| 17 | 14b | A | Benzene | 1 | 11 (81), 10 (10), 9b (100), 12a (10) |
| 18 | 21 | A | Benzene | 1.5 | 22 (97), 1 (3), 9b (100) |

${ }^{a}$ Reaction temperature, $50^{\circ} \mathrm{C}$; solvent $/ 2,30 \mathrm{~mol} / / \mathrm{mol}$; catalyst $/ 2,0.2 \mathrm{~mol} / 1 \mathrm{~mol} .{ }^{b} \mathrm{~A}, \mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2} ; \mathrm{B}, \mathrm{TiCl}_{4} ; \mathrm{C}^{2}, \mathrm{SnCl}_{4} .{ }^{c} \mathrm{The}^{2}$ yields were determined by GC analyses. ${ }^{d} 2 f$ was recovered in $40 \%$ yield. ${ }^{e}$ Plus sign ( + ) means a trace amount ( $<1 \%$ ).


The $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transalkylation of $2 \mathbf{b}$ afforded 10 and 11 in 75 and $25 \%$ yields, but the reaction of 2 c gave the same products in different vields, that is, 40 and $60 \%$ yields, respectively.

The relative rate of transbenzylation of $\mathbf{2 b}$ and $\mathbf{2 c}$ might be dependent upon the relative stabilities of the corresponding $\alpha$ complex A and B. The latter complex might be more stable than the former one.



B
In the $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transalkylation of 2 d in benzene, an expected product, $2,2^{\prime}, 6,6^{\prime}$-tetramethyldiphenylmethane (15), was not obtained, but 2,6-dimethyldiphenylmethane (16), $1,9 \mathrm{~b}$, and $m$-xylene ( 12 b ) were formed.

The transalkylation of 2 g in benzene afforded 1 and 16 in 20 and $80 \%$ yields. However, when 16 was treated with the catalyst only starting material was recovered. Based on the above results the reaction pathways in Scheme III are proposed.

Scheme III



17


15
A: transbenzylation
B: trans-tert-butylation
At the first step, transbenzylation ( $\mathrm{A}_{1}$ ) rather than the trans-tert-butylation $\left(\mathrm{B}_{2}\right)$ might selectively take place to afford 2 g , which gave 1 by the second transbenzylation $\left(\mathrm{A}_{2}\right)$ and 16 by the trans-tert-butylation $\left(B_{1}\right)$, respectively. The former reaction $\left(\mathrm{A}_{2}\right)$ was less predominant than the latter reaction $\left(B_{1}\right)$.
In contrast to the case of $\mathbf{2 a}, \mathbf{2 b}$, and $\mathbf{2 c}$, the $\mathrm{TiCl}_{4}$ catalyzed transalkylation of $\mathbf{2 d}$ in benzene afforded, surprisingly, only $\mathbf{2 g}$ and $\mathbf{4 b}$ in good yields.

$$
2 \mathrm{~d} \frac{\mathrm{TiCl}_{4}}{\text { in benzene }} 2 \mathrm{~g}+4 \mathrm{~b}
$$

This finding means that only the transbenzylation $\left(\mathrm{A}_{1}\right)$ of 2d occurred selectively without the trans-tert-butylation ( $\mathrm{B}_{2}$ ) under the conditions used, and it also seems to support the proposed reaction pathway of Scheme III.

However, $\mathrm{SnCl}_{4}$ did not show any activity for the transalkylation of $\mathbf{2 d}$. When toluene and $m$-xylene were used in place of benzene as a solvent and acceptor of alkyl groups in the $\mathrm{TiCl}_{4}$ catalyzed transalkylation of 2d, ditolylmethanes (18) and $2,2^{\prime}, 4,4^{\prime}$-tetramethyldiphenylmethane (19) were obtsined in good yields, respectively.


20
In these cases, not only the first-step transbenzylation $\left(A_{1}\right)$ but also the second one ( $\mathrm{A}_{2}$ ) might easily occur, since toluene and $m$-xylene are stronger Lewis bases than benzene.

In the $\mathrm{TiCl}_{4}$ catalyzed transbenzylation of $\mathbf{2 e}$, the formation of 2 g and 5 -tert-butyl-2,3-dimethyldiphenylmethane (21) might be expected (Scheme IV). In fact. the reaction affc.rded $\mathbf{2 1 , 4 b}, \mathbf{2 g}$, and $\mathbf{4 c}$ in 73, 27, 70, and $30 \%$ yields. The above result suggests that the transbenzylation $A_{1}$ was a more predominant reaction than the $A_{2}$, probably because the $A_{1}$ should reduce the steric hindrance of 2 e to a higher degree than $\mathrm{A}_{2}$ should.

When $2 f$ was treated with $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyst in benzene, 2,3-dimethyldiphenylmethane (22) was obtained in 75\% yield with a small amount of 1 .

The $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transalkylation of 21 in benzene afforded 22,1 , and 9 b in $97.3,2.7$, and $100 \%$ yields, respectively.

$$
21 \xrightarrow[\text { n benzene }]{\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}} 22+1+9 b
$$

The $\mathrm{TiCl}_{4}$ catalyzed transalkylation of $\mathbf{2 f}$, as well as 2 d and $\mathbf{2 e}$, afforded a transbenzylated product 21 and $\mathbf{4 b}$. However, a considerable amount of $2 f$ was recovered and the unexpected

> Scheme IV




Scheme V

B: trans-tert-butylation
product, 5-tert-butyl-2,2',3,3-tetramethyldiphenylmethane (23), was also obtained in a low yield (Scheme V).

The crowdedness of the methyl groups of $\mathbf{2 f}$ seems to be less than that of $\mathbf{2 d}$ and $\mathbf{2 e}$. Consequently the above results might indicate that the steric factor should strongly influence the ease of the transbenzylation of diphenylmethanes.
The results obtained in the above transalkylation of 2 seem to strongly support the mechanisms proposed ${ }^{9}$ previously for the transalkylation of $4,4^{\prime}$-dihydroxydiphenylmethanes.

Preparation of tert-Butyldiphenylethane (25). The tert-butyldiphenylethanes ( $25 \mathbf{b}-\mathbf{g}$ ) with the exception of 4,4'-di-tert-butyldiphenylethane (25a) were prepared by the coupling reaction ${ }^{12}$ using $\mathrm{CH}_{3} \mathrm{MgI}$ reagent and the corresponding benzyl chlorides ( $5 \mathrm{a}-\mathrm{g}$ ) (Scheme VI). In some coupling reactions, besides the expected product 25, tert-butylethylbenzenes (26) were formed as byproducts. The yields of 25 and 26 are summarized in Table II.

Only $25 a$ was prepared by the $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed tert-butylation of diphenylethane (24) with 2,6-di-tert-butyl-p-cresol according to the previously reported method. ${ }^{10}$

The Transalkylation of 25 . The Lewis acid catalyzed transalkylation of 25 (Scheme VII) was carried out under various conditions and the results are summarized in Table III.

The $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ and $\mathrm{TiCl}_{4}$ catalyzed transalkylation of $25 a$ in toluene afforded 24 and 4-tert-butyltoluent (9a) in good yields. The former catalyst was active for the trans-tert-butylation of 2a, but not the latter one as described above.

The result of the $\mathrm{TiCl}_{4}$ catalyzed trans-tert-butylation of 25a might suggest that the basicity of $25 a$ should be stronger than that of 2 a .

In contrast to both catalysts, $\mathrm{AlCl}_{3}$ afforded a small amount of ditolylethane (28), 24a, benzene (12d), and 9a with a large amount of resinous material and unidentified compounds.

The result might indicate that $\mathrm{AlCl}_{3}$ was too strong to use as a catalyst for the preparation of 27. The $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transalkylation of 25b afforded the expected products 27 b and $\mathbf{9 b}$ in good yields, while the corresponding diphenylmethane derivative gave trans-tert-butylated and transbenzylated products as previously described.

Table II. The Coupling Reaction of 1 Using $\mathbf{C H}_{3} \mathbf{M g I}$ Reagent in Ether Solution ${ }^{a}$

| Run | Chloride | Product (\%) |
| :---: | :---: | :---: |
| 1 | $\mathbf{5 a}$ | $\mathbf{2 5 b}(72), \mathbf{2 6 b}(13)$ |
| 2 | $\mathbf{5 d}$ | $\mathbf{2 5 c}(87), \mathbf{2 6 c}(17)$ |
| 3 | $\mathbf{5 e}$ | $\mathbf{2 5 d}(63), \mathbf{2 6 d}(20)$ |
| 4 | $\mathbf{5 c}$ | $\mathbf{2 5 e}(75), \mathbf{2 6 e}(0)$ |
| 5 | $\mathbf{5 b}$ | $\mathbf{2 5 f}(89), \mathbf{2 6 f}(11)$ |
| 6 | $\mathbf{5 f}$ | $\mathbf{2 5 g}(? 0), \mathbf{2 6 g}(0)$ |
| 7 | $\mathbf{5 g}$ | $\mathbf{2 5 h}(71), \mathbf{2 6 h}(0)$ |
| Reaction temperature, reflux; reaction time, $\mathbf{l} \mathbf{h}$ |  |  |

Table III. The Lewis Acid Catalyzed Transalkylation of $25^{a}$

| Run | Substrate | Catalys- ${ }^{\text {b }}$ | Solvent | Time, h | Product (\%) ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{\text {d }}$ | 25a | A | Toluene | 3 | 24 (84), ${ }^{\text {g 9a (90) }}$ |
| $2^{e}$ | 25a | B | Toluene | 6 | 24 (80), $\mathrm{g}^{\text {9a (95) }}$ |
| $3^{\prime}$ | $25 a$ | C | Toluene | 0.5 | 28 (12), 12c (31), 24a (5), 9a (52) |
| 4 | 25b | A | Benzene | 2 | 27b (90), $\mathbf{g}^{\mathbf{9 b}}$ (100) |
| 5 | 25c | B | Benzene | 8 | 27b (1-), 9b (35) |
| 6 | 25d | A | Benzene | 5 | 27c (70), $\mathbf{g}^{\text {9b }}$ (80) |
| 7 | 25d | A | Benzene | 6 | 27d (63), ${ }^{\text {g 9b }}$ (88) |
| 8 | 25d | B | Benzene | 9 | No reastion |
| 9 | 25e | A | Benzene | 1 | 27e (9¢), $\mathbf{g ~ 9 b ~ ( 1 0 0 ) ~}^{\text {a }}$ |
| 10 | 25 e | B | Benzene | 3 | 27e (1 0 ), $\mathrm{g} 9 \mathrm{9b}$ (100) |
| 11 | $25 f$ | A | Benzene | 1 | 27f (95), $\mathbf{g}^{\mathbf{~ 9 b}}$ (100) |
| 12 | $25 f$ | B | Benzene | 3 | 27f (96), $\mathbf{8}_{\text {9b (100) }}$ |
| 13 | 25g | A | Benzene | 5 | No reastion |
| 14 | $\mathbf{2 5 g}$ | C | Benzene | 0.25 | 27g (97), $\mathrm{g} \mathrm{9b}^{\text {(100 }}$ ) |

${ }^{a}$ Reaction temperature, $50^{\circ} \mathrm{C}$; catalyst $/ 25,0.2 \mathrm{~mol} / 1 \mathrm{~mol} .{ }^{b} \mathrm{~A}, \mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2} ; \mathrm{B}, \mathrm{TiCl}_{4} ; \sim, \mathrm{AlCl}_{3} .{ }^{\mathrm{c}}$ The yields were determined by gas chromatographic analyses unless otherwise indicated. ${ }^{d} 25 a$ was recovered in $-6 \%$ yield ${ }^{e} 25 a$ was recovered in $20 \%$ yield. ${ }^{f}$ The large amount of resinous materials and unidentified compounds were formed. ${ }^{\boldsymbol{g}}$ The yields isolated are shown.

## Scheme VI



24


25a


5
5a, $\mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{CH}_{3}$ c, $\mathrm{R}^{\prime}=\mathrm{R}=\mathrm{CH}_{3}$ d, $\mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{\mathrm{s}}$ e, $\mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{OCH}_{3}$
f, $R^{\prime}=H ; R=C l$
$\mathrm{g}, \mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{Br}$


5b


25
b, $\mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{CH}_{3}$
c, $R^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$
$\mathrm{d}, \mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{OCH}_{3}$
e, $\mathrm{R}^{\prime}=\mathrm{R}=\mathrm{CH}_{3}$
g, $\mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{Cl}$
$h, R^{\prime}=H ; R=B r$



$\mathrm{H}_{3} \mathrm{C}$

$25 f$

$26 f$

## Scheme VII

## 25a-e and 25g-h



27a, $\mathrm{R}^{\prime}=\mathrm{R}=\mathrm{H}(24) \quad 9 \mathrm{a}, \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}$
b, $\mathbf{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{CH}_{3} \quad$ b, $\mathrm{R}^{\prime \prime}=\mathrm{H}$
c, $\mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{C}_{2} \mathrm{H}^{\prime}$ c, $\mathrm{R}^{\prime \prime}=2,4-\left(\mathrm{CH}_{3}\right)_{2}$
d, $\mathrm{R}=\mathrm{H} ; \mathrm{R}=\mathrm{OCH}_{3}$
e, $\mathrm{R}^{\prime}=\mathrm{R}=\mathrm{CH}_{3}$
$\mathrm{g}, \mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{Cl}$
$h, R^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{Br}$


The $\mathrm{TiCl}_{4}$ catalyzed transalkylation of $\mathbf{2 5 b}$ gave also 27b and 9 b in low yields, but the catalyst was not active for the transalkylation of $\mathbf{2 c}$.


12d
The $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed reactions of $25 \mathrm{c}, 25 \mathrm{~d}, 25 \mathrm{e}$, and 25 f as well as 25 a and 25 b afforded the expected products $27 \mathrm{c}, 27 \mathrm{~d}, 27 \mathrm{e}$, and 27 f, respectively.

However, in the case of 25d, a large amount of the catalyst had to be used in order to obtain 27d in good yield. The catalyst might react with the methoxy group of $25 d$ and $27 d$ to form a complex which reduce the catalytic activity and the basicity of 25d. No observation of the $\mathrm{TiCl}_{4}$ catalyzed transalkylatior. of 25d might be explained for the same reason, since the $\mathrm{TiCl}_{4}$ seems to be a weaker catalyst than $\mathrm{AlCl}_{3}-$ $\mathrm{CH}_{3} \mathrm{NO}_{2}$.

It should be noted that although $\mathrm{TiCl}_{4}$ catalyzed the transalkylation of 2 d as mentioned above, the same reaction of $\mathbf{2 5 f}$ gave only trans-tert-butylated product $\mathbf{2 7 f}$. In addition, the $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transalkylation of $\mathbf{2 5 f}$ gave also $\mathbf{2 7 f}$ without the formation of any amount of the transaralkylated product. The above results might support, although not directly, the previous proposed mechanisms ${ }^{9}$ of the transbenzylation of 4,4'-dihydroxydiphenylmethanes; that is, the intermediate D would be more important than the intermediate C for the occurrence of transbenzylation reaction.

However, even in the electron-rich diphenylethanes such as $27 e$ and $27 f$, the substituent $R$ on the ring $B$ could not stabilize the $\sigma$-complex E and even $\pi$-complex F , in which the screen effect of the methylene group might take a negative role for the stabilization in contrast to $D$.


The $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transalkylation of the elec-tron-poor diphenylethane such as $\mathbf{2 5 g}$ and $\mathbf{2 5 h}$ did not afford any product, but the starting materials were recovered in almost quantitative yields. However, the $\mathrm{AlCl}_{3}$ catalyzed transalkylation of $\mathbf{2 5 g}$ afforded $\mathbf{2 7 g}$ in good yield. In contrast to the case of $\mathbf{2 5 g}$, the $\mathrm{AlCl}_{3}$ catalyzed transalkylation of $\mathbf{2 5 h}$ gave only a small amount of 27 h , which could be detected by GC analyses but not isolated.

Based on the results obtained in the present study it could be concluded that: (i) the $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transbenzylation of the electron-rich diphenylmethanes such as 2b-f was observed; (ii) the transbenzylation of the electronrich tert-butyldiphenylmethane having highly steric hindrance was easily catalyzed by even a weak catalyst like $\mathrm{TiCl}_{4}$ without the trans-tert-butylation but not by $\mathrm{SnCl}_{4}$; (iii) the $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transalkylation of the electron-rich diphenylmethanes in benzene solution afforded only the first-step transbenzylated compound as a main product; (iv) however, when toluene and $m$-xylene were used as a solvent and acceptor in the transbenzylation of the electron-rich diphenylmethanes, the completely transbenzylated product was formed; (v) the $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed transbenzylation of the electron-poor diphenylmethanes was not observed; (vi) the alkyl, methoxy, and chloro substituted diphenylethanes such as $\mathbf{2 7 b - g}$ could be prepared by using the tert-butyl group as a positional protective group; (vii) in contrast to diphenylmethanes, even the electron-rich diphenylethanes did not afford any transaralkylated product under the influence of $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyst; (viii) tert-butyldiphenylethanes seem to be higher basic compounds than tert-butyldiphenylmethanes, so that the former might be easily protonated by the weak Lewis acid such as $\mathrm{TiCl}_{4}$ catalyst to afford the trans-tert-butylated product.

## Experimental Section

All melting and boiling points are uncorrected. Mass spectra were obtained on a Hitachi RMS-4 mass spectrometer with a direct inlet
(isomerization energy 70 eV ). NMR spectra were determined at 60 MHz with a Hitachi R-20 NMR spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ and internal references and IR spectra were measured as KBr pellets or liquid film on NaCl plates on a Nippon Bunko IR-S spectrometer.
Analytical Procedure. The analyses were carried out by gas chromatography using a Yanagimoto gas chromatograph, Yanaco YR-101: $30 \%$ high vacuum silicon grease. 2 m . increase rate of column temperature, $15^{\circ} \mathrm{C} / \mathrm{min}$; carrier gas, helium, $50 \mathrm{~mL} / \mathrm{min}$.

Preparation of 4,4'-Di-tert-butyldiphenylmethane (2a). To a solution of $120 \mathrm{~g}(542 \mathrm{mmol})$ of 2,6-di-tert-butyl-4-methylphenol and 70 g ( 417 mmol ) of diphenylmethane (1) in 200 mL of nitromethane was added at $15^{\circ} \mathrm{C} \mathrm{AlCl} 3-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyst $\left[\mathrm{AlCl}_{3}(107.3\right.$ g. 813 mmol$) /$ nitromethane $(200 \mathrm{~mL})]$ over a period of 5 min . After the reaction mixture was stirred for 20 min more, it was poured into a large amount of ice-water. The organic layer was extracted with benzene and the benzene solution was dried over sodium sulfate and evaporated in vacuo to leave the residue which was washed with $10 \%$ NaOH aqueous solution affording $96.6 \mathrm{~g}(82.7 \%)$ of 2 a : colorless needles (from EtOH); mp 70-71 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.31[18 \mathrm{H}, \mathrm{s},-$ $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ ), 7.38 ( $8 \mathrm{H}, \mathrm{s}$, aromatic protons); IR ( KBr ) 2960, 1510, 1360, $1270,1110,1025,865,820 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{28}: \mathrm{C}, 89.94 ; \mathrm{H}$, 10.06. Found: C, $90.03 ; \mathrm{H}, 101.4$. The washed $10 \%$ sodium hydroxide solution was acidified with $10 \%$ hydrochloric acid to give 56.3 g ( $96.2 \%$ ) of $p$-cresol.

Chloromethylation of 2a. To a solution of $35 \mathrm{~g}(125 \mathrm{mmol})$ of $\mathbf{2 a}$ and $80.5 \mathrm{~g}(100 \mathrm{mmol})$ of $\mathrm{ClCH}_{2} \mathrm{OCH}_{3}$ in 150 mL of $\mathrm{CS}_{2}$ was added at $-5{ }^{\circ} \mathrm{C} 20 \mathrm{~mL}(150 \mathrm{mmol})$ of $\mathrm{TiCl}_{4}$. After the reaction mixture was stirred at $-5^{\circ} \mathrm{C}$ for 1 h , it was poured into 300 mL of ice-water. The organic layer was extracted with benzene. The benzene extract was dried over sodium sulfate and evaporated in vacuo to afford 36 g (76.4\%) of $2,2^{\prime}$-dichloromethyl-4,4'-di-tert-butyldiphenylmethane (3): colorless plates $(\mathrm{EtOH}) ; \mathrm{mp} 90-91^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30$ | 18 $\left.\mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 4.18\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right), 4.50\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \mathrm{Cl}\right), 6.78-7.30$ ( $6 \mathrm{H}, \mathrm{m}$, aromatic protons); IR (KBr) 2960, 1500, 1260, 1200, 342, 740 $\mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{Cl}_{2}$ : C. $73.20 ; \mathrm{H}, 8.02$. Found: C, 73.58; H, 8.03.

Preparation of $\mathbf{2 b}$. According to Johnson's method, ${ }^{11}$ a $\mathrm{LiAlH}_{4}$ LiH reductive agent was prepared f-om 0.987 g of $\mathrm{LiAlH}_{4}$ and 2.39 g of LiH in 500 mL of THF. To the agent was added a solution of 37.7 g ( 100 mmol ) of 3 in 20 mL of THF under gently refluxing conditions over a period of 40 min . After the reaction mixture was refluxed for an additional 1 h , it was quenched with 25 mL of a mixture of water and THF (60:40 volume) at below $20^{\circ} \mathrm{C}$. The mixture was poured into a large amount of ice-water containing 20 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ with stirring and was extracted with ether. The ether solution was dried over sodium sulfate and evaporated in vacuo to give $24 . \mathrm{C} \mathrm{g}$ (81\%) of $4,4^{\prime}$-di-tert-butyl-2, $2^{\prime}$-dimethyldiphenylmethane (2b): colorless plates (EtOH); mp $51-52^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $2.27\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.84\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 6.70-7.30(6 \mathrm{H}, \mathrm{m}$, aromatic protons); IR (KBr) 2960, 1500, 1430, 1280, 850, $820 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{32}$ : C, 89.55; H, 10.45. Found: C, 89.33; H, 10.43 .

Preparation of 2 c . To a solution of $4.95 \mathrm{~g}(25 \mathrm{mmol})$ of 5 a and 3.7 $\mathbf{g}(25 \mathrm{mmol})$ of $4 \mathbf{a}^{10}$ in 40 mL of $\mathrm{CS}_{2}$ was gradually added 2 mL of $\mathrm{TiCl}_{4}$ at $5^{\circ} \mathrm{C}$. After the reaction mixture was stirred at $5^{\circ} \mathrm{C}$ for 90 min , it was treated and worked up as described above to afford $7.7 \mathrm{~g}(86.2 \%)$ of $5,5^{\prime}$-di-tert-butyl- $2,2^{\prime}$-dimethyldiphenylmethane ( 2 c ): colorless liquid; bp $162-163{ }^{\circ} \mathrm{C}(3 \mathrm{~mm})$; NMR $\left.\mathrm{CCl}_{4}\right) \delta 1.20\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 2.18 ( $6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}$ ), $3.80\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2-}\right.$ ), $6.80-6.96(6 \mathrm{H}$, m, aromatic protons). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{32}$ : $\mathrm{C}, 89.55 ; \mathrm{H}, 10.45$. Found: $\mathrm{C}, 89.59$; H, 10.39.
Preparation of 2 d . To a solution of $21.05 \mathrm{~g}(100 \mathrm{mmol})$ of $\mathbf{5 b}$ and 16.23 g ( 100 mmol ) of $\mathbf{4 b}^{10} \mathrm{in} 100 \mathrm{~mL}$ of $\mathrm{CS}_{2}$ was added 4 mL of $\mathrm{TiCL}_{4}$ at $5^{\circ} \mathrm{C}$. After the reaction mixture was stirred for an additional 2 h , it was treated and worked up as described above to give $28 \mathrm{~g}(88.3 \%)$ of 2d: colorless needles ( EtOH ); mp 135-136 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30$ $\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.14\left(12 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 4.02\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-1,1.98(4\right.$ $\mathrm{H}, \mathrm{s}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36}$ : C, 89.22; $\mathrm{H}, 10.78$. Found: C, 89.18; H, 10.71

Preparation of $2 \mathbf{e}$. To a solution of $21.5 \mathrm{~g}(100 \mathrm{mmol})$ of 5 b and $16.23 \mathrm{~g}(100 \mathrm{mmol})$ of $4 \mathrm{c}^{10}$ in 100 mL of $\mathrm{CS}_{2}$ was added 4 mL of $\mathrm{TiCl}_{4}$. After the reaction mixture was stirred for 3 h , it was treated and worked up as described above to afford $31.6 \mathrm{~g}(94 \%)$ of $4,5^{\prime}$-di-tert-butyl- $2,2^{\prime}, 3^{\prime}, 6$-tetramethyldiphenylmethane (2e): colorless needles (EtOH): mp 122-123 ${ }^{\circ} \mathrm{C}$; IR (KBr) 2960. 1550, 1460, 1360, $870 \mathrm{~cm}^{-1}$; NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 1.09\left[9 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.18\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}{ }^{1}, 2.28(3\right.$ $\left.\left.\mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.32\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.89 \mathrm{i} 2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 6.37(1 \mathrm{H}, \mathrm{s}), 7.00$ ( $1 \mathrm{H}, \mathrm{s}$ ) and $7.09\left(2 \mathrm{H}, \mathrm{s}\right.$, aromatic protons). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36}$ : C, 89.22; H, 10.78. Found: C, 89.: $3 ;$ H, 10.76 .

Preparation of $\mathbf{2 f}$. A solution of $21.05 \mathrm{~g}(100 \mathrm{mmol})$ of $5 \mathbf{c}$ and 16.23 $\mathrm{g}(100 \mathrm{mmol})$ of 4 c in 100 mL of $\mathrm{CS}_{2}$ was treated and worked up as
described above to afford $26.88 \mathrm{~g}(90 \%)$ of 2 f : colorless needles ( EtOH ); $\mathrm{mp} 8 \mathrm{E} .5-87.5^{\circ} \mathrm{C}$; IR (KBr) $2960,1480,1440,1360,880,870,725 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.18\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 2.13\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.30(6\right.$ $\left.\mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.93\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 6.77-7.10(4 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{36}$ : C, 89.22; H, 10.78. Found: C, 89.03; H, 10.88 .

Preparation of 2 g . To a solution of $32.4 \mathrm{~g}(200 \mathrm{mmol})$ of $\mathbf{4 b}$ and 37.95 g ( 300 mmol ) of benzyl chloride ( 7 a ; in 100 mL of $\mathrm{CS}_{2}$ was added at $5^{\circ} \mathrm{C} 8 \mathrm{~mL}(40 \mathrm{mmol})$ of $\mathrm{TiCl}_{4}$. After the reaction mixture was stirred at $5^{\circ} \mathrm{C}$ for 4 h , it was treated and worked up as described above to afford 33.72 g ( $69 \%$ ) of 4-tert-butyl-2,6-dimethyldiphenylmethane (2g): colorless needles (EtOH); mp 43-45 ${ }^{\circ} \mathrm{C}$; bp 132-134 ${ }^{\circ} \mathrm{C}(3$ mmHg ); IR (KBr) 2660, 1600, 1490, 1450, 1200, 1040, 880, 715, 700 $\mathrm{cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{4}\right) \delta 1.30\left[9 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.20\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2-}\right)$, 6.82- 7.20 ( $7 \mathrm{H}, \mathrm{m}$, aromatic protons). Ancl. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24}: \mathrm{C}, 90.24$; H, 9.58. Found: C, 90.34; H, 9.53.

Preparation of 5 a . To a solution of 10$) \mathrm{g}(676 \mathrm{mmol})$ of 4 a and 136 $\mathrm{g}(1.7 \mathrm{mmol})$ of $\mathrm{ClCH}_{2} \mathrm{OCH}_{3}$ in 200 mL of $\mathrm{CS}_{2}$ was added at $5^{\circ} \mathrm{C} 23$ $\mathrm{mL}(140 \mathrm{mmol})$ of $\mathrm{TiCl}_{4}$. After the reaction mixture was stirred for 90 min , it was poured into 300 mL of ice-water and extracted with ether. The ether extract was dried over sodium sulfate and evaporated in vacjo to leave a residue which was distilled under reduced pressure to afford $9.1 \mathrm{~g}(9.1 \%)$ of 4 a and $95.5 \mathrm{~g}(71.1 \%)$ of 5 a : colorless liquid; bp $94-95^{\circ} \mathrm{C}(3 \mathrm{~mm}) ; \mathrm{IR}(\mathrm{NaCl}) 2970,1500,1360,1250,825,740 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.30\left[9 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.35\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 4.55(2 \mathrm{H}$, $\mathrm{s},-\mathrm{CH}_{2-}$ ), $7.00-7.31$ ( $3 \mathrm{H}, \mathrm{m}$, aromatic protons).

Preparation of $5 \mathbf{b}$. To a solution of $50 \mathrm{~g}(308 \mathrm{mmol})$ of $\mathbf{4 b}$ and 49.6 $\mathrm{g}(616 \mathrm{mmol})$ of $\mathrm{ClCH}_{2} \mathrm{OCH}_{3}$ in 150 mL of $\mathrm{CS}_{2}$ was added at $5^{\circ} \mathrm{C} 14$ $\mathrm{mL}(70 \mathrm{mmol})$ of $\mathrm{TiCl}_{4}$. The reaction mizture was stirred at $5^{\circ} \mathrm{C}$ for 1 h and treated as described above to afford $60.54 \mathrm{~g}(93.3 \%)$ of 4 tert -butyl-2,6-dimethylbenzyl chloride (5b) with $2.15 \mathrm{~g}(4.1 \%)$ of 2d. 5b: colorless liquid; bp $95-96{ }^{\circ} \mathrm{C}(3 \mathrm{~mm})$ [lit. ${ }^{13} \mathrm{bp} 135-136{ }^{\circ} \mathrm{C}(10$ $\mathrm{mm})$ ] $\mathrm{IR}(\mathrm{KBr}) 2960,1460,1260,870,7 £ 0,680 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\left.\delta 1.30\left[9 \mathrm{H}, \mathrm{s},-\mathrm{C} \mathrm{CH}_{3}\right)_{3}\right], 2.41\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 4.62\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right), 7.07$ ( $2 \mathrm{H}, \mathrm{s}$, aromatic protons).

Preparation of $5 \mathbf{c}$. A mixture of $50 \mathrm{~g}(308 \mathrm{mmol})$ of 4 c and 49.6 g ( 616 mmol ) of chloromethyl ether was treated with $14 \mathrm{~mL}(70 \mathrm{mmol})$ of $\mathrm{TiCl}_{4}$ and worked up as described above to afford 50 g (77.1\%) of 5-tert-butyl-2,3-dimethylbenzyl chloride (5c) and $8.28 \mathrm{~g}(16 \%)$ of $\mathbf{2 f}$. 5c: colorless needles; $\mathrm{mp} 45-47^{\circ} \mathrm{C}$ (lit. $.^{13} \mathrm{mp} 48.5-49.0^{\circ} \mathrm{C}$ ); bp $117-118$ ${ }^{\circ} \mathrm{C}(3 \mathrm{~mm})$; IR (KBr) 2960, 1480, 1460, 13うิ0, 1260, 880, 740, $690 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{4}\right) \delta 1.30\left[9 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.27\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 4.58(2$ $\left.\mathrm{H}, \mathrm{s},-\mathrm{CH}_{2-}\right), 7.16(2 \mathrm{H}, \mathrm{s}$, aromatic protons).

Preparation of 5 d . To a solution of $100 \mathrm{~g}(0.616 \mathrm{~mol})$ of 4 -tert butylethylbenzene ${ }^{10}$ and $99.2 \mathrm{~g}(1.23 \mathrm{~mol})$ of $\mathrm{ClCH}_{2} \mathrm{OCH}_{3}$ in 300 mL of $\mathrm{CS}_{2}$ was added at $5^{\circ} \mathrm{C} 28 \mathrm{~mL}(0.14 \mathrm{~mol})$ of $\mathrm{TiCl}_{4}$. After the reaction mixture was stirred for 2 h , it was poured into 500 mL of ice-water and extrac-ed with ether. The ether solution was dried over sodium sulfate and evaporated to leave the residue, which was distilled under reduced pressure to afford $80.94 \mathrm{~g}(62.4 \%)$ of 5 -tert-butyl-2-ethylbenzyl chloride (5d) and 27.13 g of the starting compound [bp $57-58^{\circ} \mathrm{C}(3$ $\mathrm{mm})$ ]. 5d: colorless liquid; bp $102-102{ }^{\circ} \mathrm{C}(3 \mathrm{~mm})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.30$ [ $9 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ and $3 \mathrm{H}, \mathrm{t},-\mathrm{CH}_{3}$ ], $2.70\left(2 \mathrm{H}, \mathrm{q},-\mathrm{CH}_{2}-\right), 4.51(2 \mathrm{H}$, $\mathrm{s},-\mathrm{CH}_{2} \mathrm{CH}_{2-}$ ), $7.10-7.30(3 \mathrm{H}, \mathrm{m}$, aromatic protons).

Preparation of 5 e . After a mixture of $109.3 \mathrm{~g}(0.674 \mathrm{~mol})$ of 4-tert-butylanisole, ${ }^{10} 10 \mathrm{~g}(0.33 \mathrm{~mol})$ of paraformaldehyde, and 104 g of $31 \%$ hydrochloric acid was stirred vigorously at $55^{\circ} \mathrm{C}$ for 7 h , it was cooled to room temperature and extractec with benzene. The benzene soluticn was washed with $10 \%$ sodium ca-bonate solution, dried over sodiun sulfate, and evaporated in vacuo to leave the residue, which was distilled under reduced pressure to afford $39.9 \mathrm{~g}(28.1 \%)$ of 5-tert-butyl-2-methoxybenzyl chloride (5e) and 60 g of the starting compcund [bp 73-74 ${ }^{\circ} \mathrm{C}(3 \mathrm{~mm})$ ]. 5e: colorless liquid; bp $117-118^{\circ} \mathrm{C}$ ( 3 mm ); NMR ( $\mathrm{CCl}_{4}$ ) $\delta 1.26\left[9 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 3.72\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 4.51$ ( $2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2-}$ ), 6.59-7.25 ( $3 \mathrm{H}, \mathrm{m}$, aromatic protons). When the $\mathrm{TiCl}_{4}$ catalyzed chloromethylation of 4-tert-butylanisole with $\mathrm{ClCH}_{2} \mathrm{OCH}_{3}$ was ca-ried out, 5e was not obtained but only large amount of resinous material was formed.

Preparation of $5 \mathbf{f}$. To a solution of $51.9 \mathrm{~g}(0.308 \mathrm{~mol})$ of 4-tertbutylchlorobenzene ${ }^{14}$ and $49.6 \mathrm{~g}(0.616 \mathrm{~m} \cdot \mathrm{~J})$ of $\mathrm{ClCH}_{2} \mathrm{OCH}_{3}$ in 75 mL of $\mathrm{CS}_{2}$ was added at $5^{\circ} \mathrm{C} 14 \mathrm{~mL}$ of $\mathrm{TiCl}_{4}$. After the reaction mixture was stirred for 10 h , it was treated and worked up as described above to afford $31.4 \mathrm{~g}(47.0 \%)$ of 5 -tert-butyl-2-chlorobenzyl chloride ( $\mathbf{5 f}$ ) and 22.43 g of the starting compound [bp $58{ }^{\circ} \mathrm{C}(3 \mathrm{~mm})$ ]. 5 f: colorless liquid; bp $105-107^{\circ} \mathrm{C}(3 \mathrm{~mm})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.30\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 4.95 ( $2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}$ ) , 7.10-7.45 (3 H, m, aromatic protons).

Preparation of 5 g . Similarly a solution of $131.2 \mathrm{~g}(0.616 \mathrm{~mol})$ of 4-tert-butylbromobenzene, ${ }^{14} 99.2 \mathrm{~g}(1.23 \mathrm{~mol})$ of $\mathrm{ClCH}_{2} \mathrm{OCH}_{3}$, and 28 mL of $\mathrm{TiCl}_{4}$ in 150 mL of $\mathrm{CS}_{2}$ was treated and worked up as described above to afford $70.3 \mathrm{~g}(52.7 \%)$ of 5-tert-butyl-2-bromobenzyl
chloride $\mathbf{i} \mathbf{5 g}$ ) and 44.3 g of the starting compound. $\mathbf{5 g}$ : colorless liquid; bp 130-132 ${ }^{\circ} \mathrm{C}(5 \mathrm{~mm})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.30\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 4.60$ ( $2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}$ ), 7.27-7.54 ( $3 \mathrm{H}, \mathrm{m}$, aromatic protons).
The $\mathrm{TiCl}_{4}$ Catalyzed Benzylation of Benzene with $\mathbf{5 b}$. To a solution of $21.04 \mathrm{~g}(0.1 \mathrm{~mol})$ of 5 b in 120 mL of benzene 4 mL of $\mathrm{TiCl}_{4}$ was gradually added at room temperature. After the reaction mixture was stirred for 1 h , it was treated and worked up as described above to afford $10 \mathrm{~g}(50 \%)$ of 6 and $11 \mathrm{~g}(43 \%)$ of 2 g .

Preparation of 6 . To a solution of $16.2 \mathrm{~g}(100 \mathrm{mmol})$ of $\mathbf{4 b}$ and 8.75 $\mathrm{g}(50 \mathrm{mmol})$ of,- 4 -bis(ch oromethyl)benzene ( 8 ) in 5 mL of $\mathrm{CS}_{2}$ was added $4 \mathrm{~mL}(10 \mathrm{mmol})$ of $\mathrm{TiCl}_{4}$ at $5{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 3 h , it was treated and worked up as described above to afford $12 \mathrm{~g}(59.1 \%)$ of 1,4-bis(4-tert-butyl-2,6-dimethylbenzyl)benzene i6): colorless prisms (EtOH); mp 196-198 ${ }^{\circ} \mathrm{C}$; IR ( KBr ) 2960, $1485,1450,1360,880 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $\left.2.20\left(12 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.94,4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2-}\right), 6.88-7.08(8 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{42}$ : C, 90.08 ; $\mathrm{H}, 9.92$. Found: C, 89.52; H, 9.86.
Preparation of 14 b . To a solution of $14.5 \mathrm{~g}(0.1 \mathrm{~mol})$ of $\mathrm{CS}_{2}$ was added 8 mL of $\mathrm{TiCl}_{4}$ at $5^{\circ} \mathrm{C}$. After the reaction mixture was stirred at $5^{\circ} \mathrm{C}$ for 2 h , it was treated and worked up as described above to give $13.28 \mathrm{~g}(53 \%)$ of 14 b : colorless liquid; bp $139-142{ }^{\circ} \mathrm{C}(3 \mathrm{~mm})$; IR ( NaCl ) $2960,1460,1360,820,740 \mathrm{~mm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.20\left[9 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $2.14\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.22\left(\S \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.80\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 6.60-7.10$ ( $7 \mathrm{H}, \mathrm{m}$, aromatic proton 3 ). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24}: \mathrm{C}, 90.24 ; \mathrm{H}, 9.58$. Found: C, 89.98; H, 9.59.

Preparation of 21 . A solution of $32.4 \mathrm{~g}(200 \mathrm{mmol})$ of 4 c and 37.95 $\mathrm{g}(300 \mathrm{mmol})$ of 7 a in 100 mL of $\mathrm{CS}_{2}$ was treated and worked up as described above to afforc $24.36 \mathrm{~g}(48.2 \%)$ of 21 with 10 g of starting compound 4c. 21: colorless liquid; bp $137-139^{\circ} \mathrm{C}(3 \mathrm{~mm})$; IR ( NaCl ) $2960,16 \mathrm{C} 0,1500,1450,1 \leftleftarrows 60,880,735,700 \mathrm{~cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.27$ [ $9 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}{ }_{3}\right.$ ], $2.00\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.90\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 6.70-7.20$ ( $7 \mathrm{H}, \mathrm{m}$, aromat:c protons '; mass spectrum m/e $252\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24}$ : C, $93.24 ; \mathrm{H}, 958$. Found: C, $90.50 ; \mathrm{H}, 9.45$.

General Procedure of the Transalkylation of 2. After a mixture of 30 equiv of benzene ( $o$ - toluene, $m$-xylene), 0.2 equiv of the catalyst/equiv of 2 , and 1 mol of 2 had been maintained at a desired, constant temperature anc a specified reaction time with stirring, the reaction mixture was separated and dried over sodium sulfate. A definite amoun: of the benzene solution was analyzed by gas chromatography. After the analyses, the products were isolated and pu rified by distillation and.'or recrystallization, respectively. The reaction conditions and the yields are summarized in Table I.

11: colorless liquid; bp $110-112^{\circ} \mathrm{C}(3 \mathrm{~mm})$; IR ( NaCl ) 3020, 2960, $1600,1055,740 \mathrm{~cm}^{-1}$; NNR $\left(\mathrm{CCl}_{4}\right) \delta 2.18\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.78(2 \mathrm{H}, \mathrm{s}$, $-\mathrm{CH}_{2}-$ ), 6.70-7.20 ( $8 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16}$ C, 91.79; H, 8.22. Found: C, 91.33; H, 8.29. 16: colorless liquid: bp $107-109^{\circ} \mathrm{C}(3 \mathrm{~mm})$; IR ( NaCl ) 3040, 3970, 2940, 1600. 1450. 735, 700 $\mathrm{cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.10\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.23\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 3.83(2$ $\mathrm{H}, \mathrm{s},-\mathrm{CH}_{2-}$ ), 6.85-7.20 ( $8 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16}$ : C, 91.7¢; H, 8.22. Found: C, 91.76; H, 8.16.
22: colorless liquid; bp $123^{\circ} \mathrm{C}(33 \mathrm{~mm})$; IR ( NaCl ) $3070,3040,2920$, $1600,1500,1450,790,730,700 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.13\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right)$, $3.79\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 6.30-7.20(8 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16}$ : C, 91.79 ; $\mathrm{H}, 8.22$. Found: C, 91.74; H, 8.19.
23: colcrless liquid; IR ( NaCl ) 2960, 1480, 1360, $860,750 \mathrm{~cm}^{-1}$; mass spectrum $m / e 230\left(\mathrm{M}^{+}\right)$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.10\left[9 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 1.98$ $\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.10\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.22\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right)$. This compound 23 was separated by using separative gas chromatography.

Preparation of 25 a . T) a solution of $54.8 \mathrm{~g}(0.3 \mathrm{mcl})$ of diphenylethane (24) and $86 \mathrm{~g}(0.39 \mathrm{~mol})$ of 2,6 -di-tert-butyl-p-cresol in 120 mL of nitrometiane was added at $15^{\circ} \mathrm{C}$ a $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ solution [ $67 \mathrm{~g}\left(0.507 \mathrm{mo}\right.$ ) of $\mathrm{AlCl}_{3} / 120 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ ]. After the reaction mixture was stirred for 5 min , it was poured into a large amount of ice-water and the organic layer was extracted with benzene. The benzene solution was dried over sodium sulfate and evaporated in vacuo to leave the residuə in which benzene was added again. The benzene solution was extracted with $10 \%$ sodium hydroxide. The benzene was washed with water, dried over sodium sulfate, and evaporated in vacuo to $\varepsilon$ fford $79 \mathrm{~g}(90 \%)$ of 25 a : colorless plates (EtOH); mp 154-155 ${ }^{\circ} \mathrm{C}$; $\mathrm{NMRR}\left(\mathrm{CCl}_{4}\right) \delta 1.30\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.83$ ( $4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \mathrm{CH}_{2}-$ ), 6.95-7.30 ( 8 H , aromatic protons). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30}$ : C, 8С.73; H, 10 27. Found: C, 89.48; H, 10.27. p-Cresol was obtained almost quantitatively from the $10 \%$ sodium hydroxide extract by acidification with $10 \%$ hydrochloric acid.
Preparation of 25 b . To a solution of $\mathrm{CH}_{3} \mathrm{MgI}$ (prepared from 150 g of methyl iod ne and 25 g of magnesium) in 400 mL of ether was gradually addec a solution of 5 a in 1 h under the concition of reflux. After the reaction mixture was refluxed for an additional 2 h , it was quenched with - $0 \%$ hydre chloric acid and extracted with ether. The
ether extract was dried over sodium sulfate and evaporated in vacuo to leave the residue, in which a small amount of $e$ :hanol was added to afford $45 \mathrm{~g}(72 \%)$ of $5,5^{\prime}$-di-tert-butyl-2,2'-cimethyldiphenylethane (25b) as a colorless crystal, and the filtrate afforded 9.1 g (13.4\%) of 4-tert-butyl-2-ethyltoluene (26b). 25b: colorless needles ( EtOH ); mp $55-56{ }^{\circ} \mathrm{C}$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.25\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.15\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right)$, $2.81\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ ), 6.96 ( $6 \mathrm{H}, \mathrm{s}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34}: \mathrm{C}, 89.39 ; \mathrm{H}, 10.62$. Found: C, $89.35 ; \mathrm{H} .10 .66$. 26 b: colorless liquid; bp $69-71^{\circ} \mathrm{C}(3 \mathrm{~mm})$.

Preparation of 25 c . To a solution of methylmagnesium iodide (from 60 g of methyl iodide and 10 g of magnesium) in 150 mL of ether was added a solution of $32.7 \mathrm{~g}(0.155 \mathrm{~mol})$ of 5 d in 50 mL of ether. The reaction mixture was treated and worked up as described above to afford $23.4 \mathrm{~g}(86.5 \%)$ of $5,5^{\prime}$-di-tert-butyl-2,2'-diethyldiphenylethane (25c) and $4.2 \mathrm{~g}(16.6 \%)$ of 2 -ethyl-4-tert-butylethylbenzene ( 26 c ). 25c: colorless liquid; bp $79-82^{\circ} \mathrm{C}(3 \mathrm{~mm})$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.22(6 \mathrm{H}, \mathrm{t}$, $\left.-\mathrm{CH}_{3}\right), 1.25\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.56\left(4 \mathrm{H}, \mathrm{q},-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 7.03(6 \mathrm{H}$, s , aromatic protons). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{38}: \mathrm{C}, 89.08 ; \mathrm{H}, 10.92$. Found: $\mathrm{C}, 88.78$; $\mathrm{H}, 10.94$. 26c: colorless liquid; bp $78-82^{\circ} \mathrm{C}(3 \mathrm{~mm})$.

Preparation of 25 d . An ether solution of methylmagnesium iodide $\left(\mathrm{CH}_{3} \mathrm{I}, 60 \mathrm{~g} ; \mathrm{Mg}, 10 \mathrm{~g}\right)$ was treated with a solution of $32.7 \mathrm{~g}(0.155 \mathrm{~mol})$ of $5 \mathbf{e}$ in 50 mL of ether and the reaction misture was worked up as described above to afford $17 \mathrm{~g}(62.6 \%)$ of $5,5^{\prime}$-di-tert-butyl-2, $2^{\prime}$ dimethoxydiphenylethane (25d) and 6 g (20.3\%) of 4-tert-butyl-2ethylanisole (26d). 25d: colorless needles (EtOH); mp 92-93 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{4}\right) \delta 1.20\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.82\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \mathrm{CH}_{2-}\right), 3.71(6$ $\left.\mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 6.54-7.12(6 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2}$ : C, $81.31 ; \mathrm{H}, 9.67$. Found: C, 81.05; H, 9.71. 26d: colorless liquid; bp $83-85^{\circ} \mathrm{C}(3 \mathrm{~mm})$.

Preparation of 25 e . Similarly $32.7 \mathrm{~g}(0.155 \mathrm{~mol}$ ) of 5 c was treated with methylmagnesium iodide $\left(\mathrm{CH}_{3} \mathrm{I}, 60 \mathrm{~g} ; \mathrm{Mg}, 10 \mathrm{~g}\right)$ in the same manner as described above to afford $20.4 \mathrm{~g}(75.2 \%)$ of $5,5^{\prime}$-di-tert butyl-2, $2^{\prime}, 3,3^{\prime}$-tetramethyldiphenylethane (25e): colorless needles ( EtOH ); mp $87-88^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.23\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.08$ $\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.21\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.80\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right.$ ) , 6.80-7.00 (4 $\mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{48}: \mathrm{C}, 89.08 ; \mathrm{H}, 10.92$. Found: C, 89.03; H, 10.88.

Preparation of $\mathbf{2 5 f}$. Similarly 24.1 g (89.8\%) of $4,4^{\prime}$-di-tert-butyl-2, $2^{\prime}, 6,6^{\prime}$-tetramethyldiphenylethane ( $\mathbf{2 5 f}$ ) and 3.07 g ( $10.5 \%$ ) of 4-tert-butyl-2,6-dimethylethylbenzene (26f) were obtained from 32.7 g ( 0.155 mol ) of $5 \mathbf{b}$ in same manner as described above. $\mathbf{2 5 f}$ : colorless needles (EtOH); mp $220-221{ }^{\circ} \mathrm{C}$ (lit. $.^{12} \mathrm{mp} 216-217^{\circ} \mathrm{C}$ ); NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.30\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.42\left(12 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.78(4 \mathrm{H}, \mathrm{s}$, $-\mathrm{CH}_{2}$ ) , 7.05 ( $4 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{38}$ : C, 89.08; H, 10.92. Found: C, 88.99; H, 10.86. 26f: colorless liquid.

Preparation of $\mathbf{2 5 g}$. To a solution of methylmagnesium iodide ( 30 g of $\mathrm{CH}_{3} \mathrm{I}, 5 \mathrm{~g}$ of Mg ) in 75 mL of ether was added a solution of 16.82 g ( 77.5 mmol ) of $\mathbf{5 f}$ in 25 mL of ether. After the recction mixture was refluxed for 3 h , it was treated and worked up as described above to afford 9.5 g ( $70 \%$ ) of $5,5^{\prime}$-di-tert-butyl-2, $2^{\prime}$-dichlcrodiphenylethane $(\mathbf{2 5 g})$ : colorless needles $(\mathrm{EtOH}) ; \mathrm{mp} \mathrm{113-114}{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.30$ $\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ ], $2.94\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right), 7.10-7.3 \mathrm{c}_{1}(6 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Cl}_{2}$ : C, 72.72; $\mathrm{H}, 7.77$. Found: C, 72.43; H, 7.75 .

Preparation of $\mathbf{2 5 h}$. To a solution of methylmagnesium iodide ( 30 g of $\mathrm{CH}_{3} \mathrm{I}, 5 \mathrm{~g}$ of Mg ) in 75 mL of ether was added a solution of 20.3 $\mathrm{g}(77.5 \mathrm{mmol})$ of 5 g in 25 mL of ether over a period of 30 min . The reaction mixture was refluxed for 3 h and was treated and worked up as described above to afford $12.5 \mathrm{~g}(71.3 \%)$ of $5,5^{\prime}$-di-tert-butyl-2,2'dibromodiphenylethane (25h): colorless needles (EtOH); mp 92-93 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.30\left[18 \mathrm{H}, \mathrm{s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.95\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}-\right)$, 7.15-7.50 ( $6 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Br}_{2}$ : C , 58.42; H, 6.24. Found: C, 58.31 ; H, 6.20 .

The Transalkylation of 25 . After a mixture of 50 equiv of benzene (or toluene, $m$-xylene), 0.2 equiv of the catalyst/equiv of 25 , and 1 mol of 25 had been maintained at a desired, constant temperature and a
specified reaction time with stirring, the reaction mixture was quenched with $10 \%$ hydrochloric acic. The layer was separated and dried over sodium sulfate. A definite amount of benzene solution was analyzed by gas chromatography. After the analyses, the products were isolated and purified by distillation and/or recrystallization, respectively. The reaction conditions and the yields are summarized in Table III.
27b: colorless needles $(\mathrm{EtOH}) ; \operatorname{mp} 65-66{ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.23$ $\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.79\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 7.02(8 \mathrm{H}, \mathrm{s}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18}$ : C, 91.04; $\mathrm{H}, 8.63$. Found: C, 91.23; H , 8.62 .

27 c : colorless plates $(\mathrm{EtOH}) ; \mathrm{mp} 26-28{ }^{\circ} \mathrm{C}$; $\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta 1.20(6$ $\left.\mathrm{H}, \mathrm{t},-\mathrm{CH}_{3}\right), 2.63\left(4 \mathrm{H}, \mathrm{q},-\mathrm{CH}_{2}-\right), 2.85\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \mathrm{CH}_{2-}\right), 7.18(8 \mathrm{H}$, s , aromatic protons). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22}: \mathrm{C}, 90.07 ; \mathrm{H}, 9.30$. Found: C, 90.67; H, 9.26.

27d: colorless needles (EtOH); mp $80-82^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.82$ $\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.77\left(6 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 6.60-7.10(6 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ : C.79.31; $\mathrm{H}, 7.49$. Found: C, 79.30; H, 7.54.

27e: colorless needles $(\mathrm{EtOH}) ; \mathrm{mp} 110-111^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.19$ $\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.25\left(6 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.80\left(4 \mathrm{H} . \mathrm{s},-\mathrm{CH}_{2-}\right), 6.92(6 \mathrm{H}, \mathrm{s}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22}: \mathrm{C}, 90.70 ; \mathrm{H}, 9.30$. Found: C, 89.02; H, 9.35.

27f: colorless needles $(\mathrm{EtOH}) ; \mathrm{mp} 123-125^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 2.21$ $\left(12 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.75\left(4 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2-}\right), 6.87(6 \mathrm{H}, \mathrm{s}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22}$ : C, 90.70; H, 9.30. Found: C, 90.33; H, 9.38.
$\mathbf{2 7 g}$ : colorless needles; mp 57-58 ${ }^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 3.00(4 \mathrm{H}, \mathrm{s}$, $-\mathrm{CH}_{2}-$ ), $7.00-7.40$ ( $8 \mathrm{H}, \mathrm{m}$, aromatic protons). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2}$ : C, 66.95; $\mathrm{H}, 4.82$. Found: C, 66.89; $\mathrm{H}, 4.79$.

Registry No.-1, 101-81-5; 2a, 19099-48-ci; 2b, 65276-21-3; 2c, 65276-22-4; 2d, 65338-71-8; 2e, 65276-23-5; 2f, 65276-24-6; 2g, 65276-25-7; 3, 65276-26-8; 4a, 98-51-1; 4b, 98-19-1; 4c, 7397-06-0; 5b, 19387-83-8; 5c, 28162-13-2; 5d, 65276-27-9; 5e, 22252-73-9; 5f, 65276-28-0; 5g, 65276-29-1; 6, 65276-30-4; 7a, 100-44-7; 7b, 552-45-4; 8, 623-25-6; 11, 1634-74-8; 14b. 65276-31-5; 16, 28122-29-4; 21, 65276-32-6; 22, 62155-16-2; 23. 65276-33-7; 24, 103-29-7; 25a, 22927-07-7; 25b, 65276-09-7; 25c, 65276-10-0; 25d, 65276-11-1; 25e, 65276-12-2; 25f, 65276-13-3; 25g, 62576-14-4; 25h, 65276-15-5; 26b, 65276-16-6; 26c, 65276-17-7; 26d, 65276-18-8; 26f, 65276-19-9; 27b, 952-80-7; 27c, 27499-60-1; 27d, 14310-34-0; 27e, 65276-20-2; 27f, 25115-79-1; 27g, 6639-40-3; 2,6-di-tert-butyl-4-methylphenol, 128-37-0; $\mathrm{ClCH}_{2} \mathrm{OCH}_{3}, 107-30-2 ; 4$-tert-butylethylbenzene, 7364-19-4; 4-tert-butylanisole, 5396-38-3; hvdrochloric acid, 7647-01-0; 4-tertbutylchlorobenzene, 3972-56-3; 4-tert-butylbromobenzene, 3972-65-4.

## References and Notes

(1) Part 14: M. Tashiro, A. Iwasaki, and G. Fukata, J. Org. Chem., in press. (2) G. A. Olah, S. J. Khun, and S. H. Flood, J. Am. Chem. Soc., 84, 1688 (1962).
(3) O. Tsuge and M. Tashiro, Bull. Chem. Soc. Jpn., 40, 119 (1967).
(4) O. Tsuge and M. Tashiro, Bull. Chem. Soc. Jpn., 40, 125 (1967).
(5) G. A. Olah, S. Kobayashi, and M Tashiro, J. Am. Chem. Soc., 94, 7448 (1972).
(6) M. Tashiro, H. Watanabe and O. Tsuge, Org. Prep. Proced. Int., 6, 107 (1974).
(7) M. Tashiro, G. Fukata, S. Mataka, and K. Oe, Org. Prep. Proced. Int., 7, 231 (1975).
(8) M. Tashiro, H. Watanabe, G. Fukata, and K. Oe, Rep. Res. Inst. Sci. Ind., Kyushu Univ., No. 62, 147 (1975).
(9) M. Tashiro and G. Fukata, J. Org Chem., 42, 1208 (1977).
(10) M. Tashiro, G. Fukata, and T. Yamato, Org. Prep. Proced. Int., 8, 263 (1976).
(11) J. E. Johnson, J. Am. Chem. Soc., 70, 3664 (1948)
(12) R. C. Fuson, J. J. Denton, and J. W. Kneisley. J. Am. Chem. Soc., 63, 2652 (1941).
(13) M. J. Schlatter, J. Am. Chem. Soc., 76, 4952 (1954).
(14) M. Tashiro and Y. Yamato, Org. Prep. Proced. I.tt., 9, 151 (1977).

# Pyrolysis of Unsaturated Compounds. 2. Pyrolysis of Ketones ${ }^{1,2}$ 

William J. Bailey* and Frank Cesare ${ }^{3}$<br>Departmeni of Chemistry, University of Maryland, Collegє Park, Maryland 20742<br>Received July 15, 1977


#### Abstract

In order to compare the ease of pyrolysis of ketones with that of esters, a series of kftones was pyrolyzed in an apparatus commonly used for preparative ester pyrolysis. Thus, when heptane- 2.6 -dione was pyrolyzed at $650^{\circ} \mathrm{C}$, the major products of pyrolysis were methyl vinyl ketone ( $17 \%$ ) and acetone ( $2 \% \%$ ). Since $66 \%$ of the starting diketone was recovered unchanged, tie yields of acetone and methyl vinyl ketone based on unrecovered material were 61 and $45 \%$, respectively. In a similar experiment at $650^{\circ} \mathrm{C}$, pyrolysis of methyl nespentyl ketone gave a $17 \%$ yield of acetone and an $18 \%$ yield of isobutylene. Since $61 \%$ of the methyl neopentyl ketone was recovered unchanged, the yields of acetone and isobutylene, based on unrecovered material, were 44 and $46 \%$, respectively. When methyl isobutyl ketone was pyrolyzed at $650^{\circ} \mathrm{C} .75 \%$ of the ketone was recovered unchanged and the major products were propylene ( $10 \%$ ) and acetone ( $7 \%$ ); however, at the same time an $8 \%$ yield of isobutylene was obtained. Pyrolysis of methyl $n$-propyl ketone at $650^{\circ} \mathrm{C}$ gave an $87 \%$ recovery of the ketone plus a $6 \%$ yielc of acetone and a $3 \%$ yield of ethylene, as well as a $5 \%$ yie.d of methyl vinyl ketone plus some propylene. Thus, it appears that a ketone is considerably more thermally stab.e than an ester. requiring some $150^{\circ} \mathrm{C}$ higher temperatu $e$ for a comparable extent of decomposition.


Since previous work in these laboratories had shown that pyrolysis of esters was a very excellent synthetic tool for the preparation of a wide variety of strained dienes, ${ }^{4}$ isomers of aromatic compounds, ${ }^{5}$ and highly reactive monomers, ${ }^{6}$ we wanted to determine how general such a pyrolysis reaction was and what other unsaturated compounds might undergo a similar cyclic molecular decomposition. Thus we became interested in what other atoms coulc be located in the sixmembered ring and still have the cyclic molecular mechanism operate.

In ester pyrolysis $A$ and $C$ are oxygen atoms while in the Chugeev reaction, which involves the pyrolysis of a xanthate

ester, a sulfur atom is located in position A. Similarly, previous work in these laboratories showed that pyrolysis of amides, ${ }^{7,8}$ in which C is a nitrogen atom, occurs by the same cyclic mechanism but involves a temperature that is at least $60^{\circ} \mathrm{C}$ higher than that required for ester pyrolysis. More recently, a stud $y$ of the pyrolysis of vinyl ethers ${ }^{1}$ in which A is a carbon atom showed that these materials pyrolyze at a temperature $40-50^{\circ} \mathrm{C}$ lower than the temperature necessary for comparable ester pyrolysis. The ease of pyrolysis of various compounds can be rationalized by the assumption that the transition state in the cyclic mechanism looks more like the products than the starting materials, and that if a stable double bond between $A$ and $B$ is converted to a less stable double bond between C and B , a higher temperature is required for pyrolysis than is necessary for the pyrolysis of the symmetrical ester. Conversely, if a high-energy double bond between A and B is converted to a more stable double bond between C and B in the products, a temperature lower than that required for the pyrolysis of the symmetr:cal ester group is noted.

In such a system a ketone which has a carbon atom in position C and oxygen in position A is a counterpart to the vinyl ether which has the oxygen in position $C$ and a carbon in position $A$. For this reason it was of interest to study the pyrolysis of ketones in order to see if the relationship discussed above is followed and that ketones do indeed pyrolyze by a cyclic six-membered mechanism and require temperatures considerably higher than those required for ester pyrolysis.

Although there are many examples in the literature of the photolysis of ketones, ${ }^{9-12}$ little work has been done on the
pyrolysis of ketones. Methyl $n$-propyl ketone is one ketone for which both photolusis and pyrolysis data are available. However, because of the lack of uniformity in pyrolysis and photolysis conditions, the results are hard to compare. McNesby and Gordor ${ }^{13}$ reported that the pyrolysis and photolysis of 2-pentancne-1,1,1,3,3,- $d_{5}$ gave more acetone- $d_{6}$ than acetone $-d_{5}$. If the cyclic mechanism were operative, all the acetone should hav been $d_{5}$. They concluded that in the pyrolysis region the reaction appeared to involve a free-radical mechanism. However, Ausloos and Murod ${ }^{14}$ studied the photolysis of 2-pentanone-1,1,1,3,3- $d_{5}$ and reported that $90 \%$ of the acetone $\varsigma$ btained was acetone $-d_{5}$. They concluded that the intermolecular cleavage through a six-membered ring was operating.

Guenther ${ }^{15}$ reported the formation of large quantities of methyl vinyl ketone plus some acetone from the gas-phase thermal decomposition of methyl $n$-propyl ketone at 500-530 ${ }^{\circ} \mathrm{C}$. Waring and Garik ${ }^{16}$ pyrolyzed methyl $n$-propyl ketone and concluded that it decomposed predominately through a free-radical mechanisrr. Blades and Sandhu ${ }^{17}$ reported that at $652{ }^{\circ} \mathrm{C}$ methyl $n$-propyl ketone undergoes almost no decomposition but produced minor amounts of methane, ethylene, and acetone. They also reported that the rate constant for acetone formation uas $0.016 \mathrm{~s}^{-1}$ with an Arrhenius factor of 59. Furukawa and Naruchi ${ }^{18}$ pyrolyzed methyl $n$-propyl ketone at $500^{\circ} \mathrm{C}$ over calcium carbonate to yield acetone plus di-n-propyl ke:one.

In 1957, Walters and Barry ${ }^{19}$ studied the gas-phase thermal decomposition of methyl $n$-butyl ketone from 430 to $500^{\circ} \mathrm{C}$. The principal products of the reaction during early stages of the reaction are (1) prcpylene and acetone, (2) ethane and methyl vinyl $k \in t o n e$, and (3) methane, carbon monoxide, and 1 -butene. Since methare and carbon monoxide grow in importance during the decomposition, they are probably formed by the decomposition of intermediate products. Waring et al. ${ }^{20-22}$ studied the decomposition of acetone, methyl ethyl ketone, and diethyl ket ne and concluded that all three decomposed primarily through a free-radical chain mechanism. Skraup and Guggenheim ${ }^{23}$ reported that the products from heating dibenzoylpropane for 20 h at $330^{\circ} \mathrm{C}$ in a bomb were acetophenone and phenyl vinyl ketone. Although the authors did not postulate a mechanism, the products can be rationalized on the basis of a cyclic mechanism. Finally, Allan, McGee, and Ritchie ${ }^{24}$ studied the pyrolysis of acetylacetone at $500^{\circ} \mathrm{C}$ and reported the production of acetone, ketene, and isopropenyl ace-ate, plus some methylacetylene, ethylene, and methane. Blades and Sandhu ${ }^{17}$ also reported that acetylace-
tone gave acetone when heated at $505^{\circ} \mathrm{C}$, but they did not detect the expected ketene. Thus, although there are fairly extensive data in the literature on the photolysis and pyrolysis of ketones, there has been no systematic study that would allow direct comparison with ester pyrolysis and apparently no attempt has been made to maximize the yield of products from the pyrolysis of ketones. We therefore undertook the study of several acyclic ketones by conducting the pyrolysis in the same apparatus and under conditions that were comparable to those used for the pyrolysis of $\epsilon$ sters.

Heptane-2,6-dione was selected for the initial studies since the compound was symmetrical and contained activated $\gamma$ hydrogen atoms. The procedure of Cope, Dryden, Overberger, and D'Addieco ${ }^{25}$ was used to synthesize the heptane-2,6-dione dioxime and the method of Overberger et al. ${ }^{26}$ was used to convert the dioxime to the dione in a $42 \%$ yield. Pyrolysis at $650{ }^{\circ} \mathrm{C}$ gave a $22 \%$ yield of acetone and a $17 \%$ yield of methyl vinyl ketone, together with a $66 \%$ recovery of the diketone. The yields of acetone and methyl vinyl ketone, based on unrecovered starting material, were 61 and $45 \%$, respectively.


A modification of the procedure of Mosher and Cox ${ }^{27}$ was used to prepare methyl neopentyl ketone by the oxidation of technical grade diisobutylene with potassium dichromate in an overall yield of $47 \%$. Pyrolysis of the methyl neopentyl ketone at $690-695^{\circ} \mathrm{C}$ gave a $17 \%$ yield of acetone and an $18 \%$ yield of isobutylene together with a $61 \%$ recovery of the starting ketone. The yields of acetone and isobutylene (based

on unrecovered starting material) were, therefore, 44 and $46 \%$, respectively. At $500^{\circ} \mathrm{C}$, a temperature at which tert -butyl acetate is essentially completely pyrolyzed to isobutylene and acetic acid, the methyl neopentyl ketone is recovered unchanged. In a very similar manner 4-methyl-2-pentanone was pyrolyzed at $665{ }^{\circ} \mathrm{C}$ to produce in the following yields: propylene ( $10 \%$ ), acetone ( $7 \%$ ), and $r \in$ covery of the starting ketone ( $75 \%$ ); in addition an $8 \%$ yield of isobutylene was obtained. The yields of acetone and propylene, based on unrecovered starting material, were 28 and $41 \%$, respectively. The extent of decomposition appears to be somewhat less than in the case of the heptane-2,6-dione or the methyl neopentyl ketone.
Methyl $n$-propyl ketone proved to be more thermally stable than the more highly substituted ketones previously discussed. Pyrolysis of methyl $n$-propyl ketone at $650^{\circ} \mathrm{C}$ gave an $87 \%$ recovery of starting material plus a $6 \%$ conversion to acetone and a $3 \%$ conversion to ethylene, both products expected from the operation of the cyclic mechanism. However, there also was obtained a $5 \%$ conversion to methyl vinyl ketone, the formation of which can be rationalized by the operation of a free-radical chain reaction involving the abstraction of the $\alpha$-hydrogen atom. Finally, for comparison acetone was treated at $650^{\circ} \mathrm{C}$ under the conditions used for the pyrolysis of methyl $n$-propyl ketone; the acetone was recovered unchanged and no indication of decomposition was noted.
Thus, it appears that ketones are considerably more thermally stable than esters, requiring some $150^{\circ} \mathrm{C}$ higher temperature for a comparable extent of decomposition. This is in marked contrast to the vinyl ethers, ${ }^{1}$ which require a temperature some $40-50^{\circ} \mathrm{C}$ lower than that required for a comparable degree of pyrolysis of an ester. The data from the pyrolysis of the ketones support the concept that the transition state for the cyclic six-membered mechanism resembles the products more than it does the starting materials.


The process of changing from a relatively stable carbonoxygen double bond in the starting ketone to the less stable, higher energy carbon-to-carbon double bond character in the transition state requires a higher temperature for operation. The introduction of a quaternary carbon in the starting ketone tends to promote the thermal decomposition in order to relieve some of the strain. Similarly, the introduction of a second carbonyl group, as in heptane-2,6-dione, not only activates the hydrogen atom by reducing its bond strength but also stablizes the double bond character in the transition state.
Since the pyrolysis of ketones required such high temperatures, the reactions are not as clean as the pyrolysis of esters. The cleavage takes place at temperatures at which competing reactions, usually free-radical reactions, also occur. The formation of many of the by-products usually can be rationalized by the operation of radical chain reactions. In other words, these pyrolyses undoubtedly represent a competition between the concerted retro-ene reaction and homolytic bond breaking processes. Thus it appears that the pyrolysis of ketones will be of synthetic utility only for those ketones that have some degree of internal strain to promote decomposition or that contain some group that will stabilize the products.

## Experimental Section ${ }^{28}$

Pyrolysis of $\mathbf{2 , 6}$-Heptanedione. An adaptation of procedures which appear in the literature ${ }^{25,26}$ was used to synthesize the 2,6 heptanedione. From 478 g ( 4.46 mol ) of 2,6-dimethylpyridine, 1850
mL of anhydrous methanol, 103 g ( 4.46 g -atoms) of sodium, and 335 $\mathrm{g}(4.83 \mathrm{~mol})$ of hydroxylamine hydrochloride in 600 mL of $50 \%$ ethanol was oכtained 47.4 g ( $46 \%$ yield based on sodium) of 2,6 -heptanedione dioxime, $\mathrm{mp} 79-82^{\circ} \mathrm{C}$ (reported ${ }^{26} \mathrm{mp} 83.4-84.6^{\circ} \mathrm{C}$. When $10.5 \mathrm{~g}(0.66$ mol ) of 2,6 -heptanedione dioxime dissolved in 115 mL of $10 \%$ aqueous sulfuric acid was treated with a solution of $9.2 \mathrm{~g}(0.132 \mathrm{~mol})$ of sodium nitrite in 15 mL of water, $3.5 \mathrm{~g}(42 \%)$ of 2,6 -heptanedione, bp $48^{\circ} \mathrm{C}$ ( 0.5 mm ), mp $31-33^{\circ} \mathrm{C}$ (reported ${ }^{26} \mathrm{bp} 48-50^{\circ} \mathrm{C}(1.0 \mathrm{~mm})$, mp 31-33 ${ }^{\circ} \mathrm{C}$ ), was obtained.

A Hoskins Type FD303-A electric furnace, permanently clamped in a vertical position in a rack and equipped with an iron-constantan thermocouple and a potentiometrically calibrated pyrometer, was fitted with a $1 \times 20$ in. Vycor tube fitted with a standard taper ${ }^{24} / 40$ outer joint at the top, a $1 / 4 \times 2$ in. side-inlet tube near the top, and a standard-taper $24 / 40$ inner joint at the bottom, and packed to a depth of about 6.5 in. with Vycor chips. An inert atmosphere was maintained in the pyrolysis tube by the introduction of a slow stream of dry oxygen-free nitrogen. The pyrolysate was initially cooled by a 6 -in. water-cooled spiral condenser and collected in a $5.5-\mathrm{in}$. test tube immersed in a dry ice-methyl Cellosolve bath. Attached between the condenser and the test tube by means of $24 / 40$ standard-taper joints was a two-way connecting tube with a side-arm suction tube. The material which did not condense in the test tube passed through the connecting tube into two condenser traps immersed in a dry icemethyl Cellosolve bath and then into a tube containing a solution of bromine in carbon tetrachloride.

The 2,6-heptanedione ( 3.5 g ) to be pyrolyzed was placed in a $10-\mathrm{mL}$ separatory funnel and the ketone was dropped through the pyrolysis tube l.eated at $650^{\circ} \mathrm{C}$ at the rate of $20 \mathrm{drops} / \mathrm{min}$, while the tube was flushed with dry oxygen-free nitrogen ( 90 bubbles $/ \mathrm{min}$ ) to minimize oxidation and charring. Examination of the tube after pyrolysis indicated very little charring had taken place. The water-white pyrolysate which was collected amounted to 2.6 g . Weighed amounts of benzene and 2-octanone were added to the pyrolysate to serve as internal standards for the chromatographic analysis of the mixture. Known mixtures of benzene with acetone and methyl vinyl ketone as well as known mixtures of 2-octanone and 2,6-keptanedione were calibrated with regard to retention times and quantitative area responses. From a chromatographic analysis of the pyrolysate, it was shown to contain acetone ( $22 \%$ ), methyl vinyl ketone ( $17 \%$ ), and 2,6 -hestanedione ( $66 \%$ ). The yield of acetone and methyl vinyl ketone, based on unrecovered starting diketone, was 61 and $45 \%$, respectively. No other products were found in the pyrolysate or in the brominecarbon tetrachloride trap. When pyrolyses were attempted at 570 and $625^{\circ} \mathrm{C}$, little or no cleavage occurred.

Pyrolysis of Methyl Neopentyl Ketone. A modification of the procecure of Mosher and Cox ${ }^{27}$ was used oo prepare methyl neopentyl ketone. In a 5-L three-necked flask equipped with a mechanical steel stirrer, a dropping funnel, and a reflux condenser were placed 1179.6 $\mathrm{g}(4 \mathrm{~mol})$ of potassium dichromate and 800 mL of water. To the reaction mixture was added $336.6 \mathrm{~g}(3 \mathrm{~mol})$ of technical diisobutylene ( $80 \%$ 2,4,4,-trimethyl-1-pentene), bp $101-103^{\circ} \mathrm{C}, n^{25} \mathrm{D} 1.4067$ (reported ${ }^{27} \mathrm{bp} 101-104^{\circ} \mathrm{C}, n^{25} \mathrm{D} 1.4060$ ), followed by the addition of 1569 $\mathrm{g}(16 \mathrm{~mol})$ of concentrated sulfuric acid with vigorous stirring over a period of 5 days. The temperature of the reaction mixture was maintained at $25-30^{\circ} \mathrm{C}$ by the rate of addition of sulfuric acid, and then stirring was continued for an additional day. After steam distillation of the reaction mixture and d-ying of the distillate over magnesium sulfate, 240.5 g of crude methyl neopentyl ketone was obtained. Careful fractionation of the crude product through a $24-\mathrm{in}$. helix-packed column yielded $128 \mathrm{~g}(47 \%)$ of methyl neopentyl ketone, bp $123-125^{\circ} \mathrm{C}(760 \mathrm{~mm}), n^{25} \mathrm{D} 1.4008$ (reported ${ }^{27} \mathrm{bp} 124-125^{\circ} \mathrm{C}, n^{25} \mathrm{D}$ 1.4018).

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 73.62 ; \mathrm{H}, 12.36$. Found: $\mathrm{C}, 73.48 ; \mathrm{H}$, 12.28.

Chromatographic analysis of the ketcne showed the presence of only one peak in the chromatogram.

When the methyl neopentyl ketone ( 10.3 g ) was pyrolyzed at 660 ${ }^{\circ} \mathrm{C}$ at the rate of 22 drops $/ \mathrm{min}$ through the apparatus described above, a water-white pyrolysate was collected and no charring occurred in the tube. A weighed amount of methyl ethyl ketone was added to the pyrolysate as an internal standard and the mixture was analyzed on a gas chromatograph as described prevoously. The pyrolysate was shown to contain acetone ( $17 \%$ ), isobutylene ( $18 \%$ ), methyl neopentyl ketone $(61 \%)$, and unidentified materials ( $4 \%$ ). The yields of acetone and isobutylene, based on unrecovered methyl neopentyl ketone, were 44 and $46 \%$, respectively.

When the temperature of pyrolysis was 585 or $630^{\circ} \mathrm{C}$, practically no pyrolysis occurred and the starting methyl neopentyl ketone was
recovered unchanged. A so when a temperature of $690^{\circ} \mathrm{C}$ was employed, much greater cuantities of low-boiling "iragmentation" products, whic. were presumably formed by free-radical reactions, were noted. Analysis of the material in the bromine-carbon tetrachloride trap indicated tnat practically no material was collected.

Pyrolysis of Methyl Isobutyl Ketone. Commersial methyl iso butyl ketone (Matheson Coleman and Bell) was carefully fractionated through an 8-ir. helix-packed column to give a water-white chromatographically pure distillate, bp $114-117^{\circ} \mathrm{C}$ (reported ${ }^{29}$ bp 114-116 ${ }^{\circ} \mathrm{C}$ ). In the apparatus jus: described, 3.87 g of methyl isobutyl ketone was added to the pyrolysis tube heated at $650-655^{\circ} \mathrm{C}$ at the rate of 60 drops/min. After a weighed amount of methyl ethyl ketone was added as an internal standard, the mixture was analyzed on a gas chromatograph to indicate that the pyrolysate corsisted of some propylene, isobutylene ( $8 \%$ ), acetone ( $7 \%$ ), and methyl isobutyl ketone (75\%). Although some of the volatile materials passed into the bromine trap, the material in the bromine-carbon tetrachloride trap was worked up in the usual wey and the resulting 1,2 -dibromopropane was analyzed in a gas chromatograph with a weighed amount of $1,2,3$ tribromopropane added $\varepsilon s$ internal standard. The analysis indicated that a $10 \%$ conversion to propylene had occurred during pyrolysis. The yields of acetone and propylene, based on unrecovered methyl isobutyl ketone, were 38 and $40 \%$ respectively. Pyrolysis of methyl isobutyl ketone at $625^{\circ} \mathrm{C}$ resulted in nearly complete recovery of starting material.

Pyrolysis of Methyl n-Propyl Ketone. Commercial methyl npropyl ketone (Brothers Chemical Co.) was distilled through an 8 -in. helix-packed column to y eld a clear liquid chromatographically pure distillate, bp $100-103^{\circ} \mathrm{C}$ (reported ${ }^{29} \mathrm{bp} 102^{\circ} \mathrm{C}$ ). In the apparatus just described 2.94 g of methrl $n$-propyl ketone was add $\epsilon$ at the rate of $20 \mathrm{drops} / \mathrm{min}$ tc the Vycor tube heated at $650^{\circ} \mathrm{C}$ with the pyrolysate being collected in a tube cooled in dry ice and the low-boiling olefins collected in a bromine-carbon tetrachloride trap. A weighed amount of benzene was added to the pyrolysate as an internal standard and the mixture was analyzed on a gas chromatograph which showed that the pryolysis gave acetone (5\%), methyl vinyl ketone ( $4 \%$ ), and recovered methy $n$-propyl ketone ( $60 \%$ ). Analysis of the brominecarbon tetrachlcride trap showed the production of ethylene (1\%) and propylene (1\%).

Pyrolysis of Acetone. When acetone was pyrolyzed at $650^{\circ} \mathrm{C}$ in the apparatus described f reviously, chromatographic analysis of the pyrolysate showed only $t$ se presence of acetone in nearly a quantitative recovery.

Registry No.-2,6-Həptanedione, 13505-34-5; diisobutylene, 25167-70-8; methyl neopentyl ketone, 590-50-1; methyl isobutyl ketone, 108-10-1; methyl propyl ketone, 107-87-9; acetone, 67-64-1.

## References and Notes

(1) Previous paper in this series: W. J. Bailey and J. Di Pietro, J. Org. Chem., 42, 3899 (1977)
(2) Supported in part by a grant from the Office of Naval Research.
(3) National Institutes of Health Fellow, 1958-1959.
(4) W. J. Bailey and C. E. Knox, J. Org. Chem., 25, 511 (1960).
(5) W. J. Bailey and R. A. Baylouny, J. Org. Chem., 27, 3476 (1962)
(6) W. J. Bailey and N. A. N elson, J. Org. Chem., 27, 3088 (1962).
(7) W. J. Bailey and C. N. Brd, J. Org. Chem., 23, 996 (1958).
(8) W. J. Bailey and W. F. Hale, J. Am. Chem. Soc., 81, 651 (1959).
(9) J. M. Coxon and B. Halton, "Organic Photochemistry"', Cambridge University Press, Londoา, 1974.
(10) R. O. Kan, '"Organic Photochemistry,'" McGraw-Hill Book Co., New York, N.Y. 1966
(11) R. Srinivasan, J. Am. Crem. Soc., 81, 5061 (1959); 84, 2475 (1962).
(12) G. R. McMillan, J. G. Ca vert, and J. N. Pitts, Jr., J. Am. Chem. Soc., 86, 3602 (1964).
(13) J. R. McNesby and A. S. Gordon, J. Am. Chem. Soc., 80, 261 (1958).
(14) P. Ausloos and E. Muroc. J. Am. Chem. Soc., 80, 5929 (1958).
(15) W. B. Guenther, J. Am. Jhem. Soc., 80, 1071 (1958).
(16) C. E. Waring and V. L. Garik, J. Am. Chem. Soc., 78, 5199 (1956)
(17) A. H. Blades and H. S. Sandhu, Int. J. Chem. Kinet., 3, 187 (1971).
(18) S. Furukawa and K. Naruchi, Nippon Kagaku Zasshi, 87, 1108 (1966).
(19) W. D. Walters and W. T. Barry. J. Am. Chem. Soc., 79, 2101 (1957).
(20) C. E. Waring and W. E. Mutter, J. Am. Chem. Soc., 70, 4073 (1948).
(21) C. E. Waring and M. Spector, J. Am. Chem. Soc., 77, 6453 (1955).
(22) C. E. Waring and C. S. Earlow, J. Am. Chem. Soc., 71, 1519 (1949)
(23) S. Skraup and S. Gugge iheim, Ber., 58, 2488 (1925).
(24) R. J. P. Allan. J. McGee, and P. D. Ritchie, J. Chem. Soc., 4700 (1957).
(25) A. C. Cope, H. L. Dryder C. G. Overberger, and A. A. D'Addieco, J. Am. Chem. Soc., 73, 3416 (1951).
(26) C. G. Overberger, T. B. Gibb, Jr., S. Chibnik, Pao-tung Huang, and J. J. Monagle, J. Am. Chem. Soc., 74, 3290 (1952).
(27) W. A. Mosher and J. C. Cox, Jr., J. Am. Chem. Soc., 72, 3702 (1950).
(28) The authors are grateful o Mrs. Kathryn Baylouny and Mrs. Jane Ratka for the microanalysis.
(29) D. M. Cowan. G. H. Jeffery, and A. I. Vogel. J. Chem. Soc., 174 (1940).

# Stereochemical Consequences of $\boldsymbol{C}$-Methylation of 1-Methylphosphorinane and Its Sulfide and Oxide: A Carbon-13 and Phosphorus-31 Nuclear Magnetic Resonance Study ${ }^{1}$ 

Louis D. Quin* and Shin Ok Lee<br>Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706

Received September 16, 1977


#### Abstract

Placing a methyl at the 3 or 4 position of 1 -methylphosphorinane results in conformational equilibria for both the cis and trans isomers that are strongly biased toward the form with equatorial $C$-methyl. This remains true when the phosphines are converted to sulfides, oxides, or methiodides. The steric demand of $C$-methyl is therefore considerably greater than that of $P$-methyl, a fact predicted for 1 -methylphosphorinane by its $\Delta G^{\circ}$ value of $+0.35 \mathrm{kcal} /$ $\mathrm{mol} .{ }^{13} \mathrm{C}$ NMR spectroscopy was especially helpful in qualitatively analyzing the equilibria; the $C$-methyl and its carbon of attachment in a pair of isomers had little chemical shift variability, while $P$-methyl differed by 4-6 ppm, always with the axial methyl relatively upfield. Both the sulfides and the oxides have ring carbons 3 and 5 at higher field ( $2-3 \mathrm{ppm}$ ) when the sulfur or oxygen atoms are axial. This greater $\gamma$ effect for a single-atom substituent on phosphorus over a methyl group has been observed previously for the case of S, but not for 0 . While ${ }^{31} \mathrm{P}$ NMR shifts were sensitive to the stereochemistry about phosphorus, no consistency in the direction of the effect was present. For the phosphines, axial methyl caused the expected relatively upfield shift. This was observed also for the sulfides, but the reverse effect prevailed for the oxides.


Phosphorus-substituted phosphorinanes are of considerable interest because of the predominance $o$ the conformer with axial substituent over that with equatorial at room temperature. ${ }^{2}$ For the 1 -methyl derivative, the equilibrium constant ( $\mathrm{a} \rightleftarrows \mathrm{e}$ ) is estimated to be about 0.55 , which gives $\Delta G^{\circ}=+0.35 \mathrm{kcal} / \mathrm{mol}$ at $27^{\circ} \mathrm{C}$. This unusual result stems from a combination of a rather low enthalpy difference for the conformers ( $\Delta H^{\circ}=-0.68 \mathrm{kcal} / \mathrm{mol}$ ) and a significant entropy effect ( $\Delta S^{\circ}=-3.4 \mathrm{eu}$ ). 1-Methylarsenane was later reported ky another group to exhibit similar phenomena. ${ }^{3}$ We have continued our investigation of the 1 -methylphosphorinane system by considering the consequences of pacing methyl at either the 3 or the 4 position, and then of adding sulfur, oxygen, or methyl to phosphorus to increase its covalency in these compounds. The synthesis and spectral prcperties of all of these compounds are reported in the present paper. Our major probe of the conformational changes occurring in these families has been ${ }^{13} \mathrm{C}$ NMR spectroscopy; we have previously employed this technique for hydroxy ${ }^{4}$ and keto ${ }^{5}$ derivatives of phosphorinanes and have witnessed a number of useful effects. ${ }^{31} \mathrm{P}$ NMR spectroscopy has also figured in our earlier studies and we have examined our new $C$-methyl compounds by this technique also.

The spectral data we have accumulated are best interpreted on the basis of perturbation of the conformational equilibrium for the parent 1-methylphosphorinane (1). Thus, a more

space-demanding group such as $\mathrm{CH}_{3}\left(\Delta G^{\circ}=-1.7 \mathrm{kcal} / \mathrm{mol}\right.$ in cyclohexanes; for thianes, ${ }^{6}-1.80 \pm 0.10$ for $4-\mathrm{CH}_{3}$ and 1.40 $\pm 0.07$ for $3-\mathrm{CH}_{3}$ ) placed on ring carbon 4 skould control the equilibrium and the $\mathrm{P}-\mathrm{CH}_{3}$ group will be forced into greater occupation of the axial position (as in $2 \mathbf{b}$ ) in the cis isomer and of equatorial (3b) in the trans isomer. Similar consequences should result from methyl placed at the 3 position. Indeed, the principle of additivity of conformational free energies for remote substituents on a ring, most recently demonstrated to be valid in the related 1 -methylthianium system, ${ }^{7}$ should allow calculation of the position of these equilibria. For this purpose, we lack the $\Delta G^{\circ}$ value for $\mathrm{CH}_{3}$ on the phosphorinane ring, but

cis-1, 4


2b


3b
cis-1. 3

$4 a$

4b

5b
use of the cyclohexane value ( -1.7 ) seems justified, which coupled with the value found for 1 -methylphosphorinane ( +0.35 ) leads to $\Delta G^{\circ}=-2.05 \mathrm{kcal} / \mathrm{mol}$ for the cis-1,4-dimethyl system (2) and -1.35 for the trans $-1,4$-system (3). These values predict equilibrium constants of 92 and 9.9 , respectively, or mixtures dominated by the $C$-methyl equatorial forms to a very large extent ( 99 and $91 \%$, respectively). On comparing spectral properties for cis and trans forms, then, one should find significant differences about the $\mathrm{P}-\mathrm{CH}_{3}$ end, and considerable similarity at the $\mathrm{C}-\mathrm{CH}_{3}$ end. The same predictions would hold for the 1,3-dimethyl series, although we have refrained from making calculations in the absence of $\Delta G^{\circ}$ for a 3-methyl group on this ring system.
When sulfur is added to 1 -methylphosphorinane, it would be expected that a shift of the methyl group to the equatorial

Table I. ${ }^{13} \mathrm{C}^{a}$ and ${ }^{31}$ P NMR Spectra of 1,4-Dimethylphosphorinane and Derivatives

| Compd no. | ${ }^{13} \mathrm{C}-2,6$ | ${ }^{13} \mathrm{C}-3,5$ | ${ }^{13} \mathrm{C}-4$ | $\mathrm{C}-{ }^{13} \mathrm{CH}_{e}$ | P- ${ }^{13} \mathrm{CH}_{3}$ | ${ }^{31} \mathrm{P}-\mathrm{CH}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2{ }^{\text {b }}$ | 22.7 (14) | 28.5 (0) ${ }^{\text {c }}$ | 34.1 (0) | 23.5 (0) | 5.7 (20) | -61.9 |
| $3^{\text {b }}$ | 28.5 (11) ${ }^{\text {c }}$ | 33.3 (6) | 34.2 (0) | 22.9 (0) | 13.8 (18) | -55.7 |
| $7{ }^{\text {d }}$ | 32.5 (50) | 31.3 (7) | 32.1 (0) | 22.0 (0) ${ }^{e}$ | 15.9 (52) | +29.0 |
| $8{ }^{\text {d }}$ | 31.1 (48) | 28.8 (7) | 32.7 (5) | 22.0 (0) ${ }^{e}$ | 20.7 (52) | +30.8 |
| $11^{d}$ | 28.5 (63) | 32.1 (6) | 32.5 (5) | 21.7 (0) ${ }^{\text {e }}$ | 12.0 (65) | +40.9 |
| $12^{\text {d }}$ | 27.6 (62) | 29.0 (7) | 32.3 (5) | 21.7 (0) ${ }^{\text {e }}$ | 15.6 (66) | +38.7 |
| $15^{\prime}$ | 21.6 (50) | 30.2 (5) | 32.9 (7) | 23.1 (0) | 6.5 (55), 9.8 (55) | +17.2 |

$a$ Values in parentheses are ${ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}$ coupling constants in hertz. ${ }^{b}{ }^{13} \mathrm{C}$ spectzum neat; ${ }^{31} \mathrm{P}$ in benzene. ${ }^{c}$ Overlapped signals. ${ }^{d}$ Both spectra on $\mathrm{CHCl}_{3}$ solutions. ${ }^{e}$ Superimposed signals. $/$ Both spectra on $\mathrm{H}_{2} \mathrm{O}$ solutions; $\mathrm{CH}_{3} \mathrm{OH}$ as internal ${ }^{13} \mathrm{C}$ reference.
position would occur. In this case of tetrahedral phosphorus, no mechanism is available to relieve the strain of 1,3 -nonbond $\epsilon$ d interactions as is possible for the trivaient (pyramidal) system through expansion of bond angles. ${ }^{2}$ Consequently, competition for the less crowded equatorial position should be won by the larger $\mathrm{CH}_{3}$ group. This concept has already been tested and supported in other derivatives of phosphorinanes. ${ }^{4 a}$ Indeed, in another study in this Department directed by Professor A. T. McPhail, ${ }^{8}$ it has been found by $\mathbf{x}$-ray analysis of the crystalline 1-methylphosphorinane 1-sulfide that the methyl group is equatorial ( $\mathbf{6 b}$ ). It is more difficult in advance

of experimentation to predict what will occur when 3- or $4-\mathrm{CH}_{3}$ is placed on the ring with phosphorus in the tetrahedral condition, but as will be seen, the spectral data clearly reveal the control of the equilibria once again by the preference of the $\mathrm{C}-\mathrm{CH}_{3}$ group for the equatorial position.

The 1,3- and 1,4-Dimethylphosphorinanes. Carbon-13 NMR data for these compounds are conveniently discussed with =eference to the 1-methyl parent, with two effects in mind: (1) replacement of ring hydrogen by methyl will produce the usual deshielding at $\alpha$ and $\beta$ carbons and shielding at the $\gamma$ carbon, by magnitudes dependent on axial-equatorial character; (2) the equilibria will shift so as to increase the axial $\mathrm{P}-\mathrm{CH}_{3}$ population in the cis compound of the 1,4 system and in the trans compound of the 1,3 system; it is quite clear from our earlier studies on hydroxyphosphorinanes ${ }^{4}$ that axial $\mathrm{P}-\mathrm{CH}_{3}$ compounds have relatively upfield shifts at $\mathrm{C}-2,6$, $\mathrm{C}-3,5$. and at $\mathrm{P}-\mathrm{CH}_{3}$ due to steric crowding compared to the equatorial $\mathrm{P}-\mathrm{CH}_{3}$ compound. Indeed, these effects were used to assign cis,trans structure to the 1,4 -dimethyl isomers that were sbtained in unequal amount by the synthetic method used $\left(\mathrm{CH}_{3} \mathrm{PCl}_{2}\right.$ added to the di-Grignard reagent of $1,5-\mathrm{di}$ -bromo-3-methylpentane). It is immediately evident from the ${ }^{13} \mathrm{C}$ spectra (Table I) that the isomers have nearly identical shifts for $\mathrm{C}-4$ and for $\mathrm{CH}_{3}$ on $\mathrm{C}-4$, but that $\mathrm{C}-2,6$ and $\mathrm{C}-3,5$, as well as $\mathrm{P}-\mathrm{CH}_{3}$, are all markedly upfield in one (the minor) isomer. This leaves no doubt that both isomers have preferred conformations with equatorial $\mathrm{C}-\mathrm{CH}_{3}$ and that the minor isomer has the cis structure with a predominance of $\mathrm{P}-\mathrm{CH}_{3}$ axial (2b) and the major isomer is trans with a predominance of $\mathrm{P}-\mathrm{CH}_{3}$ equatorial (3b).

Comparison of the spectrum of cis-1,4-dimethylphosphorinane to that of the 1 -methyl compound shows the following effects. (1) $\mathrm{P}-\mathrm{CH}_{3}$ is shifted upfield by 5.2 ppm ; this is obviously the result of the increase in axial character of $\mathrm{PCH}_{3}$ in the dimethyl compound (2b). (2) C-2,6 are also shifted
upfield ( 4.0 ppm ) by the increased axial $\mathrm{P}-\mathrm{CH}_{3}$ character (this upfield shift is not due to a $\gamma$ effect of the $4-\mathrm{CH}_{3}$, since this is negligible for an equatorial group in cyclohexanes). ${ }^{9}$ (3) $\mathrm{C}-3,5$ feel opposite e-fects; they are shielded by the increased $\mathrm{P}-\mathrm{CH}_{3}$ axial character, but deshielded by the $\beta$ effect of $\mathrm{C}-\mathrm{CH}_{3}$. The result is net deshielding ( 4.1 ppm ). This is not unexpected, for the $\beta$ effect of equatorial methyl on cyclohexane is a sizeable $8.9 \mathrm{ppm}^{9}$ and will dominate over the shielding. There is a marked difference in the ${ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}$ coupling constant which also indicates the increased axial $\mathrm{P}-\mathrm{CH}_{3}$ character; there is no observable splitting in the dimethyl compound, while a doublet with $J=3 \mathrm{~Hz}$ is present for the 1 -methyl compound. We have observed such stereodependence of ${ }^{2} J_{\mathrm{PC}}$ before, ${ }^{2}$ and consistently have four.d that the value is largest ( $\sim 6-7 \mathrm{~Hz}$ ) with equatorial $\mathrm{PCH}_{3}$ and is only $0-1 \mathrm{~Hz}$ in the axial case, as in the conformationally frozen 1-methyl-4-tert-butyl-4phosphcrinanols. ${ }^{2}(4) \mathrm{C}-4$ is deshielded by the $\alpha$ effect of $\mathrm{CH}_{3}$; the value ( 5.8 ppm ) is nearly identical with the $\alpha$-equatorial effect seen in cyclohexanes ( $5.6 \mathrm{ppm}^{9}$ ).

The spectrum of the trans- 1,4 isomer can be analyzed in the same way. (1) For $\mathrm{PCH}_{3}$, there is increased equatorial character ( $\mathbf{3 b}$ ) and consequently a downfield shift ( 2.9 ppm ) relative to the 1-methyl case. (2) At C-2,6, there should also be deshielding accompanying the increased equazorial $\mathrm{P}-\mathrm{CH}_{3}$ character; the observed downfield shift is 1.8 ppm . (3) At C3,5 , deshielding is caused by both the increased equatorial $\mathrm{P}-\mathrm{CH}_{3}$ character and the $\beta$ effect of the equatorial $\mathrm{C}-\mathrm{CH}_{3}$. The observed shift is 99 ppm . The expected increase in ${ }^{2} J_{\mathrm{PC}}$ also occurs; the value $(6 \mathrm{~Hz}$ ) is close to that ( $7 \mathrm{~Hz} \mathrm{)} \mathrm{observed}$ when $\mathrm{P}-\mathrm{CH}_{3}$ is frozen in the equatorial position in the 4-tert-butyl-4-phosphorinanol system. ${ }^{2}$

The chemical shift of the $4-\mathrm{CH}_{3}$ group in both isomers is very similar to that of 1-methylcyclohexane ( $\delta 23.20^{9}$ ) and 4 -methylthiane ( $\delta 23.0^{76}$ ). That the shifts are not identical for the isomers, however, suggests that (1) the degree of equatorial character, while very large, is not precisely the same, and (2) the $\delta$ effect of the phosphorus function ( +0.7 ppm in chain compounds ${ }^{10}$ ) is dependent on the configuration about phosphorus and is more important in the cis compound.

It is observed that some of the parameters (e.g., for $\mathrm{P}-\mathrm{CH}_{3}$ and $\mathrm{C}-2,6$ ) for 1 -methylphosphorinane fall between the extremes of the cis- and trans-1,4-dimethylphosphorinanes. Qualitatively, this is exactly what is expected for equilibria biased by $C$-methyl. It is not possible to use the data for quantitative conformational analysis, however, since the 4 methyl group is not an adequate anchoring group. Furthermore, the 4-methyl group clearly has an influence on the chemical shift of the phosphorus atom (vide infra) that may well be transmitted tc carbons attached to phosphorus. To determine a conformational equilibrium constant by the chemical shift method requires assurance that a 4 -substituent effect is absent. ${ }^{11}$

The synthesis of the 1,3 -dimethylphosphorinanes proceeded similarly from the di-Grignard reagent of $1,5-\mathrm{di}$ -bromo- $£$-metrylpentar.e. Again the cis and trans isomers were
formed in unequal amount. Here the cis isomer will have equatorial $\mathrm{P}-\mathrm{CH}_{3}$, in an equilibrium controlled by the greater demand of $\mathrm{C}-\mathrm{CH}_{3}$ for the equatorial position (4b), while the trans isomer will have axial $\mathrm{P}-\mathrm{CH}_{3}(5 b)$. The differences in the $\mathrm{P}-\mathrm{CH}_{3}$ signals (major $\delta 14.3$; minor $\delta 6.8$ ) are immediately explainable on this basis and reveal the major isomer to have cis structure (4b). The similarity seen in the $\mathrm{C}-\mathrm{CH}_{3}$ signals ( $\mathbf{5 b}, \delta 26.2 ; \mathbf{4 b}, \delta 25.2$ ) is then rationalized. These chemical shifts are noticeably downfield of those of the 1,4 -dimethyl compound and we attribute this to the fact that phosphorus, rather than carbon, now occupies a $\gamma$ position relative to 3 methyl. From our earlier study of open-chain phosphorus compounds, we know that trivalent phosphorus (as in the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{P}$ group) has a $\gamma$-shielding effect of only 0.5 ppm , while $\mathrm{CH}_{3}$ has an effect of 2.4 ppm , a difference similar to that now seen on comparison of a 1,4- to a 1,3 -dimethylphosphorinane with comparable disposition of the $P$-methyl group. Some other features of the spectra of these isomers are also notable. (1) C-2 and C-6 are easily recognizable in bot. 1 isomers by the size of the coupling to ${ }^{31} \mathrm{P}$. Of these, $\mathrm{C}-2$ is the more deshielded due to the $\beta$ effect of 3 -methyl (about 5-6 ppm). The shift at $\mathrm{C}-6$ is not influenced by the 3 -methyl; the downfield shift noted in the cis isomer relative to the trans is due to the increased equatorial character of $\mathrm{P}-\mathrm{CH}_{3}$. (2) $\mathrm{C}-4$ in both isomers, easily assigned by the absence of ${ }^{31} \mathrm{P}$ coupling, is strongly deshielded by the $\beta$ effect of the $3-\mathrm{CH}_{3}$, about 10 ppm in each isomer relative to the 1 -methyl compound. It is thus seen that the $\beta$ effect of $\mathrm{CH}_{3}$ is larger at $\mathrm{C}-4$ than at $\mathrm{C}-2$, but this effect has been found for 3 -methylthiane also. ${ }^{6}(3) \mathrm{C}-5$ is sensitive to two effects. The increased crowding due to $\mathrm{P}-\mathrm{CH}_{3}$ acquiring greater axial character is responsible for the noticeably upfield value for the trans isomer ( $\delta 20.4$ ) relative to the 1 -methyl ( $\delta$ 23.4), while relief of this crowding due to increased equatorial character of $\mathrm{P}-\mathrm{CH}_{3}$ in the cis isomer accounts for the downfield shift observed ( $\delta 25.5$ ). The value for ${ }^{2} J_{\mathrm{PC}}$ again supports these assignments; the isomer with axial $\mathrm{P}-\mathrm{CH}_{3}$ has the expected small constant ( 2 Hz ), while the isomer with equatorial $\mathrm{PCH}_{3}$ has the larger value ( 8 Hz ). (4) The effect of $\mathrm{CH}_{3}$ on $\mathrm{C}-3$ is remarkably large for both isomers; relative to the 1 -methyl compound, shifts of $13-14 \mathrm{ppm}$ are observed. This shift greatly exceeds the expected $\alpha$ effect ( $5.8-5.9 \mathrm{ppm}$ ) seen in the $1,4-$ dimethyl compounds. The difference cannot be accounted for on any of the usual grounds; reassignment of the shifts to other carbons does not lead to any better interpretation.

The ${ }^{31} \mathrm{P}$ NMR shifts ${ }^{12}$ (in benzene) for the axial $\mathrm{P}-\mathrm{CH}_{3}$ isomers ( $2 \mathbf{b},-61.9 ; 5 \mathbf{b},-55.4$ ) in each of the 1,4 - and $1,3-$ dimethyl sets are upfield of the equatorial $\mathrm{P}-\mathrm{CH}_{3}$ isomers ( $\mathbf{3 b}$, $-55.7 ; \mathbf{4 b},-54.3$ ). This is the expected relation, based on our earlier studies with other phosphorinane derivatives, ${ }^{2,4 a}$ and is in common with the effects felt at ring carbon in cyclohexanes. However, the effect is noticeably more pronounced in the 1,4 isomers. the effect has not been considered previously for any 3 -substituted phosphorinane, although it is known ${ }^{13}$ for the 1,3 -dimethylphospholanes that the difference in the cis and trans forms is small ( $\delta-33.8$ and $-3 \tilde{e} .4$, unassigned). In the 1,2 -dimethylphospholenes, ${ }^{13}$ the effect is actually reversed; the more crowded cis form $(-16.7)$ is downfield of the trans ( -28.2 ) and it would be of interest to determine values for the 1,2 -dimethylphosphorinanes. Our attempts to prepare these compounds by the di-Grignard method have so far been unsuccessful, however. Another ${ }^{31} \mathrm{P}$ NMR feature of note is that the value ${ }^{2}$ for 1 -methylphosphorinane (neat, $\delta-53.7$ ) falls outside the range for both of the pairs of dime-hyl compounds, even allowing for the medium difference, and it is obvious that ${ }^{31} \mathrm{P}$ is influenced by other factors than just the degree of axial-equatorial character about the subsituent it bears.

Sulfides of the Dimethylphosphorinanes. Addition of sulfur to the isomeric mixtures of 1,3 - and 1,4 -dimethylphosphorinanes produces the corresponding mixtures of 1 -
sulfides in good yield with retention of the isomer ratio. The effects on carbon of the conversion $\mathrm{R}_{3} \mathrm{P} \rightarrow \mathrm{R}_{3} \mathrm{PS}$ have been discussed in detail elsewhere: ${ }^{4,10}$ the present discussion will concentrate on conformational effects only, as will that on the oxides and methiodides subsequently.

The 1,4-dimethyl isomers can be expected to participate in the conformational equilibria shown below ( $\mathbf{7 a}, \mathbf{b}, 8 \mathbf{a}, \mathbf{b}$ ).


That the ${ }^{13} \mathrm{C}$ shifts (Table I) are virtually the same in both isomers for $\mathrm{C}-4$ and for $4-\mathrm{CH}_{3}$ clearly indicates that the equilibria are dominated by the same structural effect, presumably that of equatorial $4-\mathrm{CH}_{3}(\mathbf{7 b}$ and $\mathbf{8 b}$ ). This is confirmed by the observation that $\mathrm{P}-\mathrm{CH}_{3}$ and $\mathrm{C}-3,5$ are quite different in the isomers. The former signals ( $\delta 15.9$ and 20.7) fall close to values established for conformationally frozen models with axial and equatorial $\mathrm{P}-\mathrm{CH}_{3}$ (1-methyl-4-tert-butyl-4-phosphorinanol 1-sulfides: ${ }^{\text {b }} \mathrm{P}-\mathrm{CH}_{3}$ axial $\delta$ 14.5; $\mathrm{P}-\mathrm{CH}_{3}$ equatorial, $\delta 20.5$ ). The $\mathrm{C}-3,5$ signals should then differ because of the stronger shielding of axial sulfur than of axial methyl, an unusual effect observed earlier, ${ }^{4 \mathrm{~b}}$ and indeed that isomer assigned structure $\mathbf{8 b}$ from the $\mathrm{P}-\mathrm{CH}_{3}$ effect has the expected upfield signal ( $\delta 28.8 \mathrm{vs}$. 31.3 ).

The above interpretation implies that the conformational free energy of $\mathrm{CH}_{3}$ on carbon is substantially larger than $\mathrm{CH}_{3}$ on phosphorus bearing sulfur, just as it is on trivalent phosphorus, or conversely that of sulfur on phosphorus bearing $\mathrm{CH}_{3}$. We have earlier ${ }^{4 \mathrm{a}}$ considered the relative influence of $\mathrm{CH}_{3}$ vs. S on the conformational equilibrium of 1-methylphosphorinane 1 -sulfide and predicted that the conformer with equatorial $\mathrm{CH}_{3}(\mathbf{6 b})$ would be in predominance. X-ray analysis later confirmed this predominance for the solid state. ${ }^{8}$ That there could be a substantial amount of the conformer with axial $\mathrm{CH}_{3}(6 \mathbf{a})$ in solution remains a possibility, however, and is indeed indicated by the fact that the $\mathrm{P}-\mathrm{CH}_{3}$ signal ( $\delta$ 18.5) falls between the extremes of the two 1,4 -dimethyl isomers. Were $\mathrm{P}-\mathrm{CH}_{3}$ in 6 very largely in the equatorial position, a value more like that of the trans compound ( $8 \mathbf{b}$ ) should have been observed.

Analysis of the ${ }^{13} \mathrm{C}$ NMR data (Table II) for the 1,3 -dimethyl compounds points to the same conclusion of control of the conformational equilibrium by the $\mathrm{C}-\mathrm{CH}_{3}$ group. Thus, the isomers have very similar shifts for $\mathrm{C}-\mathrm{CH}_{3}$ and for $\mathrm{C}-4$, but quite different ( $\Delta \delta 5.3 \mathrm{ppm}$ ) values for $\mathrm{P}_{-} \mathrm{CH}_{3}$. Also, the greater $\gamma$-shielding effect of axial sulfur, relative to axial $\mathrm{CH}_{3}$, is evident at both $\mathrm{C}-3$ and $\mathrm{C}-5$ in the isomer suspected to prefer structure 9b.

Another effect is present in both the 1,4 and 1,3 compounds: when sulfur is predominantly equatorial, small but noticeable deshielding occurs at the adjacent ring carbons ( 1.9 ppm at $\mathrm{C}-2,1.8 \mathrm{ppm}$ at $\mathrm{C}-6$ ) relative to the form with axial sulfur. An effect of just this magnitude has been observed in the sulfides of the 1,4-dimethyl-1-phosphorinanols. ${ }^{4}$

There are two three-bond ${ }^{13} \mathrm{C} \_{ }^{31} \mathrm{P}$ couplings in each of 9 and

Table II. ${ }^{13} \mathrm{C}^{a}$ and ${ }^{31} \mathrm{P}$ NMR Spectra of 1,3-Dimethylphosphorinanes and Derivatives

| Compd no. | ${ }^{13} \mathrm{C}-2$ | ${ }^{13} \mathrm{C}-\varepsilon$ | ${ }^{13} \mathrm{C}-4$ | ${ }^{13} \mathrm{C}-5$ | ${ }^{13} \mathrm{C}-6$ | $\mathrm{C}_{-}{ }^{13} \mathrm{CH}_{3}$ | $\mathrm{P}_{-}{ }^{13} \mathrm{CH}_{3}$ | ${ }^{31} \mathrm{P}-\mathrm{CH}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{4}^{b}$ | $32.0(8)$ | $37.1(3)$ | $37.8(0)$ | $25.5(8)$ | $28.5(10)$ | $25.2(5)$ | $14.3(16)$ | -54.3 |
| $\mathbf{5}^{b}$ | $31.4(10)$ | $36.2(2)$ | $38.3(0)$ | $20.4(2)$ | $26.2(12))^{c}$ | $26.2(2)^{c}$ | $6.8(18)$ | -55.4 |
| $\mathbf{9}^{d}$ | $39.3(39)$ | $27.6(4)$ | $35.1(6)$ | $20.5(5)$ | $30.6(50)$ | $24.2(18)^{e}$ | $21.7(53)$ | +32.6 |
| $\mathbf{1 0}^{d}$ | $41.2(43)$ | $30.8(5)$ | $34.1(5)$ | $23.1(5)$ | $32.4(49)$ | $24.2(18)^{e}$ | $16.4(52)$ | +30.5 |
| $\mathbf{1 3}^{d}$ | $36.6(62)$ | $28.1(6)$ | $35.3(6)$ | $20.6(7)$ | $27.4(66)$ | $24.6(16)^{c}$ | $16.2(68)$ | +40.6 |
| $\mathbf{1 4}^{d}$ | $37.3(63)$ | $31.5(4)$ | $34.5(6)$ | $22.9(4)$ | $28.1(65)^{e}$ | $24.3(17)^{c}$ | $12.3(66)$ | +42.2 |
| $16^{b}$ | $28.9(49)$ | $30.1(5)$ | $34.7(7)$ | $22.1(5)$ | $21.0(51)$ | $25.2(16)$ | $6.8(53), 10.0(54)$ | +19.2 |

${ }^{a}$ Values in parentheses are ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling constants in $\mathrm{Hz} .{ }^{b}{ }^{13} \mathrm{C}$ spectrum neat; ${ }^{31} \mathrm{P}$ in benzene. ${ }^{\mathrm{c}}$ Overlapped signals. ${ }^{d}$ Both spectra on $\mathrm{CHCl}_{3}$ solution. ${ }^{e}$ Signals nearly superimposed. ${ }^{f}$ Overlapped signals. ${ }^{5}$ Both sp ${ }^{2}$ ctra on $\mathrm{H}_{2} \mathrm{O}$ solutions with $\mathrm{CH}_{3} \mathrm{OH}$ as internal ${ }^{13} \mathrm{C}$ reference. Resolution was poor for $\mathrm{C}-2$ and $\mathrm{C}-3$ and $\mathrm{C}-5$ and $\mathrm{C}-6$, but a spectrum obtained at 15.0 MHz on a JEOL FX-60 spectrometer gave excellent resolution of all peaks and confirmed the assignments.


10, and a very large difference exists in their magnitude. The coupling to $3-\mathrm{CH}_{3}$ is a sizeable 18 Hz , while that to ring carbon 4 is only $5-6 \mathrm{~Hz}$. We have previous.y noted a dihedral angle control of ${ }^{3} J_{\text {PC }}$ in dimethylcyclohexylphosphine sulfides ${ }^{14}$ and this appears to be the explanation for these phosphorinane derivatives as well. This effect will also be seen to prevail for the phosphine oxides and phosphonium salts to be discussed in lajer sections of this paper. The effect is useful in the present research since it supports the conclusion from chemical shift considerations that $3-\mathrm{CH}_{3}$ is in the same steric environment in both the cis and trans isomers.
The ${ }^{31} \mathrm{P}$ NMR shifts (in $\mathrm{CHCl}_{3}$ ) for the sulfides of phosphor nanes are not as sensitive to structural changes as are thos $\epsilon$ of the phosphines. ${ }^{4 \mathrm{a}}$ Thus, the cis- 1,4 compound (7) has $\delta+29.0$ and the trans- 1,4 compound ( 8 ) has $\delta+30.8$. The 1 methyl compound falls out of this range ( $\delta+33.9$ ). For the 1,3 -dimethyl compounds, similar values are found ( $9,+32.6$; $10,+30.5)$. In both sets of isomers, the upfield shift is associated with the form exhibiting an axial $\mathrm{P}-\mathrm{CH}_{3}$ preference.

Oxides of the Dimethylphosphorinanes. Equilibria for the oxides resemble those for the sulfides, and the ${ }^{13} \mathrm{C}$ NMR data (Tables I and II) reveal again that $\mathrm{C}-\mathrm{CH}_{3}$ is dominant over the phosphorus function. Thus the cis (11) and trans (12)


11


13


12

forms of the 1,4 compounds have very similar $\mathrm{C}-4$ and $4-\mathrm{CH}_{3}$ signals, as do the cis (13) and trans (14) forms of the 1,3 compounds. The expectec differences in the $\mathrm{P}-\mathrm{CH}_{3}$ signals are present. We have objerved for the first time that the $\gamma$ shielding by axial oxygen exceeds that of axial $\mathrm{CH}_{3}$, just as was true for sulfur. For the 1,4-dimethyl compounds, $\delta \mathrm{C}-3,5$ is 29.0 when axial oxygen is in predominance (12) and 32.1 for axial methyl (11). Similarly, for the 1,3-dimethyl compound with axial oxygen (13), $\delta \mathrm{C}-3$ (28.1) and C-5 (20.6) are upfield of the values for the isomer with axial $\mathrm{CH}_{3}(14, \delta \mathrm{C}-331.5, \delta \mathrm{C}-5$ 22.9). The range for the axial oxygen effect is $2.3-3.1 \mathrm{ppm}$, which is like that of the axial sulfur effect ( $2.5-3.2 \mathrm{ppm}$ ). These shielding effects are clearly not interpretable on the usual basis of steric compression, and as we have pointed out elsewhere ${ }^{4}$ probably requ re an explanation taking into account the polar character of the axial substituent.

The oxides also extibit an effect at C-2 and C-6 like that seen for the sulfides compounds with equatorial oxygen consistently have these carbons at lower field than do those with axial oxvgen.

The ${ }^{31} \mathrm{P}$ NMR shifts for the oxides (Tables I and II) show exactly the opposite relation as seen for the phosphines and the sulfides; greater shielding is associated with an equatorial, not axial, $P$-methyl group. While the cause of this reversal is not known at present, it is evident that ${ }^{31} \mathrm{P}$ NMR spectroscopy must be used cautiously in conformational analysis, since other exceptions may exist to the rule that in isomeric cyclic compounds upfield stifts are always associated with greater apparent 1,3 -steric crowding. In the conformationally rigid 3,5-dimethyl-2-R-2-ozo-1,3,2-dioxaphosphorinanes, exceptions to the rule have also been encountered. ${ }^{15}$

Methiodides of the Dimethylphosphorinanes. Based on the ${ }^{13} \mathrm{C}$ chem.cal shift 3 of $\mathrm{C}-4$ and the 4 -methyl group, which are found in the same region as the sulfide and oxide, it is possible to assign preferred conformation 15 to the methiodide


15
of 1,4 -dimethylphosphorinane. If there was a significant amount of axial $C$-methyl, an upfield shift would have been noted. On the contrary, a weak deshielding due to the $\delta$ effect of the phosphorus function is seen. The $P$-methyl groups are nonequivalent; the axial $\mathrm{CH}_{3}$ absorbs at higher field ( $\delta 6.5$ ) than the equatorial ( $\delta 9.8$ ).

The same spectral relations are found in the methiodide of 1,3-dimethylphospho-inane; the $C$-methyl group is assigned the equatorial position as in 16, since it is again slightly downfield of the position in the oxides and sulfides. Again


16
there is a substantial difference in the two $\mathrm{P}-\mathrm{CH}_{3}$ groups ( $\delta$ 5. 8 and 10.0).

## Conclusions

${ }^{13} \mathrm{C}$ NMR spectroscopy is eminently suited for the determination of cis,trans structure in 1,4- and 1,3-dimethylphosphorinanes and in t.eeir sulfides and oxides as well. These spectral data are also compelling in pointing $t^{\text {s }}$ ) the consistent peeference of methyl or carbon 3 or $4 o^{-}$the phosphorinane zing for the equatorial position in all structures studied. regardless of the phosphorus oxidation state. :hus forcing $P$ methyl in some structures into the axial position. This is consistent with observations we have made previously ${ }^{4}$ for 1,4 -dimethyl compounds also bearing a 4 -hydroxy group, where x -ray analysis provided unequivocal proof of structure. It is therefore implied that the net of nonbonded interactions Eor the two substituents on phosphorus in the sulfides and oxides must be of smaller magnitude than that of $C$-methyl, and it would be desirable to assess this competition on a quantitative basis by determining $د G^{\circ}$ :alues. Thus, groups such as $\mathrm{CH}_{3}(\mathrm{~S}) \mathrm{P}$ and $\mathrm{CH}_{3}(\mathrm{O}) \mathrm{P}$ must have $د C^{\circ}$ values of size considerably smaller than the $-1.7 \mathrm{kcal} / \mathrm{mo}$ assigned to 4 $\mathrm{CH}_{3}$. This raises the question of relative preferences when $4-\mathrm{CH}_{3}$ is pitted against phosphorus functionalities having larger alkyl substituents than methyl. I- is possible that the domination by $4-\mathrm{CH}_{3}$ will prevail for some of these groups. and great caution must be used in assigning configurations solely on group size parameters that are really applicable only when the groups are present on the cyclohexane ring. No data are presently available for such compounds. although the isomeric 1-phenyl-4-methylphosphorinane 1 -oxides have recently been zonsidered from a number of standpoints (not ${ }^{13} \mathrm{C}$ NMR) and the judgement has been made that $P$-phenyl is equatorial in both. ${ }^{16}$

The $\gamma$ effect of ${ }^{13} \mathrm{C}$ NMR is frequently use $d$ to assign configurations to cis, trans isomers, although it is evident that the full nature of this effect is not well understood and at least for nonalkyl groups appears to have a component unrelated to group size. ${ }^{17}$ We have previously seen ${ }^{4}$ that axial $\mathrm{P}=\mathrm{S}$ causes greater shielding at $\mathrm{C}-3,5$ of the ring of the 4 -phosphorinanols than does axial $\mathrm{P}-\mathrm{CH}_{3}$, and the present stucy is the first to report the same property for axial $\mathrm{P}=\mathrm{O}$ in a jair of cis, trans isomers. ${ }^{18}$ Another cautionary note is therefore required in the use of ${ }^{13} \mathrm{C}$ NMR for stereochemical assignment: relative "size" of the two substituents attached to tetracovalent phosphorus is not the sole factor causing shielding at y ring zarbons. and specific information about a particular system is required before the technique is useft:l. The problem does not exist, of course, for trivalent phosphorus. where an axial substituent routinely causes greater upfield shifts at C-3,5 than does an equatorial substituent.
${ }^{31} \mathrm{P}$ NMR has played an important role in studying conformational equilibria of 1 -substituted phosphorinanes, ${ }^{2}$ but it is now seen to have only limited utility in the C-methylshosphorinanes and in their sulfides and oxides. Thus. the shemical shift for 1-methylphosphorinane does not fall within :he range set by the cis and trans isomers of 1,4 -dimethylכhosphorinane, as it should if the degree of axial and equazorial character were in control of the shift. Still, greater shielding of phosphorus does occur in the cis- 1,4 and trans- 1,3 somers which have largely axial P -substituent. as has been osserved for the individual conformers of 1-methylphos-
phorinane when examined at very low temperatures. ${ }^{2}$ This is true also for the sulfides. For the oxides, however, it is the isomer with oxygen in the axial position that has the more upfield ${ }^{31} \mathrm{P}$ signal. ${ }^{31} \mathrm{P}$ NMR anomalies do exist among other related systems; in the oxides of the 1,3 -dioxaphosphorinane system, ${ }^{15}$ equatorial $\mathrm{P}=0$ usual. y , but not always, is associated with the more upfield ${ }^{31} \mathrm{P}$ NMR signal.

In spite of the anomalies in the ${ }^{31} \mathrm{P}$ spectra, methyl groups on phosphorus give ${ }^{13} \mathrm{C}$ signa s that have invariably been of aid in assigning cis.trans structure. We have not yet encountered a case where the generality that an axial $\mathrm{P}-\mathrm{CH}_{3}$ falls upfield of an equatorial $\mathrm{P}-\mathrm{CH}_{3}$ is not observed, regardless of the phosphorus functionality, and this measurement is the method of choice in studying this stereochemical feature.

## Experimental Section

General. All manipulations of phosphines were conducted in a nitrogen atmosphere in a glovebag. Melting points are corrected. Proton NMR spectra were taken on Varian A-60 or JEOL MH-100 spectrometers. Phosphorus NMR spectra were obtained with a Bruker HFX-10 spectrometer at 36.43 MHz , using the continuous wave technique with proton decoupling; shifts are referenced to prerun $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, with downfield shifts positive. Carbon NMR spectra were taken with the Bruker instrument at 22.62 MHz using the Fourier transform technique with prcton decoupling: shifts are referenced to internal tetramethylsilane.

Interpretation of ${ }^{13} \mathrm{C}$ NMR Spectra. In both the 1,4 - and 1,3-dimethylphosphorinane syntheses, unequal mixtures of the cis and trans isomers were obtained. The mixtures were used without separation in all spectral studies. Generally the complete set of peaks for each isomer could be observed with signals readily assigned to a particular isomer by the relative intensities. In the 1,4 compounds, signals for $\mathrm{C}-2,6$ were obvious from their intensity and relatively large coupling to ${ }^{31} \mathrm{P}$, while C-3,5 were revealed by their intensity and confirmed by their stereospecific coupling to ${ }^{31} \mathrm{P}$. Other signals presented no difficulty. In the 1,3 compounds C-2 and C-6 were again recognized by their relatively large coupling to ${ }^{31} \mathrm{P}$; the more downfield signal was assigned to $\mathrm{C}-2$, since it experiences a $\beta$ effect from the 3 -methyl. This effect also shifts C-4 well downfield, making it an easily recognized singlet. Other carbons are also easily assigned. Similar reasoning sufficed to make assignments for the tetravalent derivatives, coupled with known shift effects at $\alpha, \beta$, and $\gamma$ carbons accompanying the conversion from trivalent phosphorus. These have been described elsewhere. ${ }^{4,10}$ The spectra were sometimes quite complex, since two isomers were present and many signals were split. Occasional superposition or overlapping of lines occurred, making some assignments tenuous. These are noted in Tables I and II. No important uncertainties in the assignments remain, however.
3-Methyl-1,5-dibromopentane. A known procedure for the preparation of this compound from $N$-benzoyl-4methylpiperidine and $\mathrm{PBr}_{5}$ was used. ${ }^{19}$ The product (43\%) had bp $71-81^{\circ} \mathrm{C}(0.8 \mathrm{~mm})$ [lit. $\left.{ }^{19} \mathrm{bp} 59-61^{\circ} \mathrm{C}(0.3 \mathrm{~mm})\right]$.
cis- and trans-1,4-Dimethylphosphorinane ( 2 and 3 ). The Grignard reagent was prepared from $48.8 \mathrm{~g}(0.20 \mathrm{~mol})$ of 3 -methyl-1,5-dibromopentane and 12.8 g ( 0.50 g -atom) of magnesium in 300 mL of anhydrous ether. To the reagent was added a solution of $23.4 \mathrm{~g}(0.20 \mathrm{~mol})$ of methylphosphonous dichloride in 50 mL of ether. Afeer the exothermic reaction had subsided, the mixture was stirred overnight and then hydrolyzed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was collected and the aqueous layer was extracted with four $80-\mathrm{mL}$ portions of ether. The combined ether solutions were dried $\left(\mathrm{MgSO}_{4}\right)$ and distilled to give $2.5 \mathrm{~g}(10 \%)$ of product at $68-74{ }^{\circ} \mathrm{C}$ ( $45-49 \mathrm{~mm}$ ). The ${ }^{31} \mathrm{P}$ NMR spectrum (benzene)
showed the presence of both the cis $(2, \delta-61.9,35 \%)$ and trans (3, $\delta-55.7,65 \%$ ) isomers. The ${ }^{1} \mathrm{H}$ NMR spectrum was uninformazive, consisting of highly complex signals clustered at $\delta 0.74-1.00\left(\mathrm{P}-\mathrm{CH}_{3}\right.$ and $\left.\mathrm{C}-\mathrm{CH}_{3}\right)$ and $1.00-2.22$ (ring protons). No attempt was made to separate the isomers. ${ }^{13} \mathrm{C}$ NMR parameters obtained for the mixture are reported in Table I.
cis- and trans-1,4-Dimethylphosphorinane 1-Sulfide ( 7 and 8). A solution of $1.0 \mathrm{~g}(0.008 \mathrm{~mol})$ of the mixture of phosphines 2 and 3 in 20 mL of benzene was treated with 0.4 $\mathrm{g}(0.013 \mathrm{~mol})$ of sulfur. The mixture was refluxed for 3 h and filtered while hot to remove unreacted sulfur. Evaporation of solvent left a crystalline residue which was purified by vacuum sublimation to give a product of wide melting range (71-94 ${ }^{\circ} \mathrm{C}$ ) because of the presence of isomers. The mixture was analyzed directly.
Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{PS}: \mathrm{C}, 51.82 ; \mathrm{H}, 9.32 ; \mathrm{P}, 19.09$. Found: C, 51.53 ; H, 9.15 ; P, 18.97.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.71\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=13 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{3}\right.$ for both isomers), 0.95 (d, ${ }^{3} J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{C}-\mathrm{CH}_{3}$ for both isomers), $1.28-2.40$ ( m , ring protons); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta+29.0$ (cis (7), $32 \%$ ) and +30.8 (trans (8), $68 \%$ ); ${ }^{13} \mathrm{C}$ NMR, Table I.
cis- and trans-1,4-Dimethylphosphorinane 1-Oxides (11 and 12). A $0.8-\mathrm{g}$ sample of the mixture of phosphines 2 and 3 was stirred with 10 mL of $3 \%$ hydrogen peroxide for several hours. The solution was extracted with chloroform; the extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to leave a colorless liquid ( $0.6 \mathrm{~g}, 67 \%$ ): ' H NMR $\left(\mathrm{CHCl}_{3}\right) \delta 0.88-1.12\left(\mathrm{~m}, \mathrm{C}-\mathrm{CH}_{3}\right.$ for both isomers), 1.53 and 1.57 (both d, ${ }^{2} J_{\mathrm{PH}}=13 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{3}$ for both isomers), $1.44-2.88$ (m, ring protons); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta$ +40.9 (cis (11), $33 \%$ ) and +38.7 (trans (12), $67 \%$ ); ${ }^{13} \mathrm{C}$ NMR, Table I.

1,1,4-Trimethylphosphorinanium Iodide (15). The salt was prepared in ether from the mixture of phosphines 2 and 3 and methyl iodide; the product recrystallized from chloro-form-exane began to darken near $800^{\circ} \mathrm{C}$ and decomposed sharply at $313^{\circ} \mathrm{C}:{ }^{1} \mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 0.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right.$, $\mathrm{C}-\mathrm{CH}_{3}$ ), $1.94\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=14 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{3}\right), 1.20-2.64$ ( m , ring protons); ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR, Table I.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{IP}: \mathrm{C}, 35.33 ; \mathrm{H}, 6.62 ; \mathrm{P}$ 11.39. Found: C, 35.36; H, 6.14; P, 11.14.
2-Methyl-1,5-Dibromopentane. This compound was prepared by the same procedure used for the 3 -methyl isomer, employing $N$-benzoyl- 3 -methylpiperidine. It was obtained in $38 \%$ yield: bp $76-78^{\circ} \mathrm{C}(1.1 \mathrm{~mm})$ [lit. ${ }^{20} \mathrm{bp} 110-112^{\circ} \mathrm{C}(21$ $\mathrm{mm})$ ].
cis- and trans-1,3-Dimethylphosphorinane (4 and 5). These compounds were prepared by the same procedure used for the 1,4-dimethyl isomers ( 2 and $\mathbf{3}$ ), employing $48.8 \mathrm{~g}(0.20$ mol ) of 2-methyl- 1,5 -dibromopentane and $12.8 \mathrm{~g}(0.50 \mathrm{~g}$-atom $)$ of magnesium in 300 mL of ether for di-Grignard preparation and $23.4 \mathrm{~g}(0.20 \mathrm{~mol})$ of methylphosphonous dichloride. The produst ( $5.4 \mathrm{~g}, 21 \%$ ) distilled at $81-85^{\circ} \mathrm{C}(57 \mathrm{~mm})$. The ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ was uninformative (overlapping $\mathrm{P}-\mathrm{CH}_{3}$ and $\mathrm{C}-\mathrm{CH}_{3}$ at $\delta 0.68-1.00$, ring H at $1.13-2.00$ ); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \delta-55.4$ (trans (5), $41 \%$ ) and -54.3 (cis (4), $59 \%$ ); ${ }^{13} \mathrm{C}$ N.MR, Table II.
cis- and trans-1,3-Dimethylphosphorinane 1-Sulfides (9 and 10). The mixture of phosphines 4 and 5 was sulfurized
as before; after vacuun sublimation, the isomeric sulfide mixture had mp 43-58 ${ }^{\circ} \mathrm{C}$ and was analyzed as such.

Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{PS}: \mathrm{C}, 51.82 ; \mathrm{H}, 9.32 ; \mathrm{P}, 19.09$. Found: C, 51.96; H, 9. $\leq 3 ;$ P, 19.23.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.74$ and 1.75 (both d, ${ }^{2} J_{\mathrm{PH}}=13 \mathrm{~Hz}$, P-CH ${ }_{3}$ of both isomers', $0.96-1.18\left(\mathrm{~m}, \mathrm{C}-\mathrm{CH}_{3}\right), 1.60-2.60(\mathrm{~m}$, ring H ); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta+32.6$ (cis (9), $56 \%$ ) and +30.5 (trans (10), 44\%); ${ }^{13} \mathrm{C}$ NMR, Table II.
cis- and trans-1,3-Dimethylphosphorinane 1-Oxides ( 13 and 14). The procedure used for the formation of 11 and 12 was applied to the mixture of phosphines 4 ar.d 5 , forming a liquid product: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta 1.54$ and 1.55 (both d, ${ }^{2} J_{\mathrm{PH}}=13 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}_{3}$ cf both isomers), 1.00-1.16 (two overlapping doublets, $\mathrm{C}-\mathrm{CH}_{3}$ ), $1.20-2.80$ ( m , ring H ); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta+40.6$ (cis (13), $72 \%$ ) and +42.2 (trans ( 14 ), $28 \%$ ); ${ }^{13} \mathrm{C}$ NMR, Table II.

1,1,3-Trimethylphosphorinanium Iodide (16). Prepared by the method used for 15 as applied to the mixture of phosphines 4 and 5 , this compound had $\mathrm{mp} 213-214^{\circ} \mathrm{C}$ after recrystallizatior. from ethyl acetate-ethanol: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.04$ (d of d, ${ }^{4} J_{\mathrm{PH}}=3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=6 \mathrm{~Hz}, \mathrm{C}-\mathrm{CH}_{3}$ ), 1.95 (d, ${ }^{2} J_{\mathrm{PH}}=13 \mathrm{~Hz}$, both $\mathrm{P}-\mathrm{CH}_{3}$ groups), $1.56-2.68$ ( m , ring H); ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR, Table II.

Anal. Calcd =or $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{IP}: \mathrm{C}, 35.33, \mathrm{H}, 6.62$; P, 11.39; Found: C, 35.50, H, 6.52; P, 11.26.
Registry No.-2, 64999-61-7; 3, 64999-62-8; 4, 64999-63-9; 5, 64999-64-0; 6, 1661-16-1;7,64999-65-1; 8, 64999-66-2; 9, 64999-67-3; 10, 64999-68-4; 11, 64999-69-5; 12, 64999-70-8; 13, 64999 71-9; 14, 64999-72-0; 15, 64999-73-1; 16, 64999-74-2; 3-methyl-1,5-dibromopentane, 4457-72-1: methy phosphonous dichloride, 676-97-1; methyl iodide, 74-88-4; $n$-benzyl-3-methylpiperidine. 19202-02-9; 2-methyl-1,5-dibromopentane, 25118-31-4.

## References and Notes

(1) Taken from the Ph.D. Dissertation of S. O. Lee, Duke University, 1974; supported in part by U.S. Public Health Service Research Grant CA-05507, National Cancer Institute.
(2) S. I. Featherman and L. D. Quin, J. Am. Chem. Soc., 97, 4349 (1975).
(3) J. B. Lambert and H.-N. Sun, J. Organomet. Chem., 117, 17 (1976).
(4) (a) S. I. Featherman. S. O. Lee, and L. D. Quin. J. Org. Chem., 39, 2899 (1974); (b) L. D. Quin, A. T. McPhail. S. O. Lee, and K. D. Onan. Tetrahedron Lett., 3473 (1374)
(5) J. J. Breen, S O. Lee, ard L. D. Quin, J. Org. Chem., 40. 2245 (1975).
(6) R. I. Wilier and E. L. Eliel, J. Am. Chem. Soc.. 99, 1925 ; 1977).
(7) E. L. Eliel and R. I. Willer, J. Am. Chem. Soc., 99, 1936 : 1977)
(8) K. D. Onan, Ph.D. Disser:ation, Duke University, 1975.
(9) D. K. Dalling and D. M. G-ant, J. Am. Chem. Soc., 94, 5318 (1972); ibid., 89, 6612 (19€7).
(10) L. D. Quin, N. D Gorden, and S. O. Lee. Org. Magn. Reson., 6, 503 (1974).
(11) F. R. Jensen, C. H. Bush weller, and B. H. Beck, J. Am. Chem. Soc., 91, 344 (1969).
(12) The consisten: convention for ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR of + signitying a downfield shift and - an upfield shift is used. ${ }^{31} \mathrm{P}$ shifts are relative to $85 \%$ $\mathrm{H}_{3} \mathrm{PO}_{4}$.
(13) J. J. Breen, J. F. Engel, D. K. Myers, and L. D. Quin, Phosphorus, 2, 55 (1972).
(14) J. A. Mosbo and J. G. Verkade, J. Org. Chem., 42, 1549 (1977).
(15) K. L. Marsi, J. Org. Chem., 40, 1779 (1975).
(16) A. S. Perlin in "Carbon-13 in Organic Chemistry", E. Buncel and C. C. Lee, Ed.. Elsevier, Amsterdam, 1977. Chapter 4.
(17) In a recent review, it was pointed out that axial oxygen was responsible for the increased shielding ( 0.9 ppm ) seen at $\mathrm{C}-3.5$ on conversion of 1 phenylphosphorinane to its oxide: J. B. Lambert and S I. Featherman, Chem. Rev., 75, 611 (1975).
(18) C. R. Johnsen and D. McCants, Jr., J. Am. Chem. Soc., 87, 1109 (1965).
(19) M. Julia and M. Maumy, Bull. Soc. Chim. Fr., 2415 (1969).

# Structures of Some of the Minor Aminoglycoside Factors of the Nebramycin Fermentation 

K. F. Koch. K. E. Merkel, S. C. O’Connor, J. L. Occolowitz, Jonathan W. Paschal, and Douglas E. Dorman*<br>The Lilly Research Laboratories and The Biochemical Development Division, Eli Liily and Company, Indianapolis, Indiana 46206

Received June 13, 1977


#### Abstract

The structures of some of the miror factors of the nebramycin complex of antibiotics are elucidated through a combination of physical and chemical methods.


Nebramycin, a complex of aminoglycosides elaborated by Streptomyces tenebrarius, includes a number of factors showing broad-spectrum antibiotic properties. The structures of five of these aminoglycosides have been elucidated, largely through chemical and degradative studies. ${ }^{1-3}$ More recently, these factors have been studied using ${ }^{13} \mathrm{C}^{4,5}$ and ${ }^{15} \mathrm{~N}^{6}$ nuclear magnetic resonance (NMR) spectroscopies. Other laboratories have used ${ }^{13} \mathrm{C}$ NMR and mass spectrometry to assign structures to closely related aminoglycosides. ${ }^{7-9}$ In the present paper, we discuss the use of these physical methods, in conjunction with improved techniques of isolation and purification, in elucidating the structures of eight minor factors isolated by various methods from the nebramycin fermentation medium.

## Results

Structures of the nebramycin factors and derivatives to be discussed appear in Chart I. Elucidation of the structures of factor $2,{ }^{3,5}$ factors 4,5 , and $5^{\prime},{ }^{2}$ and factor $6^{1}$ has been discussed previously. Factors 8-10 were shown to be identical with the previously known aminoglycosides nebramine, ${ }^{2}$ lividamine, ${ }^{10}$ and neamine, ${ }^{11}$ respectively, by chromatographic and spectrometric comparisons with authentic samples. Primary screening of bioactivity has shown that all :actors have significantly less antimicrobial activity than do apramycin and tobramycin.

A portion of the mass spectral data collecsed in the course of this work is presented in Table I. Most of the factors gave satisfactory electron-impact mass spectra (EIMS) which could be interpreted by analogy to results with similar compounds. ${ }^{8}$ A scheme which can be used to understand the major fragments observed in these spectra appears in Figure 1. Peaks at $m / e 191,163,145$, and 173 were very common (cf. fragments $\mathrm{g}-\mathrm{j}$, Figure 1). A peak at $\mathrm{m} / \mathrm{e} 203$ was common to tobramycin and kanamycin $B$ and their derivatives; in the spectrum of tobramycin, accurate mass measurement allowed this fragment to be assigned the empirical formula $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}$. In factors $8-10$, which lack the second glycosidic unit at the 6 hydroxyl, the $m / e 203$ peak was weak or absent. We formulate this fragment as $k$ (Figure 1), though of coarse the specific structure of the ion cannot be elucidated or the basis of the above evidence. It is interesting that an amine at carbon $3^{\prime \prime}$ (i.e., $\mathrm{R}_{3}=\mathrm{NH}_{2}$, Figure 1) seems to be essential to the origin of this ion, which is absent in the spectra of factors 3 and 12.

A major fragmentation pathway results from disruption of the glycoside attached to $\mathrm{O}(4)$ of the deoxys:reptamine unit, leading to fragments c-f. Analogous :ragmentation of the other glycoside did not appear to be important in most cases. The $m / e$ values of fragments a-f were useful in characterizing the substitution patterns throughout the molecules. While (M +1 ) peaks were detectable in some cases, only field-desorption mass spectrometry (FDMS) yielded reliable molecular weight determinations, especially for the carbamate derivatives. The
latter compounds yield EIMS which are very similar to those of the parent aminoglycosides. Finally, while apramycin (factor 2) gave an EIMS which could be interpreted in terms of a fragmentation pattern analogous to that shown in Figure 1, the oxygenated factor 7 yielded only a FDMS. As a consequence, mass spectrometry could not be used to aid in the location of the extra oxygen atom of this factor.
${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR data for the nebramycin factors are collected in Table II. Peak assignments are based largely on previous work. ${ }^{4-6}$ We regard the assignments of carbon resonances in the chemical-shift regions of 70-75 ppm in alkaline solutions and $65-75 \mathrm{ppm}$ in acidic solutions to be tentative. Resonances of nitrogens $1,3,7^{\prime}$, and $4^{\prime \prime}$ have been assigned on the basis of detailed titration experiments that are reported later. The variation in the chemical shifts of $\mathrm{N}\left(6^{\prime}\right)$ in factors $3,4,5,5^{\prime}, 6,8,11$, and 12 is due to the very high $\mathrm{p} K_{\mathrm{a}}$ of this nitrogen, ${ }^{6}$ a fact not recognized until after many of these spectra were measured. Thus, variation of the pH of the solution from 9.5 to 11 effects a chemical-shift change of almost 2 ppm in this resonance.

## Discussion

Factor 3. The molecular weight of factor 3, as measured by FDMS, is 1 mass unit higher than that of factor 5 (kanamycin B). Such a circumstance would result if one of the amine functions of kanamycin B was replaced by hydroxyl. The ${ }^{15} \mathrm{~N}$ NMR spectrum, in which only four nitrogen resonances were observed, supports this formulation. The EIMS shows that fragments b-f are all displaced 1 mass unit to higher mass, indicating that the 3 -amino-3-deoxyglucose unit of kanamycin B has been replaced by a hexose. Therefore, factor 3 is identical with the previously reported aminoglycoside NK-1012-1. ${ }^{12}$

The ${ }^{13} \mathrm{C}$ NMR spectrum supports this conclusion. The peak at 55.1 ppm in the spectrum of kanamycin $B$, which has been assigned ${ }^{4}$ to the $3^{\prime \prime}$ carbon, has been replaced by a resonance in the $70-75-\mathrm{ppm}$ region in the spectrum of factor 3 . Such a change is consistent with the replacemment of $\mathrm{NH}_{2}$ with OH . When peaks characteristic of the 2-deoxystreptamine and 2,6-diamino-2,6-dideoxyglucose portions are subtracted from the ${ }^{13} \mathrm{C}$ NMR spectrum of factor 3 , the remaining six resonances accord well with the spectrum of the $\alpha$-glucosidic moiety of methyl $\beta$-maltoside. ${ }^{13}$ Additional NMR support of the proposed structure (Chart I) of factor 3 are the ${ }^{15} \mathrm{~N}$ chemical shifts. ${ }^{6}$

Factor 7. Careful comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of factors 2 and 7 led to the conclusion that the latter factor was $3^{\prime} \alpha$-hydroxyapramycin (Chart I). ${ }^{14}$ Other physical data are in full accord with this proposal. Thus, the FDMS of factor 7 indicates that its molecular weight is 555 , i.e., 16 mass units higher than apramycin. The ${ }^{13} \mathrm{C}$ NMR spectrum contained 21 resonances, 3 of which occurred at chemical shifts typical of anomeric carbons. Furthermore, 12 of the carbon resonances accorded well with those assigned to the 4 -amino-4-

Table I. Mass Spectra of the Nebramycin Factors

| Factor | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{5}^{\prime}$ | $\mathbf{6}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mol wt: FDMS ${ }^{\boldsymbol{a}}$ | 484 | 483 | 510 | 467 |  | 307 |  | 510 | 468 | 510 |
| EIMS $(\mathbf{M}+\mathbf{1 )}$ | 485 | 484 |  | 468 | 307 | 308 | 323 |  | 469 |  |
| a | 161 | 161 | 145 | 145 | 145 | 146 | 161 | $145^{b}$ | 145 | $145^{b}$ |
| b | 163 | 162 | $162^{b}$ | 162 |  |  |  | 162 | 163 | 162 |
| c | 353 | 352 | $352^{b}$ | 352 |  |  |  | 352 | 353 | 352 |
| d | 325 | 324 | $324^{b}$ | 324 |  |  | 324 | 325 | 324 |  |
| e | 307 | 306 | $306^{b}$ | 306 |  |  |  | 306 | 307 | 306 |
| f | 335 | 334 |  | 334 |  |  |  | 334 | 335 |  |

${ }^{a}$ The most intense peak in the FDMS occurs at $\mathrm{M}+1 .{ }^{b}$ Due to the facile loss of CONH during the EIMS process, peaks incorporating this moiety are not observed. ${ }^{c} \mathrm{C}_{12} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{5}$.

Chart I

factor 8 (nebramine), $\mathrm{R}_{1}=\mathrm{NH}_{2} ; \mathrm{R}_{2}=\mathrm{H}$
9 (lividamine), $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H}$
10 (neamine), $\mathrm{R}_{1}=\mathrm{NH}_{2} ; \mathrm{R}_{2}=\mathrm{OH}$

factor 3, $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{OH} ; \mathrm{R}_{3}=\mathrm{H}$
$4, \mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{NH}_{2} ; \mathrm{R}_{3}=\mathrm{CONH}_{2}$
5 (kanamycin B$), \mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{NH}_{2} ; \mathrm{R}_{3}=\mathrm{H}$
$\mathbf{5}^{\prime}, \mathbf{R}_{1}=\mathbf{H} ; \mathbf{R}_{2}=\mathrm{NH}_{2} ; \mathbf{R}_{3}=\mathrm{CONH}_{2}$
6 (to mramycin), $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{NH}_{2} ; \mathrm{R}_{3}=\mathrm{H}$
12, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OH} ; \mathrm{R}_{3}=\mathrm{H}$

factor 2 (apramycin), $\mathrm{R}=\mathrm{H}$
$7, \mathrm{R}=\mathrm{OH}$

factor 11, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CONH}_{2}$
13, $\mathrm{R}_{1}=\mathrm{CONH}_{2} ; \mathrm{R}_{2}=\mathrm{H}^{2}$
Cbz-tobramycin $\mathrm{A}, \mathrm{R}_{1}=\mathrm{CBz} ; \mathrm{R}_{2}=\mathrm{H}$
Cbz-tobramycin B, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CBz}$
Acetyltobramycin, $\mathrm{R}_{1}=\mathrm{COCH}_{3} ; \mathrm{R}_{2}=\mathrm{H}$
deoxyglucose and 2-deozystreptamine portions of apramycin. The remaining 9 resonances of the ${ }^{13} \mathrm{C}$ NMR spectrum of factors 2 and 7 are com?ared in Figure 2. It is seen from this comparison that the $\mathrm{CH}_{2}-3^{\prime}$ resonance of apramycin is replaced by a new peak in the $72-74$-ppm region. In addition, peaks assigned to $\mathrm{C}-2^{\prime}$ and $\mathrm{C}-4^{\prime}{ }^{5}$ are shifted downfield by $4-6$ ppm. Such changes are consistent with oxygenation at carbon $\mathrm{C}-3^{\prime} .^{4,5,15}$ It is aiso noted in Figure 2 that the remaining carbon resonances are relatively unchanged in the two factors, a result which is consistent only with an equatorial hydroxyl at C-3'. An axial hydroxyl at this position, for example, should lead to a shielding effect at $\mathrm{C}-1^{\prime}$. The ${ }^{13} \mathrm{C}$ data are therefore in full accord with the proposed structure ${ }^{14}$ of factor 7.

The ${ }^{15} \mathrm{~N}$ NMR spect:a of factors 2 and 7 are also characteristic $o^{*}$ the cifferences in their structures. Of the five resonances of each spectrum, only one shows a significant change in chemical shift. This large upfield shift associated with hydroxylation is typical oz the $\gamma$ effect of an oxygen atom. ${ }^{6}$

Factor 11. Field-des $)$ rption mass spectrometry indicated that the molecular weigit of factor 11 was the same as that of factor $5^{\prime}$, suggesting that these two aminoglycosides were isomeric. This hypothesis was supported by the presence of peaks characteristic of a carbonyl group in both the infrared ( $1660 \mathrm{~cm}^{-1}$ ) and the ${ }^{13} \mathrm{C}$ NMR ( 161.2 ppm ) spectra. The positions of these peaks, however, differed significantly from those of the known carbamates, factors 4 and $5^{\prime}$. In fact, the stretching frecuency in the infrared spectrum seemed in better accord with those of ureido groups. ${ }^{15}$ On these bases, it was concluded that fector 11 was a ureido derivative of tobramycir.

The EIMS of factor 11 was essentially the same as that of tobramycin and was therefore not useful in locating the carbonyl substituent. Comparison of the ${ }^{13} \mathrm{C}$ spectra of factor 11 and tobramycin, however, suggested that the 2-deoxystreptamine and 3-amino-3-deoxyglucosidic moieties of these two factors were identical. Ir contrast, resonances assigned to $\mathrm{C}-1^{\prime}$ and $\mathrm{C}-3^{\prime}$ in the spectrum of tobramycin were significantly shielded in that of factor 11. It was therefore inferred that the $\mathrm{N}\left(2^{\prime}\right)$ of factor 11 was attached to a carbonyl group. This conclusion was supported by the ${ }^{13} \mathrm{C}$ NMR spectrum of factor 11 in acidic solution ( $\mathrm{pF}-3$ ). Figure 3 shows that $\mathrm{C}-1^{\prime}$ and $\mathrm{C}-3^{\prime}$ of factor 11 are significantly deshielded relative to tobramycin, consistent with the absənce of a $\beta$-protonation effect ${ }^{4,5}$ due to the nonbasic nature of $N\left(2^{\prime}\right)$.

On the basis of our present evidence, we believe that factor 11 is the $N\left(2^{\prime}\right)$-ureido derivative of tobramycin. In repeated attempts to measure the ${ }^{15} \mathrm{~N}$ spectrum of this factor, however, only five resonances $w \in r e$ observed. The missing resonance is believed to be that due to the $\mathrm{CONH}_{2}$ group. Possibly the difficulty in observing this signal is due to one of the "nulling" mechanisms known to complicate ${ }^{15} \mathrm{~N}$ NMR spectroscopy ${ }^{16}$ or to the presence of trace amounts of paramagnetic ions. ${ }^{17}$ The very limited amour.t of this factor has precluded further studies.


Figure 1. Representative electron-impact mass spectral fragmentation of the tricyclic nebramycin factors.


Figure 2. Comparison of the ${ }^{13} \mathrm{C}$ NMR spec:ra of the octose portions of apramycin and factor 7 .


Figure 3. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of $N\left(2^{\prime}\right)$-carbobenzoxytobramycin, tobramycin (factor 6), and factor 11 in acidic solution ( pH 3 ).

Factor 12. Both FDMS and EIMS indizate a molecular weight of 468 for this factor. Comparison of its spectra to those of the other members of the nebramycin complex suggests that this compound is a deoxygenated factor 3 . Thus, the ${ }^{15} \mathrm{~N}$ NMR spectra of factors 3 and 12 both show four resonances, one appearing at a high-field position characteristic of an aminomethyl group. ${ }^{6}$ The four resonances of the spectrum of factor 12 correspond well with the chemical shifts of the resonances of nitrogens $1,3,2^{\prime}$, and $6^{\prime}$ of tobramycin and nebramine, suggesting that this portion of the molecule is similar in these three factors. Both factors 3 and 12 show $b$ fragments with $m / e 163$, indicating the presence of a exosoyl moiety. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of factors 3,6 , and 12 confirms the assignment of the $3^{\prime}$-deoxy factor 3 structure to the last compound.


Figure 4. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of $N\left(6^{\prime}\right)$-carbobenzoxytobramycin, tobramycin (factor 6), and factor 13 in acidic solution ( pH 3 ).

Factor 13. The molecular weight of this aminoglycoside is also shown by FDMS to be the same as that of factors $4,5^{\prime}$, and 11. The presence of a carbonyl group is demonstrated by the ${ }^{13} \mathrm{C}$ NMR spectrum (resonance at 162.2 ppm ) and by an infrared band at $1660 \mathrm{~cm}^{-1}$; as indicated above, the latter datum is characteristic of a urea. Factor 13 was therefore proposed to be a ureidotobramycin.

Comparison of the ${ }^{13} \mathrm{C}$ spectrum of this factor with that of tobramycin shows that these two compounds must be very similar structurally. The only significant differences between the ${ }^{13} \mathrm{C}$ spectra of these factors are in the chemical shifts of carbons $4,1^{\prime}, 2^{\prime}$, and $6^{\prime}$. In acidic milieu (Figure 4), the resonances of the two methylenes ( 2 and $3^{\prime}$ ) in factor 13 and tobramycin have very similar chemical shifts, indicating that the ureido group cannot be located at positions 1,3 , or $2^{\prime}$. The chemical shift differences at carbons $4,1^{\prime}$, and $2^{\prime}$ in these factors therefore cannot result from substitution at these positions. Possibly these changes result from differing conformations around the ether bonds linking the 2-deoxystreptamine and 2,6-diamino-2,3,6-trideoxyglucose moieties of these aminoglycosides.

Because of the absence of the $\beta$-protonation shift ${ }^{4,5}$ at carbon $5^{\prime}$ when factor 13 is dissolved in acidic solution (Figure $4)$, we propose that this factor is $6^{\prime}$-ureidotobramycin. In support of this hypothesis is the close correspondence in the ${ }^{13} \mathrm{C}$ NMR spectra of factor $13, N\left(6^{\prime}\right)$-carbobenzoxytobramy-

Table II. ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ Chemical Shifts ${ }^{a}$ of the Nebramycin Faztors (ppm)

| Carbon <br> resonances | 2 | 3 | 4 | 5 | 5' | 6 | Factor ${ }^{\text {c }}$ | 8 | 9 | 10 | 11 | 12 | 13 | $\begin{gathered} N\left(6^{\prime}\right)- \\ \text { Acetyl- } \\ \text { tobra- } \\ \text { my- } \\ \text { cin }^{c} \\ \hline \end{gathered}$ | $6^{\prime}$ - <br> Cbz- <br> tobra- <br> my- <br> $\operatorname{cin} \mathrm{A}^{c}$ | $2^{\prime}$ - <br> Cbz-tobra-my$\operatorname{cin} B^{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 51.1 | 51.2 | 51.4 | 51.2 | 51.5 | 51.2 | 51.1 | 51.1 | 51.3 | 51.2 | 51.0 | 51.2 | 51.3 | 51.4 | 51.5 | 51.2 |
| 2 | 36.6 | 36.3 | 36.2 | 36.2 | 36.5 | 36.5 | 36.6 | 36.6 | 36.6 | 36.5 | 36.3 | 36.4 | 36.5 | 36.6 | 36.8 | 36.5 |
| 3 | 50.3 | 50.2 | 50.1 | 50.1 | 50.1 | 49.9 | 50.1 | 50.3 | 50.5 | 50.1 | 50.2 | 50.3 | 50.1 | 50.2 | 50.5 | 50.5 |
| 4 | 87.8 | 87.6 | 87.1 | 86.7 | 87.4 | 87.3 | 88.1 | 87.7 | 88.1 | 88.0 | 87.3 | 87.0 | 88.2 | 88.7 | 89.0 | 88.3 |
| 5 | 76.8 | 75.2 | 75.0 | 75.2 | 75.1 | 75.3 | 76.8 | 76.8 | 76.9 | 76.8 | 75.0 | 75.3 | 75.3 | 75.4 | 75.6 | 75.1 |
| 6 | 78.4 | 88.8 | 88.3 | 88.5 | 88.6 | 88.7 | 78.3 | 78.5 | 78.4 | 78.3 | 89.3 | 89.0 | 88.7 | 89.0 | 89.2 | 89.2 |
| $1^{\prime}$ | 101.6 | 101.2 | 100.9 | 100.7 | 100.7 | 100.4 | 102.4 | 100.8 | 101.0 | 101.6 | 98.0 | 100.3 | 100.9 | 101.4 | 101.7 | 98.2 |
| $2^{\prime}$ | 49.8 | 56.2 | 56.1 | 56.1 | 50.4 | 50.2 | 56.1 | 49.9 | 50.0 | 56.1 | 49.7 | 49.9 | 50.6 | 50.7 | 50.9 | 50.9 |
| $3^{\prime}$ | 32.9 | 72.2 | 72.2 | 72.3 | 35.9 | 35.8 | 72.2 | 35.9 | 35.8 | 72.2 | 33.5 | 35.7 | 35.6 | 35.8 | 36.3 | 33.4 |
| $4^{\prime}$ | 67.9 | 72.7 | 73.0 | 72.9 | 67.1 | 67.0 | 73.1 | 67.0 | 65.5 | 73.9 | 66.6 | 67.0 | 67.0 | 67.3 | 67.3 | 66.7 |
| $5^{\prime}$ | 71.0 | 74.4 | 74.3 | 74.2 | 74.5 | 74.5 | 70.1 | 74.6 | 74.4 | 74.4 | 74.7 | 72.3 | 73.3 | 73.1 | 73.8 | 74.4 |
| $6^{\prime}$ | 66.2 | 42.4 | 42.3 | 42.3 | 42.6 | 42.6 | 66.3 | 42.5 | 61.7 | 42.5 | 42.3 | 42.4 | 41.8 | 41.3 | 42.8 | 42.5 |
| $7{ }^{\prime}$ | 62.3 |  |  |  |  |  | 62.1 |  |  |  |  |  |  |  |  |  |
| 8' | 96.4 |  |  |  |  |  | 96.9 |  |  |  |  |  |  |  |  |  |
| $\mathrm{NCH}_{3}$ | 32.9 |  |  |  |  |  | 32.9 |  |  |  |  |  |  |  |  |  |
| $1{ }^{\prime \prime}$ | 95.3 | 101.2 | 100.6 | 100.7 | 100.4 | 100.7 | 95.9 |  |  |  | 100.8 | 101.3 | 100.8 | 100.9 | 101.1 | 100.9 |
| $2^{\prime \prime}$ | 71.7 | 74.0 | 72.5 | 72.6 | 72.6 | 72.6 | 71.7 |  |  |  | 72.5 | 74.2 | 72.7 | 73.0 | 73.5 | 73.2 |
| $3^{\prime \prime}$ | 74.2 | 72.5 | 55.0 | 55.1 | 55.2 | 55.2 | 74.3 |  |  |  | 55.3 | 72.5 | 55.3 | 55.2 | 55.5 | 55.2 |
| $4^{\prime \prime}$ | 53.2 | 70.1 | 70.2 | 70.1 | 70.3 | 70.2 | 53.1 |  |  |  | 70.2 | 70.2 | 70.3 | 70.6 | 70.6 | 70.3 |
| $5^{\prime \prime}$ | 73.4 | 74.0 | 71.1 | 72.9 | 71.0 | 73.0 | 73.4 |  |  |  | 73.1 | 73.9 | 73.0 | 73.0 | 73.0 | 72.7 |
| $6^{\prime \prime}$ | 61.6 | 61.0 | 64.6 | 61.2 | 64.6 | 61.3 | 61.7 |  |  |  | 61.3 | 61.0 | 61.3 | 61.7 | 61.7 | 61.1 |
| Others |  |  | $\begin{gathered} \mathrm{CONH}_{2}: \\ 159.8 \end{gathered}$ |  | $\begin{gathered} \mathrm{CONH}_{2} \text { : } \\ 159.9 \end{gathered}$ |  |  |  |  |  | $\begin{gathered} \mathrm{CONH}_{2} \\ 161.2 \end{gathered}$ |  | $\begin{gathered} \mathrm{CONH}_{2}: \\ 162.2 \end{gathered}$ |  |  |  |


| Nitrogen resonances |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 8.2 | 7.7 | 7.6 | 7.9 | 7.9 | 8.0 | 8.0 | 7.9 | 7.5 | 7.9 | 7.9 |
| 3 | 9.1 | 9.1 | 9.1 | 9.3 | 9.6 | 9.4 | 8.4 | 9.3 | 9.1 | 9.3 | 9.6 |
| $2^{\prime}$ | 7.5 | -1.0 | -0.9 | -0.8 | 7.5 | 7.4 | -1.0 | 7.1 | $68.1)^{6}$ | 7.3 | 7.4 |
| 6 | - | -8.5 | -8.5 | -7.9 | -7.5 | -6.8 | - | -7.7 | -8.1) | -7.0 | 52.3 |
| $7{ }^{\prime}$ | -1.1 | - | - | - |  | - | -1.2 | - |  |  |  |
| $3^{\prime}$ | - | - | 1.1 | 1.2 | 1.3 | 1.3 | - | - | 1.) |  | 1.3 |
| $4^{\prime}$ | 0 | - | - | - |  | - | 0 | - |  |  |  |
| Others |  |  | $\begin{gathered} \mathrm{CONH}_{2}: \\ 52.0 \end{gathered}$ |  | $\begin{gathered} \mathrm{CONH}_{2} \text { : } \\ 52.3 \end{gathered}$ |  |  |  |  |  |  |

${ }^{a}{ }^{13} \mathrm{C}$ chemical shifts are relative to external $\mathrm{Me}_{4} \mathrm{Si} ;{ }^{15} \mathrm{~N}$ shifts are relative to external $\mathrm{NH}_{4} \mathrm{ll}$. All chemical shifts are measured at ca. pH 10. ${ }^{b}$ This peak may be an instrumental artifact. ${ }^{\mathrm{c}}$ Registry no.: 2, 37321-09-8; 3, 310-7-70-0; 4, 51736-76-6; 5, 4696-76-8; ${ }^{\text {' }}$, 51736-77-7; 6, 32986-56-4; 7, 56283-52-4; 8, 34051-04-2; 9, 36019-33-7; 10, 3947-65-7. 11, 64332-33-8; 12, 64332-34-9; 13, 64332-35-0; $N\left(6^{\prime}\right)$-acetyltobramycin, 61083-42-9; $6^{\prime}$-Cbz tobramycin, 50721-30-7; $2^{\prime}$-Cbz tobramycin, 643ङ2-36-1.
cin, and $N\left(6^{\prime}\right)$-acetyltobramycin. The structure of the last derivative has been determined through ${ }^{15}$ N NMR spectroscopy. ${ }^{6}$

As in the case of factor 11 , the ${ }^{15} \mathrm{~N}$ NMR spectrum of factor 13 showed five, rather than the expected six, resonances. The high-field resonance typical of the aminomethyl group was not present, confirming the hypothesis that this nitrogen had been acylated.

Carbobenzoxytobramycins $A$ and $B$. Treatment of tobramycin in aqueous tetrahydrofuran (THF) with 1 equiv of N -(benzyloxycarbonyloxy)succinimide, followed by extensive chromatography, led to the isolation of two isomeric monocarbobenzoxylated derivatives of tobramycin. It is evident from Table II and Figures 3 and 4 that the ${ }^{13} \mathrm{C}$ NMR spectra of these compounds accord well with those of factors 11 and 13. Or this basis, carbobenzoxytobramycins $A$ and $B$ were identified as $6^{\prime}-\mathrm{Cbz}$ and $2^{\prime}-\mathrm{Cbz}$ derivatives, respectively.
$\boldsymbol{N}\left(\mathbf{6}^{\prime}\right)$-Acetyltobramycin. Treatment of an aqueous THF solution of tobramycin with 1 mol equiv of acetic anhydride led to the formation of a monoacetamide. From ${ }^{15} \mathrm{~N}$ NMR spectroscopy, it was immediately evident that this derivative was $N\left(6^{\prime}\right)$-acetyltobramycin. ${ }^{6}$ Thus, of the five nitrogen res-
onances in the ${ }^{15} \mathrm{~N}$ spectrum, only that assigned to $\mathrm{N}\left(6^{\prime}\right)$ was significantly deshielded relative to tobramycin. Also in accord with the proposed structure is the ${ }^{13} \mathrm{C}$ NMR spectrum, which accords well with those of factor 13 and Cbz-tobramycin A (vide supra).

## Experimental Section

${ }^{13} \mathrm{C}(25.03 \mathrm{MHz})$ and ${ }^{15} \mathrm{~N}(10.09 \mathrm{MHz})$ NMR spectra were measured on a JEOL PFT-100 NMR spectrometer interfaced to an EC-100 data system. Full-proton decocpling was used in all measurements. The conditions of collection ard transformation of spectre would be expected to lead to maximum line-broadening increments of 0.7 Hz for ${ }^{13} \mathrm{C}$ and 2 Hz for ${ }^{15} \mathrm{H}$ NMR spectra. Electron-impact mass spectra were obtained by direct ior -source introduction using a Varian-MAT Model 731 mass spectrome-er at an ionizing energy of 7 CeV . The same instrument was used to determine field-desorption spectra from carbon dendrite emitters.

Isolation and Purification of Nebramycin Minor Factors. The recovery of the crude nebramycin complex by ion-exchange extraction from the fermentation broth has been reported previously. ${ }^{2}$ The separation of the complex has also been reported ${ }^{2}$ and was accomplished by chromatography through Amberlite CG-5C resin.

Some of the new compounds, which include factors 7,8 , and 9 , and 2-deoxystreptamine, were isolated by direct chromatographic separation of the complex. Factors $3,10,11,12$, and 13 were separated from

## Scheme I

Isolation and Purification of Nebramycin Minor Factors fermentation broth
ion-exchange extraction with Amberlite IRC-50

| nebramycin complex |  |
| :---: | :---: |
| chromatography through <br> Amberlite CG-50 <br> nebramycin factors <br> hydrolysis with 2-3 $N$ aqueous ammonium hydroxid at $100^{\circ} \mathrm{C}, \in \mathrm{h}$ |  |
| 7,8 , and 9, and | chromatography through |
| 2-deoxystreptamine | Amterlite CG-50 |

nebramycin factors $\mathbf{3 , 1 0}$ 11,12 , and 13
the complex after mild basic hydrolysis. This hydrolysis was carried out with a $3-5 \%$ aqueous solution of the complex and $2-3 \mathrm{~N}$ aqueous ammonium hydroxide at $100^{\circ} \mathrm{C}$. The chromatography columns were eluted with aqueous ammonium hydroxide gradients. The direct separation of the nebramycin complex gave the following order of elution: nebramycin factors 7 and 9, 2-deoxyst:eptamine, and nebramycin factor 8 . The separation of the hydrolyzed complex gave another elution sequence: nebramycin factors $13,3,11,12$, and 10 .

The chromatography fractions were identified by thin-layer chromatography. Thin-layer chromatography was performed on silica gel ( 60 F254, EM Laboratories, Inc.) using either a mixture of meth anol/chloroform/28\% aqueous ammonia in the volume ratio of 3:1:2 or an aqueous solution containing 1.5 mol of sodium acetate, 1 mol of sodium chloride, and 100 mL of tert-butyl alcohol per liter of solution.

Identical chromatography fractions were combined, freeze-dried, and dependent on the TLC result, either puritied or rechromato graphed. The overall isolation and purification sequence of the nebramycin minor factors is illustrated in Scheme I.

Nebramycin Factor 3. The combined and freeze-dried chromatography fractions were decolorized with carbon end crystallized from methanol. A white solid, $[\alpha]^{20} \mathrm{D}+136^{\circ}$, was obtained. Hydrolysis with 3 N aqueous hydrochloric acid at $90^{\circ} \mathrm{C}$ gave neamine, which was identified by thin-layer chromatographic comparison with an authentic sample.

Nebramycin Factor 7. The crude material was purified by crystallization from aqueous 1-propanol. A white sol:d, $[\alpha]^{20}{ }_{D}+170^{\circ}, \mathrm{mp}$ $>265{ }^{\circ} \mathrm{C}$ dec, was obtained. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{12}$ : C, 45.39; H, 7.44; N, 12.61; O, 34.55. Found: C, 45.10; H, 7.53; N, 12.37; O, 34.82.

Nebramycin Factor 8. The freeze-dried chromatography fractions were decolorized with carbon and crystallized from methanol. A white solid, $[\alpha]{ }^{20}{ }_{\mathrm{D}}+110^{\circ}, \mathrm{mp}>225^{\circ} \mathrm{C} \mathrm{dec}$, was obtaized. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}$ : C, 47.05; H, 8.55; N, 18.27. Found: C, $47.07 ; \mathrm{H}, 8.35 ; \mathrm{N}$, 17.92.

Nebramycin Factor 9. The dried material vas decolorized with carbon and crystallized from a methanol/ethar.ol mixture. Recrystallization from methanol afforded a white solid, $[\alpha]^{20} \mathrm{D}+94^{\circ}, \mathrm{mp}$ $222-224^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$ : $\mathrm{C}, 46.90 ; \mathrm{H}, 8.20 ; \mathrm{N}$, 13.67. Found: C, 47.18; H, 8.46; N, 13.65.

Nebramycin Factor 10. The combined dried material was decolorized with carbon and crystallized from metr.anol. A white solid, $[\alpha]^{20} \mathrm{D}+123^{\circ}, \mathrm{mp}>300^{\circ} \mathrm{C}$ dec, was obtained.

Nebramycin Factor 11. The crude material was decolorized with carbon and crystallized from methanol. A white solid, $[\alpha]^{20} \mathrm{D}+123.5^{\circ}$,
was obtained. Hydrolysis with 3 N aqueous hydrochloric acid at 90 ${ }^{\circ} \mathrm{C}$ gave tobramycin, which was identified by TLC comparison with an authentic sample.

Nebramycin Factor 12. This compound was purified by crystallization from methanol. An almost white solid was obtained.

Nebramycin Factor 13. Crystallization from a methanol/ethanol mixture yielded an off-white so.id.

2-Deoxystreptamine. The freeze-dried chromatography fractions were decolorized with carbon and crystallized from methanol. The white solid had no optical rotation and was identified by its spectral data and TLC comparison with an authentic sample.

Carbobenzoxytobramycins A and B. A solution of $25 \mathrm{~g}(0.054$ mol ) of tobramycin in aqueous THF was cooled to $-3^{\circ} \mathrm{C}$. To this solution was added 14.7 g ( $0.059 \mathrm{~mol}, 1.1 \mathrm{~mol}$ equiv) of $N$-(jenzyloxycarbonyloxy)succinimide in THF in five portions. The reaction was warmed to room temperature and allowed to stir for 90 min . The solution was concentrated and extracted with chloroform and 1-butanol. The extracted aqueous solution was loaded onto a Bio-Rex $70\left(\mathrm{NH}_{4}{ }^{+}\right)$ column and eluted with a $\mathrm{NH}_{4} \mathrm{OH}$ gradient; yields: $7.5 \mathrm{~g}(2 \S \%)$ of Cbz $\mathrm{A} ; 0.6 \mathrm{~g}(2 \%)$ of Cbz B.
$\boldsymbol{N}\left(6^{\prime}\right)$-Acetyltobramycin. A solution of $5 \mathrm{~g}(0.011 \mathrm{~mol})$ of tobramycin in $6 \% \mathrm{THF} /$ water was cooled to $0^{\circ} \mathrm{C}$. To this solution was added $1.1 \mathrm{~g}(0.011 \mathrm{~mol})$ of acetic anhydride. The reaction mixture was maintained at $-4^{\circ} \mathrm{C}$ for 16 h and then allowed to come to room temperature for 24 h . The solution was concentrated and loaded onto a Bio-Rex $70\left(\mathrm{NH}_{4}{ }^{+}\right)$column which was eluted with a $\mathrm{NH}_{4} \mathrm{OH}$ gradient; yield: $1 \mathrm{~g}(18 \%)$ of $N\left(6^{\prime}\right)$-acetyltobramycin.

Registry No.- $N$-(Benzyloxycarbonyloxy)succinimide, 13139-17-8.

## References and Notes

(1) K. F. Koch and J. A. Rhoades, Antimicrob. Agents Chemother. 1 1970). 309 (1971).
(2) K. F. Koch, F. A. Davis, and J. A. Rhoades, J. Antibiot., 26, 745 (1973).
(3) S. C. O'Connor, L. K. T. Lam, N. D. Jones, and M. O. Chaney, J. Org. Chem., 41, 2087 (1976)
(4) K. F. Koch, J. A. Rhoades, E. W. Hagaman, and E. Wenkert, J. Am. Chem Soc., 96, 3300 (1974); E. Wenkert and E. W. Hagaman. J. Org. Chem., 41, 701 (1976).
(5) R. U. Lemieux and S. Koto. Abstracts, 165th National Meeting of the American Chemical Society, Dallas, Tex., 1973, MEDI 022; R. U. Lemieux and G. Kotwycz, Chem. Rev., 73, 669 (1973).
(6) D. E. Dorman, J. W. Paschal. and K. E. Merkel. J. Am. Chem. Soc., 98, 6885 (1976).
(7) P. J. L. Daniels, M. Kugelman, A. K. Mallams, R. W. Tkach, H F. Vernay, J. Weinstein, and A. Yehaska, Chem. Commun., 1629 (19? 1); P. J. L. Daniels, A. K. Mallams, J. Weinstein, and J. J. Wright. J. Chem. Soc., Perkin Trans. 1, 1078 (1976).
(8) T. L. Nagabhushan, W. N. Turner, P. J. L. Daniels, and J. B. Morton, J. Org. Chem., 40, 2830 (1975).
(9) T. L. Nagabhushan, P. J. L. Daniels, R. S. Jaret, and J. B. Morton, J. Org Chem., 40, 2835 (1975).
(10) T. Oda. T. Mori, Y. Kyotani, and M. Kakayama, J. Antibiot., 24, 503 (1971).
(11) H. E. Carter, J. R. Dyer, P. D. Shaw, K. L. Rinehart, Jr., and M. Hichens, J. Am. Chem. Soc., 83, 3723 (1961).
(12) M. Murase, T. Ito, S. Fukatsu, and H. Umezawa, Prog. Antimicrob. Anticancer Chemother., Proc. Int. Congr. Chemother., 6th, 1969 (1970), 2, 1970.
(13) D. E. Dorman and J. D. Roberts, J. Am. Chem. Soc., 93, 4463 (1971).
(14) S. C. O'Connor et al., submitted to J. Antibiot. The partially interpreted ${ }^{13} \mathrm{C}$ NMR spectrum of "oxyapramycin". presumably identical to factor 7 , has been reported by R. U. Lemieux and S. Koto, ref 5.
(15) N. B. Colthrup, L. H. Daly, and S. E. Wiberly, "Introduction to infrared and Raman Spectroscopy". Acacemic Press, New York. N.Y., 1964, pp 263-266.
(16) G. E. Hawkes, E. W. Randall, and C. H. Bradley, Nature (London), 257, 767 (1975).
(17) C. S. Irving and A. Lapidot, J. Am. Chem. Soc., 97, 5945 (1975).

# Reactions of Ketene Acetals. 10. ${ }^{1}$ Total Syntheses of the Anthraquinones Rubrocomatulin Pentamethyl Ether, 2-Acetylemodin, 2-Acetyl-5-hydroxyemodin Tetramethyl Ether, and Xanthorin 

Jean-Louis Grandmaison and Paul Brassard*<br>Depariment of Chemistry, Laval University, Quebec, Canada C1K 7P4

Received September 29, 1977


#### Abstract

Some new or recently prepared conjugated ketene acetals such as 1,1,4-trimethoxy-3-trimethylsilyloxybuta-1,3diene, 1,1-dimethoxy-3-trimethylsilyloxyocta-1,3-diene, and 2-acetyl-1,1-dimethoxy-3-methylbuta-1,3-diene have been used in cycloaddition--ype reactions for first or improved syntheses of the title compounds.


Conjugated ketene acetals ${ }^{1-3}$ (1,1-dialkoxybutadienes) or the vinylogues of ketene acetals ${ }^{4}$ have recently been used for the facile and regiospecific synthesis of a number of naturally occurring naphthoquinones and anthraquinones. These reagents have the advantage of being easy to prepare and quite reactive toward most quinonic substrates. Moreover they have been modified so as to introduce up to three groups with the desired orientation in a single annelating step. Some dienes previcusly obtained in this laboratory have now been applied to the synthesis of some highly substituted anthraquinones and a new reagent, 1,1,4-trimethoxy-3-trimethylsilyloxy-buta-,- 3 -diene ( $\mathbf{6 a}, \mathbf{b}$ ), has been prepared in order to extend the scope and usefulness of the method (Scheme I).
The synthesis of penta- $O$-methylrubrocomatulin (11), the tetramethyl ether of a crinoid pigment, ${ }^{5}$ was attempted by first condensing 2,6 -dichloronaphthazarin (7) with 1,1 -di-methexy-3-trimethylsilyloxyocta-1,3-diene ${ }^{2}$ (1) (Scheme II). Pyrolvsis of the adduct, hydrolysis of the silyl ether, and partial methylation gave a $56 \%$ yield of 1-butyl-7-chloro5,8 -dinydroxy-2,4-dimethoxyanthraquinone (8). Finally the remaining chlorine was substituted ( $75 \%$ ) according to a recent procedure ${ }^{6}$ using sodium methoxide and copper(I) iodide. Complete methylation of this trimethyl ether (10) under the usual conditions followed by photooxidation ${ }^{2}$ as in the syntheses of rhodolamprometrin and rhodocomatulin provided rubrocomatulin pentamethyl ether, which was indistinguishable in all respects from a sample of the authentic material.

2-A cetyl-1,1-dimethoxy-3-methylbuta-1,3-diene ${ }^{1}$ (2), obtained earlier by us from pent-3-en-2-one and ketene dimethyl acetal for the preparation of stypandrone, has now been applied to the synthesis of two coccid pigments recently isolated by Banks and Cameron. ${ }^{7}$ A first attempt at condensing the foregoing diene with 2 -chloro-6,8-dimethoxynaphthoquinone ${ }^{1}$ (12) in boiling benzene followed by pyrolysis at $135^{\circ} \mathrm{C}$ produced no anthraquinonic material; however, bringing the components together in refluxing xylene gave a $50 \%$ yield of

## Scheme I




2


5

$6 \mathrm{a}, \mathrm{b}$
Scheme II


8


$9 \mathrm{R}=\mathrm{H} ; 10 \mathrm{R}=\mathrm{CH}_{3}$

11


$$
16 \mathrm{R}=\mathrm{H}: 17 \mathrm{R}=\mathrm{CH}_{3}
$$




the expected product 2 -acetyl-1,6,8-trimethoxy- 3 -methylanthraquinone (14) (Scheme III).

It is now well established that 3-halojuglones are more reactive than the corresponding ethers toward ketene acetals and 1,1-dialkoxybutadienes and consistently produce higher yields. Consequently the 8 -methyl ether of the chosen substrate (12) was cleaved by anhydrous aluminium chloride. The resultant juglone (13) reacted with the same diene (2) and gave a $78 \%$ yield of acetylemodin trimethyl ether (14) after methylation. This compound was then demethylated by a brief contact with a semisolid mixture of aluminium and sodium chlorides at $90^{\circ} \mathrm{C}$ and yielded a substance which was indistinguishable from the natural product (15). A partial synthesis ${ }^{8}$ of this compound had been carried out earlier starting from natural s:ypandrone.

The synthes is of another coccid pigment, 2-acetyl-5-hydroxyemodin ( $\mathbf{2 0}$ ), could at this point then be envisaged using the same diene and 2,6 -dichloronaphthazarin (7) (Scheme II). The condensation of these two compounds proceeded smoothly and gave an $81 \%$ yield of 2 -acetyl-6-chloro-5,8-dihydroxy-1-methoxy-3-methylanthraquinone (16). Substitution of the remaining chlorine by methoxide (followed by complete methylation) proved to be unexpectedly difficult, being accompanied by considerable decomposition. In an initial attemp: the process was interrupted after 6 h ; the product, after methyla-ion, yielded mainly a derivative (17)


Scheme III

of the substrate ( $59 \%$ ) and only $6 \%$ of the desired substance (18). By extending the reaction time to 12 h the substitution product could be increased to $13 \%$ while only $16 \%$ of the unreacted material could be recovered. Attempted demethylation of the tetramethyl ether as before gave a large number of products which were not isolated.

At this point a more satisfactory method of forming the 1,2,4-trihydroxylated ring was explored. In a first approach 1.4,4-trichlorobut-3-єn-2-one (3) was obtained according to the procedure used for the 4,4 -dichloro compound. It was expected that methoxydehalogenation involving all or, more selectively, the ethylenic chlorines could be realized; however, all attempts to carry out the substitutions yielded only intractable tars. On the other hand, the acdition of ketene dimethyl acetal to methoxyketene (prepared in situ) using a method established ${ }^{10.11}$ for other such substrates, gave only one product, 1,4,4-trimethoxybut-3-en-2-one (5), in a 39\% yield which could be increased to $56 \%$ by using excess ketene acetal (3 equir) (Scheme I). The enolsilylation of this substance according to Danishefsky and Kitahara ${ }^{12}$ as adapted to acylketene acetals ${ }^{2}$ gave a $71 \%$ yield of the desired diene, 1,1,4-trimethoxy-3-trimethylsilyloxybuta-1,3-diene as a mixture of the $E$ and $Z$ isomers ( $\mathbf{6 a , b}$ ).

The usefulness of this new diene was first tested by reaction with 2-chloro-8-hydroxy-6-methoxynaphtaoquinone (13) in refluxing benzene followed by pyrolysis and methylation in the usual manner (Scheme III). A $78 \%$ yield of 1,2,4,5,7-pentamethoxyanthraquinone (21) was obtained, which unfortunately could not be compared with a sample of the substance described earlier. However all physical and spectral characteristics of the two preparations are concordant including the fact that on crystallization from benzene and petroleum ether dimorphous yellow and brown cr ystalsare formed. ${ }^{13}$ A second experiment involved a condensation with 6 -acetyl-3-chloro5 -methoxy-7-methylnaphthoquinone (19) and, in this case, gave an excellent yield of 2 -acetyl-5-hydroxyemodin tetramethyl ether (18) which up to this point had been difficult to prepare (vide supra). Finally a reaction with 2 -bromo-5-chloro-8-methoxy-6-methylnaphthoquinone (22) yielded the expected 4 -chloro- $1,5,6,8$-tetramethoxy-3-methylanthraquinone ( $24 ; 38 \%$ ) along with $10 \%$ of an unexpected product,

4 -chloroemodin trimethyl ether (23). The formation of this compound requires a reductive elimination of bromine and methoxyl and is analogous to a process known to occur in the presence of ethanol ${ }^{14}$ at $\sim 150^{\circ} \mathrm{C}$, a condition which exists during the pyrolytic stage. The chloroanthraquinone (24) could then be reduced with hydrazine and palladium ${ }^{15}$ to the trimethyl ether of xanthorin ( $25 ; 29 \%$ ).

## Experimental Section

Melting points were taken for samples in capillary tubes with a Thomas-Hoover apparatus (calibrated thermometer). The IR and UV spectra were determined with Beckman IR-12 and DK-1A spectrophotometers, respectively. The NMR spectra were reccrded with Hitachi-Perkin-Elmer R-24A and Bruker HX-90 spectrometers (tetramethysilane as internal standard). The mass spectra were obtained with a Varian M-66 spectrometer. Davison silica gel No. 923 was used for column chromatography, Baker-7G silica gel for preparative TLC, and Woelm silica gel, activity III, for dry column chromatography.

1,4,4-Trichlorobut-3-en-2-one (3). This substance was prepared according to the procedure described for the 4,4 -dichloro compound ${ }^{9}$ from chloroacetyl chloride ( $113 \mathrm{~g}, 1.00 \mathrm{~mol}$ ), anhydrous aluminium chloride ( $133 \mathrm{~g}, 1.00 \mathrm{~mol}$ ) and 1,1-dichloroethylene ( $97.0 \mathrm{~g}, 1.00 \mathrm{~mol}$ ). Steam distillation and fractionation of the crude product gave the trichlorobutanone $3(82.0 \mathrm{~g}, 47 \%)$ : bp $52-53^{\circ} \mathrm{C}(0.5 \mathrm{~mm} \mathrm{Hg}) ; \mathrm{mp} 45-48$ ${ }^{\circ} \mathrm{C}$; IR $\nu^{\prime}{ }_{\text {max }}$ (carbon tetrachloride) $1730(\mathrm{C}=\mathrm{O})$ and $1600(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; NMR $\delta\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.05\left(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right)$ and $6.95(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Cl}_{3} \mathrm{O}: \mathrm{C}, 27.70 ; \mathrm{H}, 1.74 ; \mathrm{Cl}, 61.33$. Found: $\mathrm{C}, 27.77$; H, 1.76; Cl, 60.99 .

1,4,4-Trimethoxybut-3-en-2-one (5). To a mixture of ketene dimethyl acetal ${ }^{16}(4 ; 16.5 \mathrm{~g}, 0.188 \mathrm{~mol})$ and triethylamine $(7.50 \mathrm{~g}$, 0.0740 mol ) in anhydrous ethyl ether ( 60 mL ) was added ( 1.5 h ) under nitrogen a solution of methoxyacetyl chloride $(6.80 \mathrm{~g}, 0.0627 \mathrm{~mol})$ in the same solvent ( 20 mL ). The reaction mixture was stirred for 4 h at room temperature, filtered, and evaporated. Distillation of the residue gave the trimethoxybutenone $5(5.6 \mathrm{~g}, 56 \%)$ : bp $95-103^{\circ} \mathrm{C}(0.3$ $\mathrm{mm} \mathrm{Hg}) ; \mathrm{mp} 46-48^{\circ} \mathrm{C}$; IR $\nu_{\text {max }}($ film $) 1650(\mathrm{C}=\mathrm{O})$ and $1600(\mathrm{C}=\mathrm{C})$ $\mathrm{cm}^{-1}$; NMR $\delta\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.48\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OCH}_{3}\right), 3.83$ and 3.95 ( $6 \mathrm{H}, 2 \mathrm{~s}, 4,4-\mathrm{OCH}_{3}$ ), $4.14\left(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right)$, and $4.93(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}$ : C, 52.49 ; H. 7.55. Found: C, $52.75 ; \mathrm{H}, 7.28$.
( $E$ )- and (Z)-1,1,4-Trimethoxy-3-trimethylsilyloxybuta-1,3-diene (6a,b). To a solution o $\mathbf{o}^{2}$ 1,4,4-trimethoxybut-乏-en-2-one $(5 ; 10.3 \mathrm{~g}, 0.0644 \mathrm{~mol})$ and trietzylamine ( $14.6 \mathrm{~g}, 0.145 \mathrm{~mol}$ ) in anhydrous benzene ( 20 mL ) was added ( $: 5 \mathrm{~min}$ ) chlorotrimethylsilane ( 13.2 $\mathrm{g}, 0.122 \mathrm{~mol}$ ). The temperature of the reaction mixture rose slightly and was kept at $40^{\circ} \mathrm{C}$ for 3 h . After stirring for 24 h at room temperature, the suspension was filtered and evaporated. The residue upon distillation gave the dienes $\mathbf{6 a , b}(10.6 \mathrm{~g}, 71 \%)$ : bp 68-76 ${ }^{\circ} \mathrm{C}(0.3 \mathrm{~mm}$ $\mathrm{Hg})$; IR $\nu_{\text {max }}($ film $) 1654,1630(\mathrm{C}=\mathrm{C})$, and $835\left(\mathrm{Si}-\mathrm{C}\right.$ str) $\mathrm{cm}^{-1}$; NMR $\delta\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.19,0.27$, and $0.29\left(3 \mathrm{~s}, 3-\mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.36,3.52$, 3.57 , and $3.64\left(4 \mathrm{~s}, 1,1,4-\mathrm{OCH}_{3}\right), 3.78$ and $3.91(2 \mathrm{~s}, 2-\mathrm{H}), 4.48$ and 5.79 ( $2 \mathrm{~s}, 4-\mathrm{H}$ ). The mixture is very unstable but can be kept for 2 weeks at $-20^{\circ} \mathrm{C}$.

1-Butyl-7-chloro-5,8-dihydroxy-2,4-dimethoxyanthraquinone (8). A mixture of 2,6-dichloronaphthazarin ${ }^{17,18}$ (7; $100 \mathrm{mg}, 0.380$ mmol ), 1,1-dimethoxy-3-trimethylsilyloxyocta-1,3-diene ${ }^{2}$ (1;140 mg, 0.390 mmol ), and anhydrous benzene ( 5 mL ) was refluxed for 2 h and evaporated to dryness. The residue was heated at $150^{\circ} \mathrm{C}$ for 1 h and hydrolyzed by boiling for 30 min in a solution of methanol ( 5 mL ) and $5 \%$ hydrochloric acid ( 3 mL ). The crude product, extracted with chloroform was selectively methylated by refluxing for 15 h with dimethyl sulfate ( 235 mg ) and anhydrous potassium carbonate ( 50 mg ) (both added in several portions) in dry acetone ( 15 mL ). Purification by chromatography on silica gel (dry column, chloroform) gave the expected anthraquinone 8 ( $84 \mathrm{mg} .56 \%$ ): $\mathrm{mp} 200-201^{\circ} \mathrm{C}$ (acetone); $\mathrm{UV} \lambda_{\text {max }}$ (ethanol) $238,258,287,296 \mathrm{sh}, 480$, and 495 nm ilog $\epsilon 4.58$, 4.07, 4.10, 4.04, 4.08, and 4.07); IR $\nu_{\max }(\mathrm{KBr}) 1650$ and 1625 (chelated $\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; NMR $\delta\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.97\left(3 \mathrm{H}, \sim \mathrm{t}, J \sim 6.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right)$, $1.31-1.64\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime}, 3^{\prime}-\mathrm{H}_{2}\right), 3.09\left(2 \mathrm{H}, \sim \mathrm{t}, J \sim 6.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{2}\right), 3.97$ and $4.03\left(6 \mathrm{H}, 2 \mathrm{~s}, 2,4-\mathrm{OCH}_{3}\right), 6.72(1 \mathrm{H}, \mathrm{br}$ s, $3-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 13.28$ and $13.39(2 \mathrm{H}, 2 \mathrm{~s}, 5,8-\mathrm{OH}) ; m / e 392 / 390\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClO}_{6}$ : C, 61.46; $\mathrm{H}, 4.90 ; \mathrm{Cl}, 9.08$. Found: $\mathrm{C}, 61.73 ; \mathrm{H}, 5.11 ; \mathrm{Cl}$, 9.01 .

1-Butyl-2,4,5,7,8-pentamethoxyanthraquinone (10). A suspension of 1-butyl-7-chloro-5,8-dihydroxy-2,4-dimethoxyanthraquinone (8) ( $35 \mathrm{mg}, 0.0854 \mathrm{mmol}$ ), sodium methoxide ( 1.00 g ), copper(1) iodide ( 35 mg ) in anhydrous methanol ( 5 mL ), and dry dimethylformamide ( 5 mL ) was refluxed for 24 h , poured into water, and acidified. Chromatography of the crude product (dry column,
chloroform) gave 1-butyl-5,8-dihydroxy-2,4,7-trimethoxyanthraquincne $(9 ; 28 \mathrm{mg})$. The foregoing material $(40 \mathrm{mg})$ was methylated in the usual way [dimethyl sulfate ( 200 mg ), potassium carbonate ( 500 mg ), and dry acetone ( 5 mL ) for 3 h ] and after purification by chromatography (dry column, chloroform) gave the pentamethoxyanthraquinone 10 ( $21 \mathrm{mg}, 50 \%$ ): mp $166-167^{\circ} \mathrm{C}$ (petroleum ether, bp $90-1 \kappa 0^{\circ} \mathrm{C}$ ); UV $\lambda_{\text {max }}$ (ethanol) 227, 262.288, and $400 \mathrm{~nm}(\log \epsilon 4.47$, 4.18, 4.16, and 3.86); IR $\nu_{\max }(\mathrm{KBr}) 1670(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; NMR $\delta(90$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.94\left(3 \mathrm{H}, \sim \mathrm{t}, J \sim 7.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}_{3}\right), 1.22-1.67(4 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}, 3^{\prime} \cdot \mathrm{H}_{2}\right), 2.91\left(2 \mathrm{H}, \sim \mathbf{t}, J \sim 7.0 \mathrm{~Hz}, 1^{\prime} \cdot \mathrm{H}_{2}\right), 3.90,3.92$, and $3.96(2 \times 3$ H and $\left.1 \times 9 \mathrm{H}, 3 \mathrm{~s}, 2,4,5,7,8-\mathrm{OCH}_{3}\right), 6.62$ and $6.68(2 \mathrm{H}, 2 \mathrm{~s}, 3,6-\mathrm{H}) ; \mathrm{m} / e$ $414\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{7}$ : C, 66.65; H, 6.32. Found: C, 66.31 ; H, $6 . \mathfrak{i}$.

1-Butanoyl-2,4,5,7,8-pentamethoxyanthraquinone (11). Oxygen was kubbled into a solution of 1 -butyl-2,4,5,7,8-pentamethoxyanthraquinone ( $10 ; 17 \mathrm{mg}, 0.041 \mathrm{mmol}$ ) in ethanol ( 5 mL ) which was simultaneously heated under reflux and irradiated with two 375-W floodlamps ( 2 h ). The residue obtained af:er evaporation of the solvent was chromatographed on silica gel (dry column, chloroform). The product was purified by preparative TLC (chloroform-methanol, $40: 1)$ and gave the acylanthraquinone $11(4 \mathrm{mg}, 22 \%)$ (methanol), mp $150-152^{\circ} \mathrm{C}$ and $210-211^{\circ} \mathrm{C}$ (lit. $.^{5} 152-153.5^{\circ} \mathrm{C}$ and $214-215^{\circ} \mathrm{C}$ ), ident:cal (mmp, TLC in five solvent systems, and IR spectra) with an authenic sample.

2-Chloro-8-hydroxy-6-methoxynaphthoquinone (13). To a suspension of anhydrous aluminium chloride $(1.50 \mathrm{~g})$ in redistilled nitrobenzene ( 6 mL ) was added 2-chloro-6,8-dimethoxynaphthoquinone ${ }^{1}$ ( $12 ; 250 \mathrm{mg}, 0.990 \mathrm{mmol}$ ). The mixture was stirred for 1 h at room temperature then poured into water containing concentrated hydrochloric acid ( 50 mL ) and agitation :s continued 15 h . Petroleum ether (bp $\left.65-110^{\circ} \mathrm{C}\right)(300 \mathrm{~mL})$ is then added and the heterogenous mixture is filtered. The residue consisted of the expected juglone 13 ( $215 \mathrm{mg}, 91 \%$ ): $\mathrm{mp} 177-178^{\circ} \mathrm{C}$ (petroleum ether, bp $90-120^{\circ} \mathrm{C}$, benzene); UV $\lambda_{\max }$ (ethanol) 220, 273, 283 sh , and $445 \mathrm{~nm}(\log \epsilon 4.59,4.15$, 4.03 , and 3.81 ): IR $i^{\max }(\mathrm{KBr}) 1670(\mathrm{C}=\mathrm{O})$ and 1640 (chelated $\mathrm{C}=\mathrm{O}$ ) $\mathrm{cm}^{-1}$; NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.95\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{OCH}_{3}\right), 6.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=2.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, 5-\mathrm{H})$, and $11.95(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{OH})$; $m / e 240 / 238\left(\mathrm{M}^{+}\right)$. Anal. Ca.cd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{ClO}_{4}$ : C, $55.36 ; \mathrm{H}, 2.96 ; \mathrm{Cl}, 14.86$. Found: C, $5 \bar{E} .59$; H, $2.93 ; \mathrm{Cl}, 15.00$

2-Acetyl-1,6,8-trimethoxy-3-methylanthraquinone (14). (a) A misture of 2 -chloro-6,8-dimethoxynaphthoquinone ( $12 ; 100 \mathrm{mg}$, 0.397 mmol ) and 2-acetyl-1,1-dimethoxy-3-methylbuta-1,3-diene ${ }^{1}$ $(2 ; 220 \mathrm{mg}, 1.38 \mathrm{mmol})$ in xylene ( 5 mL ) was refluxed for 20 h . Purification by column chromatography (chloroform) followed by preparative TLC (benzene-ethyl acetate, $9: 1$ ) gave 2 -acetylemodin trimethyl ether (14; $70 \mathrm{mg}, 50 \%$ ): mp $220-221^{\circ} \mathrm{C}$ (methanol); UV $\lambda_{\text {max }}$ (chloroform) $273,400 \mathrm{~nm}(\log \epsilon 4.32,3.73)$; IR $\nu_{\max }(\mathrm{KBr}) 1710$ (hindered $\left.\mathrm{CH}_{3} \mathrm{CO}-\right)$ and $1665(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; NMR $\delta\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.34$ $\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.54\left(3 \mathrm{H} . \mathrm{s}, 2-\mathrm{COCH}_{3}\right), 3.92,3.96$. and $3.98(9 \mathrm{H}, 3 \mathrm{~s}$, $\left.1,6,8-1) \mathrm{CH}_{3}\right), 6.76(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, 7-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{d} . J=2.5 \mathrm{~Hz}$, $5-\mathrm{H}$ ), and 7.83 ( $1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ ); m/e $354\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$ : C, 67.79; H, 5.12. Found: C, 67.92; H, 5.18.
(b) 2-Chloro-8-hydroxy-6-methoxynaphthoquinone ( $190 \mathrm{mg}, 0.797$ $\mathrm{mmol})$ and the acetylbutadiene $2(380 \mathrm{mg}, 2.38 \mathrm{mmol})$ were refluxed in xylene ( 5 mL ) for 8 h . The crude product was separated by chromatography (dry column, chloroform), methylated in the usual way [dimethyl sulfate ( 500 mg ), potassium carbonate $(500 \mathrm{mg}$ ), and acetone ( 10 mL ) for 8 h ], and rechromatographed (benzene-ethyl acetate, $9: 1)$ giving the same anthraquinone $14(220 \mathrm{mg}, 78 \%)$.

2-Acetyl-1,6,8-trihydroxy-3-methylanthraquinone (2-Acetylemodin, 15). 2-Acetyl-1,6,8-trimethoxy-3-methylanthraquinone $(14,22 \mathrm{mg})$ was stirred in a mixture of an.ydrous aluminium chloride $\left(5.0 \mathrm{~g}\right.$, and sodium chloride ( 1.0 g ) for 5 min at $90^{\circ} \mathrm{C}$. The cooled reactior mixture was hydrolyzed with ice ( 20 g ) and concentrated hydroch oric acid $(5 \mathrm{~mL})$ then extracted with ethyl acetate. Purification of the crude product by preparative TLC (chloroform-methanol, 100:1) gave 2 -acetylemodin ( $10 \mathrm{mg}, 53 \%$ ) indistinguishable from a sample of the acthentic material (mmp, IR spectra, and TLC in five solvent systems).

2-Acetyl-6-chloro-5,8-dihydroxy-1-methoxy-3-methylan-
thraquinone (16). A mixture of 2,6-dichloronaphthazarin ${ }^{17,18}$ (7; 120 $\mathrm{mg}, 0.463 \mathrm{mmol}$ ), 2-acetyl-1,1-dimethoxy-3-methylbuta-1,3-diene ( $2 ; 220 \mathrm{mg}, 1.38 \mathrm{mmol}$ ), and 2 mL of xylene was stirred at $115^{\circ} \mathrm{C}$ for 4 h , cooled, and chromatographed (dry column, benzene) and gave the chloroanthraquinone 16 ( $135 \mathrm{mg}, \varepsilon 1 \%$ ): mp $186-188^{\circ} \mathrm{C}$ (ben-zene-petroleum ether, bp $65-110^{\circ} \mathrm{C}$ ); UV $\lambda_{\text {max }}$ (ethanol) 233,257 and $475 \mathrm{~nm}(\log \epsilon 4 . 今 0,4.39$, and 3.96$)$; IR $\nu_{\text {max }}(\mathrm{KBr}) 1710\left(\mathrm{CH}_{3} \mathrm{CO}\right)$ and $1640(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; NMR $\delta\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.41\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.58$ $\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{COCH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OCH}_{3}\right), 7.42(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}) .8 .04(1 \mathrm{H}$, s, $4-\mathrm{H}), 13.03$ and $13.28(2 \mathrm{H}, 2 \mathrm{~s}, 5,8-\mathrm{OH})$; m/e $3 € 2 / 360\left(\mathrm{M}^{+}\right)$. Anal.

Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClO}_{6}$ : C. $59.93 ; \mathrm{H}, 3.63, \mathrm{Cl}, 9.83$. Found: C. $59.84 ; \mathrm{H}$, 3.39; CI, 9.52.

2-Acetyl-1,5,6,8-tetramethoxy-3-methylanthraquinone (18). (a) A suspension of 2-acetyl-6-chloro-5,8-dihydrox-1-methoxy-3methylanthraquinone $(16 ; 100 \mathrm{mg}, 0.278 \mathrm{mmol})$, sodium methoxide ( $2.35 \mathrm{~g}, 43.5 \mathrm{mmol}$ ). and copper(I) iodide ( $100 \mathrm{mg}, 0.524 \mathrm{mmol}$ ) in methanol ( 10 mL ) and dimethylformamide ( 10 mL ) was refluxed for 12 h , poured in oo ice water. acidified. and extracted with chloroform. The crude procuct was methylated in the usual way [methyl sulfate $(1.50 \mathrm{~g}$ in three portions), potassium carbonate $(1.50 \mathrm{~g})$, and acetone $(20 \mathrm{~mL})$ for 24 h ] and by chromatography (dry column, chloroform) gave a mixture of two substances. These were separated on a second column (benzene). A first zone consisted of 2-acetyl-6-chloro-1,5,8-trimethoxy-3-methylanthraquinone ( $17 ; 16 \mathrm{mg}, 15 \%$ ): mp 198-199 ${ }^{\circ} \mathrm{C}$ (benzene-petroleum ether, bp $90-120^{\circ} \mathrm{C}$ ); IR $\mathrm{I}^{\prime}$ max $(\mathrm{KBr}) 1685$ $\left(\mathrm{CH}_{3} \mathrm{CO}-\right)$ and $1670(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; NMR $\delta\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.33(3$ $\left.\mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.52\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{COCH}_{3}\right), 3.91$ and $3.98(3 \mathrm{H}$ and 6 H . $\left.2 \mathrm{~s}, 1,5,8-\mathrm{OCH}_{3}\right), 7.33(1 \mathrm{H} . \mathrm{s}, 7-\mathrm{H})$. and $7.74(1 \mathrm{H}$. br s, $4-\mathrm{H}) ; m / e$ $390 / 388\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{1}-\mathrm{ClO}_{6}: \mathrm{C}, 61.78$; $\mathrm{H} .4 .41 ; \mathrm{Cl}, 9.12$. Found: C, $62.22 ; \mathrm{H}, 4.50 ; \mathrm{CI}, 9.09$. A more polar mix:ure of solvents (benzene-ethyl acetate, $\subseteq: 1$ ) eluted the desired anthraquinone 18 (14 $\mathrm{mg}, 13 \%$ ): mp $154-155^{\circ} \mathrm{C}$ : (benzene-petroleum ether. bp $90-120^{\circ} \mathrm{C}$ ); UV $\lambda_{\text {max }}$ (ethanol) 227, 2£2, 281, and $410 \mathrm{~nm}(\log \epsilon 4.41,4.36 .4 .21$, and 3.83); IR $\left.\nu_{\text {max }}(\mathrm{KBr}) 170\right)\left(\mathrm{CH}_{3} \mathrm{CO}\right.$-) and $1675(\mathrm{C}==0) \mathrm{cm}^{-1}$; NMR $\left.\delta\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.33 .3 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{CH}_{3}\right), 2.53\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{COCH}_{3}\right)$, $3.92,3.94$, and $3.99\left(3 \mathrm{H}, 3 \mathrm{H}\right.$, and $\left.6 \mathrm{H}, 3 \mathrm{~s}, 1,5,6,8-\mathrm{OCH}_{3}\right), 6.82(1 \mathrm{H}$, $\mathrm{s}, 7-\mathrm{H})$ and $7.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H})$; m/e $384\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{7}$ : C, 65.62; $\mathrm{H}, 5.24$. Found: C, $65.78 ; \mathrm{H}, 5.26$.
(b) A mixture of 7 -acetyl-2-chloro-8-methoxy-6-methylnaphthoquinone ${ }^{1}(19 ; 170 \mathrm{mg}, 0 . f .10 \mathrm{mmol}), 1,1,4$-trimethoxy-3-trimethylsi-lyloxybuta-1,3-diene ( $6 \mathbf{a}, \mathbf{b} ; 375 \mathrm{mg}, 1.62 \mathrm{mmol}$ : added in three portions), and anhydrous tenzene ( 5 mL ) was refluxed for 3 h and evaporated to cryness. The residue was heated at $150^{\circ} \mathrm{C}$ for 1 h . hydrolyzed by boiling in a solution of methanol ( 5 mL ) and $5 \%$ hydrochloric acid ( 2.5 mL ) for 15 min , extracted with chloroform, and methylated in the usual way. The crude product was purified by dry column chromatography (chloroform) and preparative TLC (chloroform) and gave the same anthraquinone 18 ( $202 \mathrm{mg}, 86 \%$ ). This product was identical (rmp. IR spectra, and TLC in five solvent systems) with the tetramethyl ether obtained in the usual way from a sample of authentic 2 -acetyl- 5 -hydroxyemodin (20) (dimethyl sulfate and potassium carbonate in boiling acetone)

1,2,4,5,7-Pentamethoxyanthraquinone (21). By an analogous procedure (compound 13 , method b) using 2 -chloro- 8 -hydroxy- 6 methoxynaphthoquinone ( $13 ; 225 \mathrm{mg}, 0.943 \mathrm{mmol}$ ) and 1,1,4-trime thoxy-3-trimet aylsilyloxybutadiene ( $6 \mathbf{a}, \mathbf{b} ; 450 \mathrm{mg}, 1.94 \mathrm{mmol}$ ) in benzene ( 5 mL . the pentamethoxyanthraquinone 21 was obtained after pyrolysis. hydrolysis, methylation, and dry column chromatography (benzene-ethyl acetate, $1: 1$ ) ( $273 \mathrm{mg}, 78 \%$ ): mp 189.5-190 ${ }^{\circ} \mathrm{C}$ (benzene-petroleum ether, bp $90-120^{\circ} \mathrm{C}$ ) (lit..$^{13} 193^{\circ} \mathrm{C}$ ); UV $\lambda_{\text {max }}$ (ethanol) 225, 285, and $\angle 15 \mathrm{~nm}$ ( $\log \epsilon 4.59,4.36$, and 3.85); IR $\nu_{\text {max }}$ ( KBr ) 1670 and $1655(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$ : NMR $\delta\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.92$, $3.96,3.98$, and $3.99\left(3 \mathrm{H}, 6 \mathrm{H}, 3 \mathrm{H}, 3 \mathrm{H}, 4 \mathrm{~s}, 1,2,4,5,7-\mathrm{OCH}_{3}\right), 6.71(1 \mathrm{H}$ $\mathrm{d}, J=2.0 \mathrm{~Hz}, \epsilon-\mathrm{H}) .6 .79(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, and $7.22(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, $8-\mathrm{H}) ; \mathrm{m} / \mathrm{e} 358\left(\mathrm{M}^{+}\right.$i. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{7}: \mathrm{C}, 63.68 ; \mathrm{H}, 5.06$. Found: C, 63.74: H, 5.27.

4-Chloro-1,5,6,8-tetramethoxy-3-methylanthraquinone (24), From a similar reaction mixture prepared with 2 -bromo- 5 -chloro-8-methoxy-6-methylnaphthoquinone ${ }^{19}(22 ; 490 \mathrm{mg}, 1.55 \mathrm{mmol})$ and trimethoxytrimethylsilyloxybutadiene ( $6 \mathbf{a}, \mathbf{b} ; 800 \mathrm{mg}, 3.44 \mathrm{mmol}$ ) in benzene ( $25 \mathrm{~mL}, 4 \mathrm{~h}$ ) was obtained (after pyrolysis, hydrolysis, and methylation) by dry column chromatography (benzene-ethyl acetate, $9: 1$ ) a fast moving zone zonsisting of 4 -chloro- $1,6,8$-trimethoxy-3methylanthraquinone ( $22 ; 52 \mathrm{mg} .10 \%$ ), mp $217-218.5^{\circ} \mathrm{C}$, which was identical in all respects with a sample obtained earlier. ${ }^{19}$ Elution with a $1: 1$ mixture of benzene and ethyl acetate gave the trimethyl ether of chloroxanthorin (24; ${ }^{2} 21 \mathrm{mg}, 38 \%$ ): $\mathrm{mp} 209.5-210^{\circ} \mathrm{C}$ (benzenepetroleum ether, bp $90-120^{\circ} \mathrm{C}$ ) (lit. ${ }^{20} \mathrm{mp} 210-211^{\circ} \mathrm{C}$ ); UV $\lambda_{\max }$ (ethanol) 226, 258, and 400 nm ( $\log \epsilon 4.52,4.33$, and 3.97 ); IR $\nu_{\max }$ ( KBr ) 1680 and $1670(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; NMR $\delta\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.47$ (3 $\left.\mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right), 3.74$ and $3.97\left(2 \times 6 \mathrm{H}, 2 \mathrm{~s}, 1,5,6,8-\mathrm{OCH}_{3}\right), 6.71(1 \mathrm{H}, \mathrm{s}$, $7-\mathrm{H})$, and 7.07 ( $1 \mathrm{H}, \mathrm{s}, 2-\mathrm{F}^{-}$); m/e $378\left(\mathrm{M}^{+}+2\right), 376\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClO}_{6}: \mathrm{C}, 60.56 ; \mathrm{H}, 4.55 ; \mathrm{Cl}, 9.41$. Found: C. 60.99; $\mathrm{H}, 4.77$; Cl. 9.40.

1,3,4,8-Tetramethoxy-6-methylanthraquinone (25). The reductive dehalogenation ${ }^{15}$ of 4 -chloro-1,5,6,8-tetramethoxy-3-meth ylanthraquinone (24) was carried out by refluxing a mixture of this quinone ( 76 mg 0.202 mmol ), $100 \%$ hydrazine hydrate $(83.5 \mathrm{mg}, 1.67$ mmol ; add $\epsilon$ d in three po-tions of $10.0,24.5$, and 49.0 mg$), 10 \%$ palladized charcoal ( 100 mg , and ethanol ( 13 mL ) for 3 h . Chromatog
raphy of the crude product (dry column, chloro末orm) gave the expected anthraquinone 25 ( $20 \mathrm{mg}, 29 \%$ ): mp $185-186^{\circ} \mathrm{C}$ (toluenepetroleum ether, bp $90-120^{\circ} \mathrm{C}$ ) (lit. ${ }^{21} 185-186^{\circ} \mathrm{C} ;{ }^{22} 189-190^{\circ} \mathrm{C}$ ); UV $\lambda_{\text {max }}$ (chloroform) 280 and 406 nm ( $\log \epsilon 3.96$ and 3.38 ); IR $\nu_{\text {max }}$ ( KBr ) $1665(\mathrm{C}=\mathrm{=}) \mathrm{cm}^{-1}$; NMR $\delta\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.40\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{CH}_{3}\right), 3.90$ and $3.95\left(3 \mathrm{H}\right.$ and $\left.9 \mathrm{H}, 2 \mathrm{~s}, 1,3,4,8-\mathrm{OCH}_{3}\right), 6.75(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.00(1 \mathrm{H}$, br s, $7-\mathrm{H}$ ), and $7.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-\mathrm{H})$; $m / e 342\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{6}: \mathrm{C}, 66.66$; H, 5.30. Found: C, 66.77 : H. 5.35. Demethylation of this compound ( 17 mg ) according to Tanaka and Kaneko ${ }^{21}$ gave xanthorin ( $6 \mathrm{mg}, 40 \%$ ), $\mathrm{mp} 247-248{ }^{\circ} \mathrm{C}$ (acetic acid) (lit. $.^{21} 244-246{ }^{\circ} \mathrm{C}$; lit. ${ }^{22} 253^{\circ} \mathrm{C}$; lit. $.^{33} 250-251{ }^{\circ} \mathrm{C}$ ) indistinguishable from a sample of the authentic material ( mmp , IR spectra, and TLC in four solvent systems).

Acknowledgments. We are grateful to Professors D. W. Cameron, M. D. Sutherland, and R. H. Thomson for samples of 2 -acetylemodin, 2 -acetyl- 5 -hydroxyemodin, rubrocomatulin pentamethyl ether, and xanthorin. Financial support srom the National Research Council of Canada and the Ministère de l'Education du Québec are acknowledged.

Registry No.-1, 61539-63-7; 2, 65120-61-8; 3, $\leqslant 1501-60-4 ; 4,922-$ 69-0; 5, 65120-62-9; 6a, 65120-63-0; 6b, 65120-64-1; 7, 13719-93-2; 8, 65120-65-2; 9, 65120-66-3; 10, 65120-67-4; 11, 65120-68-5; 12, $57165-99-8$; 13, 65120-69-6; 14, 65120-70-9; 15, 32013-63-1; 16, 65120-71-0; 17, 65120-72-1; 18, 65120-73-2; 19, 65120-74-3; 20, 32013-66-4; 21, 1989-44-2; 22, 52431-64-8; 23, 52431-72-8; 24, 37567-67-2; chloroacetyl chloride, 79-04-9; 1,1-dichloroethylene, 75-35-4; methoxyacetyl chloride, 38870-89-2; chlc rotrimethylsilane, 75-77-4; xanthorin, 17526-15-7.

## References and Notes

(1) J. L. Grandmaison and P. Brassard, Tetrahedron, 33, 2047 (1977).
(2) J. Banville and P. Brassard, J. Chem. Soc., Perkin Trans. 1, 1852 (1976).
(3) J. Banville and P. Brassard, J. Org. Chem., 41, 3018 (1976)
(4) G. Roberge and P. Brassard, J. Shem. Soc., Perkin Trans. 1, in press.
(5) M. D. Sutherland and J. W. Wells, Aust. J. Chem., 20, 515 (1967).
(6) A. McKillop, B. D. Howarth, and R. J. Kobylecki, Synth. Commun., 4, 35 (1974).
(7) H. J. Banks and D. W. Cameron. J. Chem. Soc., Chem. Commun., 1577 (1970).
(8) D. W. Cameron, M. J. Crossley. and G. I. Feutrill, J. Chem. Soc., Chem. Commun., 275 (1976).
(9) I. Heilbron, E. R. H. Jones, and M. Julia, J. Chem. Soc., 1430 (1949)
(10) T. Kato, Y. Yamamoto, and S. Takeda, J. Pharm. Soc. Jpn., 94, 884 (1974); Chem. Abstr., 81, 104677g (1974).
(11) H. D. Scharf and E. Sporrer, Synthesis, 733 (1975).
(12) S. Danishefsky and T. Kitahara, J. Am. Chem. Soc., 96, 7807 (1974).
(13) T. F. Low, R. J. Park, M. D. Sutherland, and I. Vessey, Aust. J. Chem., 18, 182 (1965).
(14) J. F. King and R. G. Pews, Can. J. Chem., 42, 1294 (1964).
(15) M. V. Sargent, D. O'N. Smith, and J. A. Elix. J. Chem. Soc. C. 307 (1970).
(16) S. M. McElvain, H. I. Anthes, and S. H. Shapiro, J. Am. Chem. Soc., 64, 2525 (1942).
(17) D. B. Bruce and R. H. Thomson, J. Chem. Soc., 1089 (1955).
(18) P. C. Arora and P. Brassard, Can J. Chem., 45, 67 (1967).
(19) J. Banville, J.-L. Grandmaison, G. Lang, and P. Brassard, Can. J. Chem., 52, 80 (1974).
(20) J. K. K. Lam, M. V. Sargent, J. A. Elix, and D. O'N. Smith, J. Chem. Soc., Perkin Trans 1, 1466 (1972)
(21) O. Tanaka and C. Kaneko, Chem. Pharm. Bull., 3, 284 (1955).
(22) W. Steglich, W. Losel, and W. Reininger, Tetrahedron Lett., 4719 (1967).
(23) K. E. Stensiö and C. A. Wachtmeister, Acta Chem. Scand., 23, 144 (1969).

# Biosynthesis of $\alpha$-Naphthocyclinone ${ }^{1}$ 

Karsten Schröder and Heinz G. Floss*<br>Department of Medicinal Chemistry and Pharmacognosy, School of Pharmacy and Pharmacal Sciences, Purcue University, West Lafayette, Indiana 47907

Received August 9, 1977

The biosynthesis of $\alpha$-naphthocyclinone in Streptomyces arenae was studied by feeding experiments with sodium [ $\left.1-{ }^{13} \mathrm{C}\right]$ - and $\left[2-{ }^{13} \mathrm{C}\right]$ acetate and diethyl $\left[2-{ }^{13} \mathrm{C}\right]$ malonate followed by ${ }^{13} \mathrm{C}$ NMR analysis. The compound is derived entirely from acetate/malonate units by the polyketide pathway, and the labeling pattern is consistent with its formation from two benzoisochroman quinone units. Surprisingly, $\left[2-{ }^{13} \mathrm{C}\right]$ malonate labels both the starter and the chain extension units, but not the acetoxy group. Possible explanations of the latter finding are suggested.

The naphthocyclinones are a series of closely related pigments which were isolated from cultures of Streptomyces arenae, strain Tü 495. ${ }^{2}$ Some of the compounds, $\beta$ - and $\gamma$ -
naphthocyclinone (I and II, Scheme I), exhibit antibacterial activity against gram-positive organisms. Their structure elucidation by Zeeck's group showed ${ }^{2,3}$ that the naphthocy-

Scheme I. Structures of Naphthocyclinones


I


11


III: $\quad R_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{H}$, triaph hocyclinone
IV: $\quad R_{1}=R_{2}=R_{3}=R_{4}=H$, i-naplithocyclinone acid
$v: \quad R_{1}=R_{2}=R_{3}=C: I I_{3}, R_{4}=H$
UI: $R_{1}=R_{2}=R_{3}=R_{2}=\mathrm{CH}_{3}$

Table I. Incorporation of Precursors into $\alpha$-Naphthocyclinone and $\alpha$-Naphthocyclinone Acid

| $\begin{gathered} \text { Expt } \\ \text { no. } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Precursor } \\ \text { fed } \end{gathered}$ | Feeding time after inoculation, $h$ | No. of cultures | Amount fed, mg | Spec. radioactivity of precursor, dpm/mmol | Product isolated (III + IV), mg | Spec. radioac$t$ vity of product, $\mathrm{dpm} / \mathrm{mmol}$ | Incor-poration, ${ }^{a}$ \% | Dilution factor ${ }^{b}$ | Relative enrichment per labeled atom ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Sodium [1. $\left.{ }^{14} \mathrm{C}\right]$ acetate | 24 | 2 | 50 | $7.05 \times 10^{6}$ | 0.1 | Not determined |  |  |  |
| 2 | Sodium $\left[1-{ }^{14} \mathrm{C}\right]$ acetate | 32 | 2 | 50 | $7.05 \times 10^{6}$ | 18.7 | $1.03 \times 10^{6}$ | 0.7 | 6.9 | 0.9 |
| 3 | Sodium [1-14 C]acetate | 40 | 2 | 50 | $7.05 \times 10^{6}$ | 30.9 | $1.58 \times 10^{6}$ | 1.7 | 4.5 | 1.4 |
| 4 | Sodium [1-14C]acetate | 48 | 2 | 50 | $7.05 \times 10^{6}$ | 22.0 | $2.55 \times 10^{6}$ | 2.0 | 2.8 | 2.3 |
| 5 | Sodium [1-14C]acetate | 48 | 4 | 200 | $2.16 \times 10^{7}$ | 41.0 | $8.39 \times 10^{6}$ | 1.0 | 2.6 | 2.4 |
| 6 | Sodium [ $1{ }^{13} \mathrm{C}$,-1-14 C]acetate | 48 | 10 | 300 | $1.55 \times 10^{7}$ | 106 | $5.9<\times 10^{6}$ | 1.6 | 2.6 | 2.4 |
| 7 | Sodium $\left[2{ }^{-13} \mathrm{C}\right.$,-2- ${ }^{14}$ C]acetate | 48 | 10 | 300 | $1.51 \times 10^{6}$ | 98 | $3.55 \times 10^{5}$ | 1.0 | 4.3 | 1.5 |
| 8 | Diethyl $[2-14 \mathrm{C}] \text { malonate }$ | 48 | 10 | $500{ }^{\text {d }}$ | $1.69 \times 10^{7}$ | 64.3 | $4.31 \times 10^{5}$ | 0.08 | 39 | 0.2 |
| 9 | Diethyl <br> [ $2-{ }^{14} \mathrm{C}$ ]malonate | 48 | 5 | $250{ }^{e}$ | $1.30 \times 10^{7}$ | 29.6 | $3.41 \times 10^{6}$ | 0.5 | 3.8 | 1.7 |
| 10 | Diethyl $\left[2{ }^{-13} \mathrm{C}\right.$,-$2-{ }^{14} \mathrm{C}$ ]malonate | 48 | 10 | $500{ }^{\text {e }}$ | $2.08 \times 10^{7}$ | 44.1 | $3.6 \leq \times 10^{6}$ | 0.3 | 5.7 | 1.2 |

${ }^{a}$ (Radioactivity in product/radioactivity in precursor) $\times 100(\%) .{ }^{b}$ Specific radioactivity of precursor/specific radioactivity of product. ${ }^{c} 100 /$ ino. of precursor units in product molecule $\times$ dilution factor). ${ }^{d}$ Precursor added neat. ${ }^{e}$ Precursor fed as solution in $\mathrm{Me}_{2} \mathrm{SO}$.
clinones are related to the general class of isochroman quinone antibiotics, which also includes granaticin, ${ }^{4,5}$ frenolicin, ${ }^{6}$ kalafungin, ${ }^{7}$ actinorhodin, ${ }^{8}$ and the nanaomycins ${ }^{9}$ and griseusins. ${ }^{10}$ The naphthocyclinones are dimers in which one of the naphthoquinone units has been modified to an aryl ketone moiety. Furthermore, in $\alpha$-naphthocyclinone (III), the major metabolite, the other unit contains only 14 rather than the usual 16 carbon atoms.
In this communication we report some results which establish the biogenetic origin of $\alpha$-naphthocyclinone.

## Results and Discussion

Inspection of the structure of the naphthocyclinones suggests that their biosynthesis might proceed via the polyketide pathway from acetate as the precursor. This hypothesis was examined in a series of feeding experiments with ${ }^{13} \mathrm{C}$-labeled acetate and malonate followed by determination of the ${ }^{13} \mathrm{C}$ distribution in the resulting $\alpha$-naphthocyclinone using ${ }^{13} \mathrm{C}$ NMR analysis.
In a series of preliminary experiments, optimum conditions for the ${ }^{13} \mathrm{C}$ experiments were determined. By following the time cuurse of naphthocyclinone formation in Streptomyces arenase, strain Tü 495, determinec by measuring the absorption at the $\lambda_{\max }$ of $\alpha$-naphthocyclinone $\mathrm{a}: 488 \mathrm{~nm}$, it was established that the pigment concentration reached a maximum 72 h after inoculation (Figure 1) Chromatography of the pigment mixture showed that $\alpha$-naphthocyclinone (III) and $\alpha$-napithocyclinone acid (IV) were the two most prevalent compounds. Next, a series of experiments with sodium [1${ }^{14} \mathrm{C}$ ]acetate were carried out in which the precursor, in a concentration of 25 mg per flask, was added at different times after inoculation (Table I, expt 1-4). Each set of cultures was harvested 24 h later, and the specific radioactivity and yield of $\alpha$-naphthocyclinone (III and IV) were determined. It is evident that the best result is obtained when the precursor is added at 48 h . Doubling the amount of precursor per flask (Table I, expt 5) does not give higher isotope enrichment in the product. Based on this explorazory work, feeding at a concentration of 30 mg of sodium acetate per flask at 48 h and


Figure 1. Time course of production of $\alpha$-naphthocyclinone and $\alpha$ naphthocyclinone acid.
harvesting at 72 h were chosen as the set of standard conditions for the ${ }^{13} \mathrm{C}$ feeding experiments.

The results of the exjeriments with sodium $\left[1-{ }^{13} \mathrm{C}, 1-{ }^{14} \mathrm{C}\right]$ and $\left[2-{ }^{13} \mathrm{C}, 2-{ }^{14} \mathrm{C}\right]$ acetate are shown in Table I (expt 6 and 7 ). It is evident that both $\mathrm{J}-1$ and $\mathrm{C}-2$ of acetate are efficiently incorporated. For the enalysis of the ${ }^{13} \mathrm{C}$ distribution of the products from these experiments, $\alpha$-naphthocyclinone and $\alpha$-naphthocyclinone acid were combined and the mixture was methylated with diazomethane ${ }^{3}$ to give $\alpha$-naphthocyclinone methyl ester methyl $\epsilon$ ther (V). This compound was subjected to ${ }^{13} \mathrm{C}$ NMR spectroscopy, and the normalized peak heights of the spectra were compared to those of the natural abundance spectrum. A complete ${ }^{13} \mathrm{C}$ NMR analysis of V and other naphtho yclinones has been carried out in Zeeck's laboratory, and the signal assignments were made available to us. ${ }^{11}$ The relative ${ }^{13} \mathrm{C}$ ebundance values for the products of experiments 6 and 7 (Table II) show that all carbon atoms of $\alpha$-naphthocyclinone, with the exception of the $O$-methyl group, originate from acetate and that $\mathrm{C}-1$ and $\mathrm{C}-2$ of acetate label the molecule in the alternating pattern predicted by the polyketide pathway. Tais same kind of labeling pattern has

Table II. ${ }^{13} \mathrm{C}$ Distribution in the $\alpha-\mathrm{Naph}$ thocyclinone Ring System Biosynthesized from [ ${ }^{13} \mathrm{C}$ ]Acetate and [ ${ }^{13} \mathrm{C}$ ]Malonate

| Carbon atom no. | $\alpha$-Naphthocyclinone methyl ester methyl ether (V) |  |  | $\alpha$-Naphthocyclinone methyl ester dimethyl ether (VI) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Chemical shift, ppm | ${ }^{13} \mathrm{C}$ abu <br> [ $1-{ }^{13} \mathrm{C}$ ]acetate | $\mathrm{e}^{a}$ from: <br> [2- $\left.{ }^{13} \mathrm{C}\right]$ acetate | Chemical shift, ppm | ${ }^{13} \mathrm{C}$ abundance ${ }^{a}$ from diethyl [2- $\left.{ }^{13} \mathrm{C}\right]$ malonate |
| 1 | 183.5 | 4.0 | 1.1 | 178.9 | 1.3 |
| 2 | 158.9 | 1.2 | 2.6 | 159.9 | 2.5 |
| 3 | 131.8 | 4.4 | 1.2 |  |  |
| 4 | 188.7 | 1.2 | 2.8 | 190.9 | 2.8 |
| 4a | 111.9 | 3.5 | 1.2 |  |  |
| 5 | 152.3 | 1.2 | 2.8 | 153.0 | 3.0 |
| 6 | 146.1 | 4.3 | 1.2 |  |  |
| 7 | 134.8 | 1.0 | 2.6 | $122.6{ }^{\text {b }}$ | 2.6 |
| 8 | 154.6 | 4.3 | 1.1 | 151.0 | 1.2 |
| 8 a | 112.3 | 1.2 | 2.8 |  |  |
| 9 | 30.0 | 1.2 | 2.6 | 29.6 | 3.1 |
| 10 | 66.9 | 4.2 | 1.3 | 66.9 | 1.1 |
| 11 | 40.9 | 1.0 | 3.0 | 40.8 | 2.6 |
| 12 | 172.5 | 4.4 | 1.2 | 172.5 | 1.0 |
| $1^{\prime}$ | 67.9 | 3.9 | 1.1 | 67.9 | 1.1 |
| $3^{\prime}$ | 63.2 | 3.5 | 1.3 | 63.2 | 1.2 |
| $4^{\prime}$ | 34.5 | 1.0 | 2.6 | 34.5 | 2.6 |
| $4^{\prime}{ }^{\prime}$ | 142.1 | 4.1 | 1.2 | 142.3 | 1.1 |
| $5^{\prime}$ | 113.1 | 1.2 | 3.3 | 113.0 | 3.1 |
| 5'a | 140.2 | 4.1 | 1.2 | 140.6 | 1.5 |
| $6^{\prime}$ | 84.8 | 1.1 | 2.8 | 84.7 | 2.9 |
| $7{ }^{\prime}$ | 49.5 | 4.0 | 1.1 | 49.5 | 1.1 |
| $8^{\prime}$ | 51.0 | 1.2 | 2.4 | 51.9 | 2.5 |
| $9^{\prime}$ | 198.6 | 3.7 | 1.0 | 199.5 | 1.2 |
| 9'a | 107.9 | 1.0 | 2.5 | 108.0 | 3.0 |
| $10^{\prime}$ | 159.6 | 4.0 | 1.1 | 159.5 | 1.1 |
| 10'a | 128.8 | 1.0 | 2.3 | 128.6 | 3.0 |
| $11^{\prime}$ | 40.6 | 1.2 | 2.6 | 40.5 | 2.6 |
| $12^{\prime}$ | 171.1 | 4.2 | 1.2 | 171.1 | 0.9 |
| $1^{\prime}-\mathrm{CH}_{3}$ | 18.6 | 1.1 | 2.6 | 18.6 | 2.8 |
| Acetyl CO | 169.5 | 4.3 | 1.0 | 169.3 | 1.1 |
| Acetyl $\mathrm{CH}_{3}$ | 21.1 | 1.1 | 2.3 | 21.1 | 1.3 |
| Ester $\mathrm{OCH}_{3}$ | 51.6 | 1.2 | 1.2 | 51.6 | 1.3 |
| $2-\mathrm{OCH}_{3}$ | $61.8{ }^{\text {c }}$ | 1.1 | 1.1 | $61.3{ }^{\text {c }}$ | 1.1 |
| $8-\mathrm{OCH}_{3}$ |  |  |  | 62.2 | 1.1 |

${ }^{a}$ Natural abundance $=1.1$; values are subject to an error of approximately $\pm 15 \% .{ }^{b}$ Tentative assignment. ${ }^{c}$ Reference signal used for normalization of peak heights.
been demonstrated for the simpler benzoisochroman quinones, nanaomycin A and B. ${ }^{12}$

Since the "left hand" half of $\alpha$-naphthocyclinone contains only a 14 -carbon skeleton, it could either have arisen from a 16 -carbon unit by loss of the two carbon atoms representing the starter unit of the polyketide chain or t could represent a 14-carbon polyketide chain with either C-2 and C-1 or C-4 and $\mathrm{C}-4 \mathrm{a}$ as the starter unit. We attempted to distinguish between these possibilities by feeding $\left[2{ }^{-13} \mathrm{C}\right]$ malonate, which we expected to label predominantly the chain extension units and not, or only to a lesser extent, the starter units. Since malonic acid or its salt frequently cannot penetrate the cell membrane, the diethyl ester was administered to the culures. ${ }^{13}$ The results (Table II! surprisingly indicate that with the exception of the $O$-acetyl group the same carbon atoms were labeled by $\left[2-{ }^{13} \mathrm{C}\right]$ malonate as by $\left[2-{ }^{13} \mathrm{C}\right]$ acetate. Derivatization of the sample from this experiment accidentally gave a new compound instead of V , to which structure VI was tentatively assigned, although an alternative structure carrying the extra methyl group at C-5 cannot be exchuded. Only partial ${ }^{13} \mathrm{C}$ NMR assignments could be made for this compound, but the signals for the critical carbon atoms 2 and 4 and for the methyl group at $\mathrm{C}-1^{\prime}$ were assigned unambiguously. As would be predicted if the starter unit from the le:t hand portion of the molecule is lost, both C-2 and C-4 are enriched. However, any conclusion to that effect is invalidated ky the fact that the

C-1' methyl group is enriched to the same extent. Paradoxically, the methyl group of the acetoxy function is not enriched.

The results clearly show that the skeleton of $\alpha$-naphthocyclinone is built up entirely from acetate and/or malonate units via the polyketide pathway (Scheme II). In agreement with the proposal of Zeeck et al., ${ }^{2}$ we believe that the biosynthesis of $\alpha$-naphthocyclinone involves the dimerization of two 16 -carbon polyketides followed by loss of a 2 -carbon unit from one of them. However, experimental verification of this hypothesis is still lacking. At least two reasonable explanations can be offered for the finding that malonate labels both the starter unit and the chain extension units, but not the acetoxy group. Malonyl-CoA may serve both as starter and as chain

Scheme II. Labeling Pattern of $\alpha$-Naphthocyclinone from
[ ${ }^{13} \mathrm{C}$ ]Acetate and [ $\left.{ }^{13} \mathrm{C}\right]$ Malonate

extension unit, with the starter unit undergoing decarboxylation at a subsequent stage. Alternatively, assembly of the polyketide chain may occur much earlier in the fermentation period than O -acetylation, and acetyl-CoA and malonyl-CoA may be in rapid equilibrium, resulting in labeling of both pools at the time of polyketide assembly, whereas the added precursor may be largely consumed at the time O -acetylation occurs. Further experimentation will be necessary to clarify these and other details of this biosynthesis.

## Experimental Section

General. NMR spectra were measured on a Jeo: PFT-100 system interfaced to an EC-100 Fourier transform computer with 20K memory. ${ }^{13} \mathrm{C}$ NMR spectra were generally recorded at a pulse width of $20 \mu \mathrm{~s}$ and a repetition time of 5 s using $\mathrm{CDCl}_{3}$ as solvent. IR spectra were ojtained on a Beckman IR 4230 spectrometer and UV spectra on a Perkin-Elmer 124 or a Cary 17 instrument. Mass spectra were measu:ed on a DuPont 21-492 BR mass spectrometer.

Analytical as well as preparative chromatographic separations were carried out on thin-layer plates or columns of oxalic acid treated silica gel prepared as described by Zeeck and Mardin. ${ }^{3}$ Radioactivity determinations were made by liquid scintillation counting in a Beckman LS- 250 spectrometer using Bray's solution ${ }^{14}$ as the scintillation fluid. Counting efficiences were determined with [ ${ }^{14} \mathrm{C}$ ]toluene as an internal standa:d. ${ }^{14} \mathrm{C}$-Labeled compounds were purchased from Amer-sham-Searle and ${ }^{13} \mathrm{C}$-labeled substrates from Merck Sharp and Dohme.

Culture Conditions. Streptomyces arenae, strain Tü 495, was maintained on slants of M2 agar (1\% malt extract, Difco, 0.4\% dextrose, C.4\% yeast extract, Difco). Production cultures of 100 mL of medium ( $2 \%$ soy flour, $2 \%$ mannitol, pH 7.2) in $500-\mathrm{mL}$ baffled Erlenmeyer flasks were inoculated with $2 \times 2 \mathrm{~cm}$ pieces of mycelium cut from agar slants and were incubated at $27^{\circ} \mathrm{C}$ and 350 rpm on a rotary shaker. The time course of the fermentation was determined by inoculating a series of four cultures and removing $2-\mathrm{mL}$ aliquots from each flask at $24,30,48,56,72,83$, and 95 h after inoculation. These samples were each shaken with 2 mL of ethyl acerate, and the absorbance of the ethyl acetate solution at 488 nm was determined after appropriate dilution. The points shown in Figure 1 are the averages of the four determinations.

Labeled precursors were added as sterile aqueous solutions (except in expts 8-10) at the times and in the amounts indicated in Table I, and the cultures were harvested 24 h later. In all ${ }^{13} \mathrm{C}$ experiments the precursor was mixed with a small amount of ${ }^{14} \mathrm{C}$-labeled material to allow determination of the overall dilution factor.

Isolation and Purification of Products. At the end of the fermentat on period the mycelium was separated from the culture medium by filtration with the aid of Celite. The damp mycelium was extracted with acetone, the extract was concentrated in a vacuum, and the resulting aqueous suspension was combined with the culture filtrate. The mixture was acidified to pH 3 with 1 N HCl and extracted with ethyl acetate. The extract was dried end evaporated to dryness; the residue was taken up in a small volume of ethyl acetate, and the crude pigment mixture was precipitated out with petroleum ether and collected by centrifugation. This material was then chromatographed on a co.umn ( $1.8 \times 24 \mathrm{~cm}$ ) of 30 g of oxelic acid treated silica gel. Elution with chloroform/ethyl acetate (1:1) gave $\alpha$-naphthocyclinone and $\alpha$-naphthocyclinone acid (IV), in addition tc traces of other pigmen's which were not collected. The $\alpha$-naphthocyclinone and $\alpha$-naphthocyclinone acid were combined and suspended in chloroform. A solution of diazomethane in ether was added dropwise at -20 ${ }^{\circ} \mathrm{C}$ unti. a clear red solution was obtained and no more starting ma-
terial was detectable by TLC analysis (acetone/chloroform, 1:9; oxalic acid treazed silica gel). The solvent was evaporated, and the residue was chromatographed on a column ( $1.8 \times 48 \mathrm{~cm}$ ) of 60 g of oxalic acid treated silica gel. Elution with chloroform containg $2 \%$ acetone gave $\alpha$-naphthocyclinone metiyl ester methyl ether (V). In the feeding experiment with diethyl $2-{ }^{13} \mathrm{C}$ ]malonate, $\alpha$-naphthocyclinone acid was formed almost exclusively and the diazomethane methylation was carried out on a solu=ion of this material ( 44.1 mg ) in 30 mL of chloroform/methanol (2:-). Workup as above gave a new derivative ( 37 mg ) which was tentatively identified as $\alpha$-naphthocyclinone methyl ester dimethyl ether (VI). The material was identical to the product from the methylation of V .
$\alpha$-Naphthocyclinone Methyl Ester Dimethyl Ether. $\alpha$ Naphthocyclinone methyl ester methyl ether ${ }^{3}$ ( 213 mg ) was dissolved in 50 mL of chloroform/nethanol (1:1), and excess diazomethane solution in ethe: was add at room temperature. The solution was evaporatted to dryness, an 1 the residue was chromatographed on 100 g of oxalic acid treated sil:ca gel (chloroform containing $2 \%$ acetone) to give 149 mg of product, which was recrystallized from carbon tetrachloride/cyclchexane ( $£: 3$ ), mp $116^{\circ} \mathrm{C}$; IR (KBr) $1738,1670,1637$ sh, 1623, $1579 \mathrm{~cm}^{-1}$; UV (EtOH) $\lambda_{\max } 427 \mathrm{~nm}(\epsilon 4300), 332$ (5900), 247 sh, 228 ( 44500 I ; UV ( $\mathrm{E}-\mathrm{OH} / \mathrm{NaOH}$ ) $\lambda_{\text {max }} 555 \mathrm{~nm}$ ( $\epsilon 5400$ ), 378 ( 12 100), 276 sh, 232 ( 445 )0); UV ( $\mathrm{CHCl}_{3}$ ) $\lambda_{\max } 438 \mathrm{~nm}(\epsilon 3400), 328$ (5300), $2 \varepsilon 6 \mathrm{sh}, 249 \mathrm{sh}$, enc absorption; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.74$ (5$\mathrm{OH}), 11.98\left(10^{\prime}-\mathrm{OH}\right), 6.97\left(5^{\prime}-\mathrm{H}\right), 5.00\left(1^{\prime}-\mathrm{H}\right), 4.35\left(3^{\prime}-\mathrm{H}\right)$, ca. 4.2 $(10-\mathrm{H}), 4.12\left(2-\mathrm{OCH}_{3}\right), 3.88\left(8-\mathrm{OCH}_{3}\right)$, ca. $3.8\left(7^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 3.73\left(12^{\prime}-\mathrm{OCH}_{3}\right)$, $\left.3.69(12-1) \mathrm{CH}_{3}\right), 2.93\left({ }^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 2.4-3.0\left(4 \mathrm{CH}_{2}\right.$ groups), 2.29 ( $6^{\prime}-$ $\mathrm{OCOCH}_{3}$ 1, $1.52\left(1^{\prime}-\mathrm{CH}_{3}\right)$.

Molecular we.ght for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{O}_{15}$ : calcd, 708.204; observed (by EI mass spectromerry), 708.219.

Acknowledgment. We are greatly indebted to Dr. Axel Zeeck of the University of Göttingen for providing Streptomyces arenae Tü 495, reference samples of the naphthocyclinones, and the ${ }^{13} \mathrm{C}$ NMR assignments for these compounds.

Registry No.-I, 55050-83-4; II, 55095-58-4; III, 54826-93-6; IV, 54367-38-3; V, 54367-41-8; VI, 65015-70-5; sodium acetate, 127-09-3; diethyl malonate, 105-53-3.

## References and Notes

(1) This work was supported by U.S. Public Health Service Research Grant AI 11728 from the National Institute for Allery and Infectious Diseases and by a Postdoctoral Fellowship (to K.S.) from the Max-Kade Foundation, New York.
(2) A. Zeeck, H. Zahner, and M. Mardin, Justus Liebigs Ann. Chem., 1100 (1974).
(3) A. Zeeck and M. Mardin, Justus Liebigs Ann. Chem., 1063 (1974).
(4) W. Kel er-Schirrlein, M. B ufani, and S. Barcza, Helv. Chirr. Acta, 51, 1257 (1968).
(5) M. Brufani and M. Dobler Helv. Chim. Acta, 51, 1269 (1968)
(6) G. A. Ellstad, H. A. Whaley, and E. L. Patterson, J. Am. Chem. Soc., 88, 4109 (1966).
(7) H. Hoeksema and W. C. Krueger, J. Antibiot., 29, 704 (1976), and references therein
(8) H. Brockmann A. Zeeck, K. van der Merwe, and W. Müller, Justus Liebigs Ann. Chem., 698, 209 (1766).
(9) S. Omıra, H. Tanaka, Y. Okada, and H. Marumo, J. Chem. Soc., Chem. Commiun., 320 (1976), and references therein.
(10) N. Tsuji, M. K.obayashi, Y. Terui, and K. Tori, Tetrahedron, 32, 2207 (1976)
(11) A. Zeeck. personal comnunication.
(12) H. Tanaka, Y. Koyama, T Nagai, H. Marumo, and S. Omura, J. Antibiot., 28, 863 (1975).
(13) J. D. BuLock, H. M. Sma ley, and G. N. Smith, J. Biol. Chem., 37, 1778 (1962)
(14) G. A. Bray, Aral. Biochem., 1, 279 (1960).

# Marine Natural Products. Synthesis of Four Naturally Occurring $20 \beta$-H Cholanic Acid Derivatives ${ }^{19}$ 

D. J. Vanderah ${ }^{1 \mathrm{~b}}$ and Carl Djerassi*<br>Department of Cnemistry, Stanford University, Stanford, California 94305

Received August 2, 1977


#### Abstract

In conjunction with the structural elucidation of novel steroids from the marine invertebrate Ptilosarcus gurneyi (sea pen) we required the synthesis of a series of cholanic acid derivatives in which both epimers at $\mathrm{C}(20)$ were elaborated. The synthesis of the $20 \beta-\mathrm{H}$ compounds ( $20-\mathrm{epi}$ ) $1-4$ provides convincing evidence that the naturally occurring marine steroids contain the unexpected "unnatural" stereochemistry at $\mathrm{C}(20)$. In addition to establishing the structures of the natural products, a comparison of the physical and spectral data revealed that the $20 \beta-\mathrm{H}$ ( $20-\mathrm{epi}$ ) compounds consistently differed from their $20 \alpha$-H counterparts in two respects: (1) exhibit significantly shorter gas chromatographic retention times; and (2) display the $\mathrm{C}(21)$ methyl resonance at $\sim 0.1 \mathrm{ppm}$ higher field in the NMR spectra than the $20 \alpha$-H compounds. These differences are consistent with conformational isomerism of the side chain as a result of the chirality at $\mathrm{C}(20)$.


The number of novel sterols from marire sources ${ }^{2}$ is increasing dramatically due to new and more discriminating chromatographic and spectral techniques as well as a greater appreciation of older methods. ${ }^{3}$ In addition to novel structures, marine species have recently been shown to contain very complex mixtures of sterols. ${ }^{3,4}$ While the variety and complexity of marine sterols is being demonstrated, a recent computer-assisted analysis, ${ }^{5}$ utilizing only known biosynthetic processes and oxygenation at $\mathrm{C}(3)$, has sugyested the possibility of a tenfold increase in anticipated new sterols.

As part of this search for sterols and other biologically important compounds from marine sources we earlier reported ${ }^{6}$ the isolation of six novel steroids (chromatographically distinct from the free sterols) from a sea pen, Ptilosarcus gurneyi. We concluded from spectral evidence and synthesis that the major component of the steroid mixture ${ }^{7}$ was methyl ( $E$ )$3 \beta$-acetoxy- $\Delta^{5,22}$-choladienate (1) with the unexpected $20 S$ stereochemistry. Since our earlier preliminary report, ${ }^{6}$ we have completed the synthesis of 2,3 , and 4 and conclude, based on the data presented herewith, that these are the correct structures of three additional components of the marine steroid mixture. ${ }^{7}$ In the present paper, we wish to report the details of the syntheses of 1-4. Additionally, we present data in agreement with the implication of side-chain conformational isomerization ${ }^{8}$ as a consequence of the chirality at $\mathrm{C}(20)$.

## Results and Discussion

Our approach to the synthesis of the $20 \beta$-H steroids was (1) to proceed via an intermediate in which the stereochemistry at $C(20)$ could easily be changed, (2) to separate the pure epimeric intermediates, and (3) to elaborate a desired side chain. The known isomethyl ether aldehyde 5 , readily available ${ }^{9-12}$ from stigmasterol, seemed a good choice in that the $C(20)$ carbon is epimerizable and the aldehyde functionality could be utilized with a variety of reagents to elaborate a desired side chain. Realizing the difficulties ${ }^{9}$ attendant with the separation of the epimeric aldehydes, we chose to carry out the purification at the level of the isomeric alcohols 6 and 7 which could then be reconverted to the corresponding aldehydes.

Epimerization of the aldehyde 5 with $5 \%$ methanolic KOH followed by lithium aluminum hydride $\left(\mathrm{LiAlH}_{4}\right)$ reduction yielded the desired alcohols 6 and 7 accompanied by two additional alcohols (Scheme I). The two unexpected alcohols were shown to be the $\mathrm{C}(20)$ epimeric pregnane derivatives 8 and 9 , whose acid hydrolysis ${ }^{13}$ products $10(R=H)$ and $11(R$ $=\mathrm{H}$ ) and corresponding acetates ( 10 and $11, \mathrm{R}=\mathrm{Ac}$ ) were compared with authentic samples ${ }^{14}$ prepared from pregnenolone. The formation of the 20 -hydroxy pregnane side chain

$1, \mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{Ac}$ $16, \mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{Ac}$

2, $\mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{Ac}$ 17, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{Ac}$

$3, \mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{Ac}$

$4, \mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{Ac}$
18, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}=\mathrm{Ac}$
from 5 is believed to proceed via the mechanism outlined in Scheme II by analogy to that reported for 1-phenyl-2-indanone. ${ }^{15}$ Generation of the $\mathrm{C}_{2}$ side chain (i.e., $6 \beta$-methoxy$3 \alpha, 5$-cyclo- $5 \alpha$-pregnan- 2 -one before $\mathrm{LiAlH}_{4}$ reduction) is a slow process under the reaction conditions employed, resulting in a $35 \%$ yield of the alcohols 8 and 9 after 60 h . Verification that 8 and 9 arise via the mechanism outlined in Scheme II and
Scheme I

5

6, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{H}$

8, 20 $\beta$
7, $\mathrm{R}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{3}$
$9,20 \alpha$
$\downarrow \begin{aligned} & f(\mathrm{R}=\mathrm{H}) \\ & \mathrm{g}(\mathrm{R}=\mathrm{A})\end{aligned}$

12, $\mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{H}$ $13, \mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{3}$
H


${ }^{a} \mathrm{TsCl} /$ pyr. ${ }^{b} \mathrm{KOAc} / \mathrm{MeOH} . \mathrm{CO}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C} .{ }^{d} 5 \%$ $\mathrm{KOH} / \mathrm{MeOH}$, room temp, $58 \mathrm{~h} .{ }^{e} \mathrm{LiAlH}_{4} / \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$. $f p-\mathrm{TsOH} / p$-dioxane $-\mathrm{H}_{2} \mathrm{O}(8: 2) .8 \mathrm{Ac}_{2} \mathrm{O} / \mathrm{pyr} .{ }^{h} \mathrm{CrO}_{3} 2 \mathrm{pyr} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp, $15 \mathrm{~min} . i \mathrm{PhP}=\mathrm{C} \mathrm{CHCO}_{2} \mathrm{CH}_{3} / \mathrm{glyme}$, room temp, 17 days. $j \mathrm{H}_{2} / \mathrm{PtO}_{2} . k$ Dihydropyran, $\mathrm{POCl}_{3}$, 4 h. ${ }^{l} 5 \% \mathrm{KOH} / \mathrm{MeOH}$, reflux, 2 h. $m \mathrm{THF}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$ (3:2:1), 12 h.
further studies relating to the preparative utility of this side-ch.ain degradation are presently under investigation.

In sfite of this unforeseen event, the four alcohols 6-9 were readily purified by thin-layer mesh silica gel column chro-

Scheme II


5

matography. For regeneration of the desired side chain, the alcohols 6 and 7 were oxidized in essentially quantitative yield under mild conditions with Collin's reagent ${ }^{16}$ to their corresponding aldehvdes followed by condensation of the aldehydes with the Wittig reagent carbomethoxymethylenetriphenylphosphorane ${ }^{17}$ to yield 12 and 13. Gas chromatographic (GC) and ${ }^{1} \mathrm{H}$ NMR analysis cf 12 and 13 (see Table I and Experimental Section) showed that only one product was produced in each case, ${ }^{18}$ indicating that the oxidation and Wittig reactions proceeded without affecting the stereochemistry at $\mathrm{C}(20)$. Acidic hydrolysis ${ }^{13}$ of the isomethyl ether functionality of 12 and 13 and acetylation ( $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{pyr}$ ) yielded the desired $20 S$ ( 1 ) and $20 R(16)$ epimers of methyl ( $E$ )-33-acetoxy-$د^{5,22}$-choladienate. The required methyl (20S)-3ふ-acetoxy-$د^{5}$-cholenate ( 21 was prepared by hydrogenation of 12 to yield 14 followed by hydrolysis of the isomethyl ethe: protecting group and acetylation. To obtain methyl ( $E, 20 S$ )-3 $\beta$-ace-toxy- $د^{22}-5 a$-cholenate (3), the alcohol 6 was converted to the tetrahydropyranyl ethei 15 in five straightforward steps (see Scheme I). Oxidation of 15 to the corresponding aldehyde, condensation with the Wittig reagent in the same manner as before, followed by conversion of the tetrahydropyranyl ether protecting group to the acetate yielded 3 . The completely saturated methyl (20S)-3 $\beta$-acetoxy- $5 \alpha$-cholanate (4) was obtained by catalytic hydrogenation of 2 .

The "natural" $20 R(20 \alpha-\mathrm{H})$ analogue of 2 , me:hyl $3 \beta$-ace-toxy- $د^{5}$-cholenate (17), is commercially availabe and upon catalytic hydrojenation provided the known methyll $3 \beta$-ace-toxy-5 $\alpha$-cholanate (18). ${ }^{19}$

Table I contains the gas chromatographic and ${ }^{1} \mathrm{H}$ NMR data for the compounds prepared above. The GC, ${ }^{1} \mathrm{H}$ NMR, and mass spectral data of compounds $1-4$ and $16-18$ were compared with the GC-MS data of the sea pen steroid mixture $\left(\mathrm{R}_{3}=\mathrm{Ac}\right) .{ }^{6.7}$ As reported earlier, ${ }^{6}$ the "unnatural" (20S). dienate $1(\mathrm{~m} / e \leq 28)$ was identical in all respects wi:h the major component of the marine steroid mixture. From the data presented in Table I we conclude that structures 2, 3, and 4 correspond to three additional minor componerts. Our stereochemical assignmen's are rendered unambiguous, since Table I furt her shows the the $20 \beta-\mathrm{H}(20 \mathrm{~S}$ ) and $\mathrm{C} 0 \alpha-\mathrm{H}(20 R)$ compounds dif:er mark ədly in two respects. First the $20 \beta-\mathrm{H}$ compounds display consistently a greater gas chromatographic mobility; furthermore, the $\mathrm{C}(21)$ methyl group of the $20 \beta-\mathrm{H}$ compounds is shifted $\sim$ C. 1 ppm upfield in the NMR spectrum

Table I. Gas Chromatographic and ${ }^{1}$ H NMR Data of Various 20-Epi Steroid Pairs

| Compd | $\mathrm{C}(23) \mathrm{H}_{\mathrm{A}}{ }^{\text {b }}$ | $\mathrm{C}(22) \mathrm{H}^{\text {b }}{ }^{\text {b }}$ | $\mathrm{C}(18)^{\text {b }}$ | $\mathrm{C}(19)^{\text {b }}$ | $\mathrm{C}(21)^{\text {b }}$ | $-\mathrm{CO}_{2} \mathrm{CH}_{3}{ }^{\text {b }}$ | Retention time, min |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  |  | 0.70 | 1.03 | 0.04 | 3.68 | 12.7 |
| 17 |  |  | 0.69 | 1.03 | 0.94 | 3.68 | 13.9 |
| peak $\mathrm{A}^{a}$ |  |  |  |  |  |  | 12.7 |
| 4 |  |  | 0.68 | 0.83 | 0.83 | 3.68 | 12.7 |
| 18 |  |  | 0.66 | 0.82 | 0.92 | 3.68 | 13.9 |
| peak A |  |  |  |  |  |  | 12.7 |
| 1 | 5.78 | 6.91 | 0.66 | 1.00 | 1.00 | 3.74 | 13.9 |
| 16 | 5.74 | 6.87 | 0.74 | 1.03 | 1.10 | 3.72 | 16.6 |
| peak $\mathrm{B}^{\text {a }}$ |  |  |  |  |  |  | 13.9 |
| 428 component | 5.78 | 6.91 | 0.65 | 0.99 | 0.99 | 3.74 |  |
| 430 component | 5.76 | 6.89 | 0.62 | 0.80 | 0.99 | 3.74 |  |
| 3 | 5.76 | 6.89 | 0.62 | 0.80 | 0.98 | 3.73 | 13.9 |
| 12 | 5.77 | 6.91 | 0.69 | 1.01 | 0.99 | 3.73 | 7.4 |
| 13 | 5.73 | 6.84 | 0.75 | 1.02 | 1.08 | 3.71 | 9.8 |
| 6 |  |  | 0.72 | 1.00 | 0.93 |  | 3.4 |
| 7 |  |  | 0.73 | 1.01 | 1.03 |  | 3.8 |
| 20 -isocholesterol ${ }^{80}$ |  |  | 0.69 | 1.03 | 0.81 |  | 6.3 |
| cholesterol ${ }^{8 a}$ |  |  | 0.69 | 1.02 | 0.91 |  | 6.9 |

${ }^{a}$ See Experimental Section. ${ }^{b}$ In parts per million ( $\delta$ ).
relative to the $20 \alpha$-H counterparts. Similar effects have been observed in studies of the $\mathrm{C}(20)$ epimeric 11-oxygenated cholesterols, ${ }^{20} 20$-hydroxyprogesterones, ${ }^{21} 20$-hydroxycholesterols, ${ }^{22} \Delta^{17(20)}$-cholesterols, ${ }^{22}$ and 25-or.o-25-norcholesterols. ${ }^{23}$

The ${ }^{1} \mathrm{H}$ NMR and gas chromatographic data for the $20 \beta-\mathrm{H}$ compounds can be rationalized in terms of the side chain existing preferentially in that conformer wherein the $C(21)$ methyl group resides in the shielding anisotropy cone of the $\mathrm{C}(16)-\mathrm{C}(17)$ bond and the remainder of the side chain projects to the left (cis relative to $\mathrm{C}(13)$ ) as depicted in 19. An argument

against a preferred conformer in $20 \beta-\mathrm{H}$ sterols has recently been raised by Trachtenberg et al., ${ }^{24}$ who maintain that there exists only a small barrier to rotation around the $\mathrm{C}(17)-\mathrm{C}(20)$ bond equalizing the ground-state conformer populations. While our NMR data are incapable of settling this question, we feel that sterols, epimeric at $C(20)$ but of identical conformer composition, should exhibiy identical gas chromatographic behavior which is contrary to our present observations.

While the $\mathrm{C}(21){ }^{1} \mathrm{H}$ NMR data may be a more consistent parameter of the $\mathrm{C}(20)$ stereochemistry, the gas chromatographic mobility may be the more useful c-iterion in future analyses of naturally occurring sterol mixtures, especially in the event of very small quantities. The large gas chromatographic difference of 3.5 min between the $\mathrm{C}(20)$ epimers 1 and

16 is probably a maximum value due to the rigidity of the side chain imposed by the $(E)-\Delta^{22}$ bond and the polar group at the side-chain terminus. The still observable difference for 6 and 7 (as well as the moderate value for cholesterol and 20 -isocholesterol) suggests that for side chains of $\mathrm{C}_{4}$ and longer one may be able to assign the $C(20)$ stereochemistry solely on the basis of gas chromatographic mobility. While this possibility needs to be fully tested, Idler et al. ${ }^{25}$ have assigned the $\mathrm{C}(20)$ chirality as $S$ for a marine sterol (isolated from a scallop) which exhibited an unusually short retention time in the GC-MS analysis and whose mass spectrum was consistent with a cholesta-5,22-dien-3 $\beta$-ol (21) structure.


21
We have analyzed our sea pen's free sterols by procedures recently published; ${ }^{3}$ our results are in agreement with the analysis conducted nine years earlier by Ciereszko et al. ${ }^{26}$ The free sterols possess the "normal" $\mathrm{C}(20)$ stereochemistry by comparison of the GC rentention times with those of cholesterol, 20 -isocholesterol, and the extensively studied $P$. porosa sterols. ${ }^{3}$ The sea pen sterol mixture was similar to that obtained from several sponges collected from the northern California waters, ${ }^{27}$ suggesting that these sterols may arise from exogenous sources and that they are not the immediate biosynthetic precursors of the $20-\mathrm{epi}$ steroids $1-4$. Whether the $20-\mathrm{epi}$ steroids arise from an exogenous source (either directly or biosynthesized from an exogenous sterol) or are the result of in vivo biosynthesis by the sea pen is a matter we hope to answer later through radioactive labeling experiments.

## Experimental Section

General. Low-resolution mass spectra were obtained on an AEI MS-9 spectrometer, operated by Mr. R. Ross. Combined GC-MS analysis was performed using a Hewlett Packard 7610A gas chromatograph equipped with $2-\mathrm{mm}$ i.d. $\times 10 \mathrm{ft}$ " U "-shaped column ( $3 \%$ OV-17 at $260^{\circ} \mathrm{C}$ ) and interfaced with a Varian Mat 711 double-focusing mass spectrometer (equipped with an all glass WatsonBiemann dual stage separator and a PDP-11/45 computer for data acquisition and reduction), operated by Annemarie Wegmann.

The $60-\mathrm{MHz}$ nuclear magnetic resonance (NMR) spectra were run on a Varian Associates T- 60 NMR spectrometer, and the $100-\mathrm{MHz}$ spectra were run on a Varian Associates HA-100 NMR instrument by Dr. L. Durham. All NMR spectra were taken in $\mathrm{CDCl}_{3}$ solution with $\mathrm{Me}_{4} \mathrm{Si}$ as internal reference unless otherwise specified. Infrared (IF) spectra were obtained on a Perkin-Elmer 700 infrared spectrophotomer and ultraviolet spectra (UV) were obtained on a Cary 14 recording spectrophotometer in EtOH . Rotations were measured on a Perkin-Elmer 141 polarimeter.
Gas chromatography of all steroids was performed on a $U$-shaped glass column, packed with $1 \%$ OV-25 on 100-200 mesh Gas-Chrom Q. This column was mounted in a Hewlett-Packard 402 high-efficiency gas chromatograph with a hydrogen flame detector. All injections were made with the column temperature at $252^{\circ} \mathrm{C}$ and the flash heater and the detection temperatures at $270^{\circ} \mathrm{C}$ with the He flow at $75 \mathrm{~mL} / \mathrm{min}$.
Thin-layer chromatography was carried out on plates $5 \times 20 \mathrm{~cm}$ coated with $250 \mu \mathrm{~m}$ of silica gel PF 254. The melting points (uncorrected) were determined on a Thomas-Hoover "Uni-Melt" capillary melting point apparatus.
Microanalyses were performed in the Microanalytical Laboratory, Department of Chemistry, Stanford University, by Mr. E. Meier and associates.
Isolation of Steroid Mixture. Five specimens of Ptilosarcus gurn $\in y i$ were collected on August 6, 1974 off Sand City Beach, Calif., by dredging at $\sim 30 \mathrm{ft}$. The freshly collected specimens weighed 600 g whish reduced to 69 g after drying at $<50^{\circ} \mathrm{C}$. The dried sea pens were $\pm x t r a c t e d ~ t w i c e ~ w i t h ~ h e x a n e ~ a t ~ r o o m ~ t e m p e r a t u r e ~ t o ~ y i e l d ~ 4.2 ~$ g of extract. The entire hexane extract was dissolved in benzene and chromatographed on 100 g of Florisil ( $60-100$ mesh). A 1-L benzene fraction yielded 652 mg of high molec ular weight steryl esters. A subseguent 1-L ethyl acetate fraction yielded 984 mg of the sterols and more polar compounds. Rechromatography of the $984-\mathrm{mg}$ sample on 125 g of silica gel (60-230 mesh) utilizing $10 \%$ EtOAc/benzene as eluting solvent yielded 343 mg of sterols ( $R_{f}$ identical with cholesterol and stigmasterol) in fractions 48-54. Fractions 67-78 were combined to yield 21.8 mg of a more polar compound which was UV-visible and stained the same red color as the less polar sterols when sprayed with $10 \% \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} / \mathrm{H}_{2} \mathrm{SO}_{4}$ spray reagent. Acetylation ( $\mathrm{Ac}_{2} \mathrm{O} /$ pyr) of the material in fractions 67-78 and subsequent chromatography on thin-layer mesh silica gel yielded 10 mg of an acetylated product homoger.ous by TLC.
Gas chromatography of this acetylated material showed three peaks, labeled A, B, and C, with relative composition 20,80 , and $<1 \%$, respec ively. The NMR $(60 \mathrm{MHz})$ spectrum of this mixture displayed singlet signals at $\delta 3.70\left(-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ and $3.61\left(-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ in a relative ratio of $4: 1$. The ultraviolet spectrum (UV) exhibited a maximum at $\lambda 215 \mathrm{~nm}\left(\epsilon_{\max } \sim 7000, \mathrm{EtOH}\right)$ and the infrared spectrum (IR) had a strong absorption at $1710 \mathrm{~cm}^{-1}$.

Combined GC-MS indicated peaks A, B, and C were composed of two conponents each. GC-MS of peak A: $m / e 432$ and 430 (1:9); ${ }^{28}$ (70 eV ) m, e (rel intensity) $\mathrm{M}^{+} 432$ (3), no parent for 430 observed, 372 ( $19, \mathrm{M}^{+}-60$ ), 370 ( 100 , base peak $\mathrm{M}^{+}-60$ ), 357 ( $4 i, 355$ (15), 277 (2), 275 (3), 257 (3), 255 (10), 249 (18), 217 (5), 215 ( 10 ), 213 (9), 175 (5), 173 (5), 135 (17), 133 (10), 131 (8), 121 (13), 119 (12), 107 (18), 105 (15), 95 (18), 93 (14), 91 (17), 83 (13), 81 (27), 71 (11), 69 (19), 67 (15), 57 (21), 55 (32). GC-MS of peak B: $m / e 430$ and $428(3: 7) ;{ }^{28}(70 \mathrm{eV}) \mathrm{m} / \mathrm{e}$ (rel intensity) $\mathrm{M}^{+} 430$ (3), no parent for $4 \varepsilon 8$ observed, 415 (1), 384 (8), 382 (16), 370 ( $38, \mathrm{M}^{+}-60$ ), 368 ( 100 , base peak $\mathrm{M}^{+}-60$ ), 355 ( 8 ), 353 (10), 257 (34), 255 (8), 230 (6), 228 (5), 215 (19), 213 (10), 201 (11), 199 (6), 18? (12), 175 (12), 175 (8), 173 (10), 161 (25), 159 ( 20 ), 157 ( 9 ), 147 (39), 145 (27), 143 (9), 135 (20), 133 (25), 131 (14), 121 (27), 119 (23), 117 (9), 115 (9), 114 (55), 109 (21), 107 (42), 105 (32), 95 (33), 93 (35), 91 (30), 83 (11), 81 (52), 79 (29), 69 ( 17 ), 67 (28), 57 (12), 55 (36). GC-MS of peak C: $m / e 444$ and 442 ( $1: 1$ ):28 mass spectrum was very weak, cnly three discernable peaks $m / e 384\left(\mathrm{M}^{+}-60\right), 382\left(\mathrm{M}^{+}-60\right)$, 269.

One milligram of the peak B compounds was obtained by preparative GC on a $3 \% \mathrm{OV}-17$ column. The NMR ( 100 MHz ) spectral data are presented listing the signals of the major component first: $\mathrm{m} / \mathrm{e} 428$ component $\delta 6.91\left(1 \mathrm{H}, \mathrm{dd}, J=16\right.$ and $\left.9.5 \mathrm{~Hz},-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right)$, $5.78\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 5.36(1 \mathrm{H}, \mathrm{brt}, \mathrm{C}(6)$ olefinic proton), $4.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \propto\right.$ proton), $3.74\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, $2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}-\right), 0.99(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{C}(21)), 0.99(3 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(19)$ ), 0.65 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18)$ ); m/e 430 component $\delta \epsilon .89$ ( $1 \mathrm{H}, \mathrm{dd}, J=$ 16 and $\left.9 \mathrm{~Hz},-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 5.76(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$, $\left.-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 3.74\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.02(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{CO}_{2-}$ ), $0.99(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21$;), $0.80(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)), 0.62$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18)$ ).
(20R)-20-Hydroxymethyl-6 $\beta$-methoxy-3 $\alpha$,5-cyclo-5 $\alpha$-preg-
nane (6) and (20S - 20 -Hydroxymethyl-6 $\beta$-methoxy- $3 \alpha, 5-$ cyclo- $5 \alpha$-pregnane (7). The freshly prepared isomethyl ether aldehyde $5(2.0 \varepsilon 5 \mathrm{~g}, 6.12 \mathrm{nmol})$ was dissolved in 50 mL of $5 \% \mathrm{KOH} /$ MeOH and stirred at room temperature for 60 h . Periodic GC analysis displayed a gradual increase of a more mobile component which was $\sim 34 \%$ of the reaction m xture at workup. The reaction was worked up by removal of most of the MeOH under reduced pressure, water was added, and the aqueous layer was extracted thoroughly with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ extracts were combined, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ) and the solvent was removed to yield 1.04 g ( 3.14 mmol ) of a slightly yellow oil. The aqueous layer was acidified with concentrated HCl to ad ust the pH to 7 then to 4 . At each pH , the aqueous layer was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ extracts were treated in a similar fashion as above to yield 465 and 202 mg of material, respectively. The structures of the compounds obtained in the last two $\mathrm{Et}_{2} \mathrm{O}$ extra ts (primarily two compounds from NMR spectra) were not pursuec further. The oily residue from the first $\mathrm{Et}_{2} \mathrm{O}$ extract was dis $30 l v e d$ in 30 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ and added dropwise over a $0.5-\mathrm{h}$ period t ) a solution of 180 mg ( 3.1 mmol ) of lithium aluminum hydride $\left(\mathrm{LiAlH}_{4}\right)$ in 30 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. The ice bath was removed and stirring was continued at room temperatare for an additional hour. The excess $\mathrm{LiAlH}_{4}$ was destroyed by dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution. The clear dry $\mathrm{Et}_{2} \mathrm{O}$ solution was filtered from the inssluble aluminum salts and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removed under reduced pressure to yield 931 mg of a clear oily residue. TLC and GC of this resicue indicated a mixture of four compounds. This mixture was chromatographed on 60 g of thin-layer mesh silica gel employing $10 \%$ EtOf.c/hexane as solvent and ccllecting $15-\mathrm{mL}$ fractions. Fractions $26-3$ y yielded 67.3 mg of pure 8 , fractions $35-43$ gave 109 mg of pure 6 (honogenous by TLC and GC), fractions 53-55 provided 51.7 mg of pure 7 , and fraction 73 contained 5.2 mg of pure 9.

Pure 8 had: $P_{f} 0.43(20 \%$ EtOAc/hexane); NMR ( 100 MHz ) $\delta 3.70$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(208) \mathrm{H}), 3.31\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 2.77(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=3 \mathrm{~Hz}, \mathrm{C}(6)$ ~ proton), 1.12 ( $3 \mathrm{H} . \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21)$ ), 1.02 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)$ ), 0.79 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18)$ ), 0.70-0.3 ( $\mathrm{H}, \mathrm{m}$, cyclopropyl); mass spectrum ( 70 eV ) $m / e$ (rel intensity) $\mathrm{M}^{+} 332$ (54), 317 (53), 300 (76), 277 (100, base peak).

Pure 6 was obtained as a glass and had: $R_{f} 0.35(2(1 \% \mathrm{EtOAc} / \mathrm{hex}$ ane); $[\alpha]_{\mathrm{D}}+41.8^{\circ}\left(\mathrm{c} 2.65, \mathrm{CHCl}_{3}\right)$; NMR ( 100 MHz ) $\delta 3.60(2 \mathrm{H}, \mathrm{m}$, $\left.-\mathrm{CH}_{2} \mathrm{OH}\right), 3.30\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 2.77(1 \mathrm{H}, \mathrm{brt}, J=3 \mathrm{~Hz}, \mathrm{C}(6) \alpha$ pro ton), $1.00(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)), 0.93(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21)), 0.72(3 \mathrm{H}$, $\mathrm{s}, \mathrm{C}(18)), 0.7-0.3(3 \mathrm{H}, \mathrm{m}$ cyclopropyl): mass spectrum $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e}$ (rel intensity) $\mathrm{M}^{+} 346$ (48), 331 (53), 314 (65), 291 ( 100 , base peak).
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~J}_{2}: 346.28527$. Found: 346.28336.
Pure 7 was obtained initially as a viscous liquid which solidified on standing. A pocrly crystelline solid was obtained from hexane: mp $84.5-86^{\circ} \mathrm{C} ; R_{f} \mathrm{C} .28(20 \% \mathrm{EtOAc} /$ hexane $) ;[\alpha]_{\mathrm{D}}+51^{\circ}$ (c $\left.0.36, \mathrm{CHCl}_{3}\right)$ [lit. ${ }^{10 \mathrm{a}}[\alpha]_{\mathrm{D}}+47.8^{\circ}\left(\mathrm{c} 0.96, \mathrm{CHCl}_{3}\right)$ ]; NMR $(100 \mathrm{MHz}) \delta 3.50(2 \mathrm{H}, \mathrm{m}$, $\left.-\mathrm{CH}_{2} \mathrm{OH}\right), 3.30\left(3 \mathrm{H}, \mathrm{s},-\left(\mathrm{CH}_{3}\right), 2.77(1 \mathrm{H}, \mathrm{brt}, J=3 \mathrm{~Hz}, \mathrm{C}(6) \alpha\right.$ proton), $1.03(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21)$ ), $1.01(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)), 0.73(3 \mathrm{H}$, $\mathrm{s}, \mathrm{C}(18)), 0.7-0.3(3 \mathrm{H}, \mathrm{m}$, cyclopropyl); mass spectrum $(70 \mathrm{eV}) \mathrm{m} / \mathrm{e}$ (rel intensity) $\mathrm{M}^{+} 346$ ( 5 ) $), 331$ (54), 314 (72), 291 ( 100 , base peak).
Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{2}$ : 346.2852 . Found: 346.23383.
Pure 9 had: $R_{f} 0.25$ ( $20 \%$ EtOAc/hexane); NMR ( 100 MHz ) $\delta 3.70$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(20 \beta) \mathrm{H})$, $3.31\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 2.77(1 \mathrm{H}, \mathrm{br}$ t, $J=3 \mathrm{~Hz}, \mathrm{C}(6)$ $\alpha$ proton), 1.21 ( $3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21)$ ), 1.01 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)$ ), 0.70 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18)$ ), 0.7-0.3 ( $3 \mathrm{H}, \mathrm{m}$, cyclopropyl).
Compounds 7 and 9 could be more effectively separated by rechromatography on TLC-mesh silica gel employing $30 \% \mathrm{Et}_{2} \mathrm{O}$ /hexane as solvent.
Methyl (20S, 22E)-6 $\beta$-Methoxy-3 $\alpha, 5$-cyclo- $\alpha \alpha$-chol-22-enate (12). To 75 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (freshly distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ ) was added $2.40 \mathrm{~mL}(30.12 \mathrm{mmol})$ of dry pyridine (distilled from BaO and stored over $4-\AA$ molecular sieves! and $1.50 \mathrm{~g}(15.06 \mathrm{mmol})$ of $\mathrm{CrO}_{3}$. A deep burgundy solution ensued immediately to which was added in one portion $0.87 \mathrm{~g}(\varepsilon .51 \mathrm{mmol})$ of 6 in 10 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, whereby a tarry black precipitate appeared. The reaction mixture was stirred at room temperature for 15 min , the solution was decanted from the tarry black prec-pitate, ard the latter was washed twice with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ solution was removed under reduced pressure at $<35^{\circ} \mathrm{C}$ to yield an oily residue. TLC and GC analysis of the oily residue showed the complete disappearance of 6 and indicated the presence of a new compound (more mobile on TLC and GC) whose $R_{f}$ and GC retention time closely matched that for 5 . Since all indications pointed to the formation of the aldehyde ( 20 R ), the oily residue was dissolved in 75 mL of glyme (freshly distilled from $\mathrm{LiAlH}_{4}$ ) to which was add $\because \mathrm{d} 5 \mathrm{~g}(15 \mathrm{nmol})$ of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$. The reaction was stirred at room temperature for 17 days under an argon atmosphere. The glyme was thea removed under reduced pressure to yield
a solid residue which was partitioned between hexane and $75 \%$ $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$. The aqueous MeOH layer was thoroughly extracted with hexane, the hexane layers were combined and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ), and the hexane was removed under reduced pressure to yield 660 mg of the crude oily product. Chromatography on silica gel yielded 510 mg of pure 12 as a viscous liquid, homogeneous by GC and TLC.

Pure 12 had: NMR ( 100 MHz ) $\delta 6.91(1 \mathrm{H}, \mathrm{dd}, J=16$ and 9.5 Hz , $\left.-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 5.77(1, \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CHCH}=$ $\mathrm{CHCO}_{2} \mathrm{CH}_{3}$ ), $3.73\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.32\left(3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.77(1 \mathrm{H}$, br t, $J=3 \mathrm{~Hz}, \mathrm{C}(6) \alpha$ proton), $1.01(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)), 0.99(3 \mathrm{H}, \mathrm{d}, J=6$ $\mathrm{Hz}, \mathrm{C}(21)$ ), 0.69 (3 H, s, C(18)), 0.7-0.3 (m, cyclopropyl); mass spectrum ( 70 eV ) $\mathrm{M}^{+} 400$ (43), 385 (53), 368 (69), 345 (100, base peak).

Methyl ( 20 R,22E)-6 $\beta$-Methoxy-3 $\alpha, 5$-cyclo- $\alpha \alpha$-chol-22-enate 113). In a similar fashion to that described above, $42 \mathrm{mg}(0.12 \mathrm{mmol})$ of 7 was oxidized and immediately reacted with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$ in glyme. Workup of the Wittig reaction after 3 days resulted in only a $50 \%$ yield (TLC, GC, and NMR) of the $\alpha, \beta$-unsaturated ester 13 . The anreacted aldehyde was found to be inseparable from 13 on silica gel and was therefore removed by treatment with $\mathrm{NaBH}_{4}$ in MeOH at $J^{\circ} \mathrm{C}$. Subsequent silica gel column chromatography yielded 13.2 mg of pure 13, homogeneous by TLC and GC.
Pure 13 had: NMR ( 100 MHz ) $\delta 6.84(1 \mathrm{H}, \mathrm{dd}, J=16$ and 9.5 Hz , $\left.-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 5.73(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CHCH}=$ $\left.\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 3.71\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.32\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 2.76(1 \mathrm{H}$, br t, $J=3 \mathrm{~Hz}, \mathrm{C}(6) \alpha$ proton), 1.08 ( $3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{C}(21)$ ), 1.02 ( 3 H, s, C(19)), 0.75 (3 H, s, C(18)), 0.7-0.3 (3 H, m, cyclopropyl); mass spectrum $(70 \mathrm{eV}) \mathrm{m} / e$ (rel intensity) $\mathrm{M}^{+} 400(47), 385(51), 368$ (68), 345 (100, base peak).

Methyl ( $20 S, 22 E$ )-3 $\boldsymbol{\beta}$-Acetoxychola-5,22-dienate (1). To a solution of 508 mg of 12 in 50 mL of $p$-dioxane and 20 mL of $\mathrm{H}_{2} \mathrm{O}$ was added $\sim 50 \mathrm{mg}$ of $p-\mathrm{TsOH}$. The reaction mixture was heated to reflux for 0.5 h , cooled to room temperature, and analyzed by GC. The GC analysis indicated quantitative hydrolysis to the $3 \beta$-hydroxy $-\Delta^{5}$ functionality. At the addition of 30 mL of $\mathrm{H}_{2} \mathrm{O}$ a white solid precipitated which was collected on a filter. The NMR ( 60 MHz ) was consistent with the expected product. The white solid ( 97.4 mg ) was dissolved in 5 mL of $\mathrm{Ac}_{2} \mathrm{O}$ and 5 mL of pyridine and allowed to stand overnight. The excess of $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine were removed in vacuo to yield 95.4 mg of a slightly yellow solid. Recrystallization from MeOH yielded pure 1 as long needles: $\mathrm{mp} 151-151.5^{\circ} \mathrm{C}$.

Pure 1 had: $[\alpha]_{\mathrm{D}}-85^{\circ}$ (c $0.14, \mathrm{CHCl}_{3}$ ); UV $\lambda_{\max } 218 \mathrm{~nm}\left(\epsilon_{\max }\right.$ 13000 ); NMR ( 100 MHz ) 6.91 ( $1 \mathrm{H}, \mathrm{dd}, J=16$ and 9.5 Hz , $\left.-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 5.87(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CHCH}=$ $\mathrm{CHCO}_{2} \mathrm{CH}_{3}$ ), $5.38(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6)$ olefinic proton), $4.60(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}-\right), 3.74\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2-}\right), 1.00$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)$ ), $1.00(3 \mathrm{H}, \mathrm{d} . J=6 \mathrm{~Hz},(\mathrm{C}(21)), 0.65(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18)$ ); mass spectrum $(70 \mathrm{eV}) m / e$ (rel intensity) no parent ion observed, 397 (1), 369 (29), 368 (100, base peak), 353 (9), 255 (9), 215 (2), 213 (7), 199 (3), 197 (2), 187 (6), 185 (2), 173 (4), 171 (3), 161 (9), 159 (12), 157 (5), 147 (19), 145 (17), 143 (8), 133 (15), 131 (9), 121 (15), 119 (12), 114 (8), 107 (20), 105 (19). 93 (17), 91 (15), 81 (24), 79 (14), 67 (12), 55 (12), 43 (22), 41 (9).

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{O}_{4}$ : C, 75.66; $\mathrm{H}, 9.41$; mol wt $\mathrm{M}^{+}-60$, 368.26961. Found: C, 75.26; H, 9.37; mol wt (mass spectrum), 368.26770 .

The GC retention time of 1 was identical with peak $B$ of the steroid mixture ( $\mathrm{R}_{3}=\mathrm{Ac}$ ).
Methyl ( 20 R, 22 E)-3 $\beta$-Acetoxychola-5,22-dienate (16). Acidic hydrolysis ${ }^{13}$ and acetylation of 13 as described previously yielded 5.4 mg of 16. Recrystallization from MeOH gave pure 16: mp 151.5-152 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-54.3^{\circ}\left(\mathrm{c} 0.09, \mathrm{CHCl}_{3}\right) ; \mathrm{UV} \lambda_{\max } 210 \mathrm{~nm}\left(\epsilon_{\max } 16100\right)$; NMR $100 \mathrm{MHz}) \delta 6.87\left(1 \mathrm{H}, \mathrm{dd}, J=16\right.$ and $\left.9.5 \mathrm{~Hz},-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right)$, $5.76\left(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 5.36(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6)$ olefinic proton), $4.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}-\right), 3.74\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 2.03 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}-$ ), 1.08 (3 H, d, C(21)), $1.01(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)), 0.74$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18$ )); mass spectrum ( 70 eV ) m/e (rel intensity) no parent ion observed, 397 (1), 369 (29), 368 (100, base peak), 353 (7), 255 (10), 215 (2), 213 (7), 199 (3), 197 (2), 187 (5), 185 (2), 173 (4), 171 (3), 161 (8), 159 (11), 157 (5), 147 (18), 146 (16), 143 (6), 133 (14), 131 (8), 121 (14), 119 (10), 114 (8), 107 (19), 105 (17), 93 (15), 91 (13), 81 (23), 79 (12), 67 (11), 55 (12), 43 (19), 41 (8).

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{4}$ : C, 75.66 ; $\mathrm{H}, 9.41$; mol wt $\mathrm{M}^{+}-60$, 368.26961. Found: C, 75.28. H, 9.36 ; mol wt (mass spectrum), 368.26815.

The GC retention time of 16 was 2.4 min longer than that of 1 and peak B.

Methyl (20S)-3 $\beta$-Acetoxychol-5-enate (2). To a solution of 160 mg of 12 in 30 mL of EtOAc was added a small amount ( $\sim 5 \mathrm{mg}$ ) of $\mathrm{PtO}_{2}$. The contents of the reaction flask was placed in a hydrogen
atmosphere (at a slight positive pressure) overnight. The solution was filtered from the catalyst and the solvent was removed to yield an oily product. The NMR ( 60 MHz ) spectrum indicated complete reduction of the double bond. The oily product was dissolved in 10 mL of $p$ dioxane and 3 mL of $\mathrm{H}_{2} \mathrm{O}$ to which was added 15 mg of $p-\mathrm{TsOH}$ followed by heating to reflux for 15 min . The reaction flask was cooled to room temperature and GC analysis indicated quantitative solvolysis of the isomethyl ether functionality. The reaction was worked up as before to yield 113.4 mg of a white solid. This solid was dissclved in 2 mL of $\mathrm{Ac}_{2} \mathrm{O}$ and 2.0 mL of pyridine and allowed to stand overnight. The excess $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine were removed in vacuo to yield 115 mg of a slightly yellow -1id. Recrystallization from MeOH yielded pure 2 as rosettes of needles: $14 \rho 119-120^{\circ} \mathrm{C}$.

Pure 2 had $[\alpha]_{\mathrm{D}}-54 \pm 3^{\circ}\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$; NMR ( 100 MHz$) 5.39(1$ $\mathrm{H}, \mathrm{m}, \mathrm{C}(6)$ olefinic proton), $4.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}-\right), 3.68(3 \mathrm{H}, \mathrm{s}$, $-\mathrm{CO}_{2} \mathrm{CH}_{3}$ ), $2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2-}\right), 1.03(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)), 0.84(3 \mathrm{H}, \mathrm{d}$, $J=6 \mathrm{~Hz}, \mathrm{C}(21)$ ), $0.70(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18)$ ); mass spectrum ( 70 eV ) m/e (rel intensity) no parent ion observed, 371 (29), 370 ( 100 , base peak), 355 (16), 339 (5), 262 (10), 255 (15), 249 (27), 213 (14), 161 (12), 160 (11), 159 (14), 145 (35), 143 (26), 141 (11), 135 (10), 133 (15), 131 (11), 121 (18), 120 (16), 119 (15), 109 (11), 107 (26), 105 (23), 95 (18), 93 (21), 91 (17), 81 (29), 79 (14) 67 (17), 55 (24), 43 (23), 41 (11).
Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{4}$ : C, 75.31 ; $\mathrm{H}, 9.83$. Found: C, $75.26 ; \mathrm{H}$, 9.89 .

The GC retention time of 2 was identical with that of peak $A$ of the steroid mixture $\left(\mathrm{R}_{3}=A c\right)$.

Methyl (20R)-3 $\beta$-Acetoxychol-5-enate (17). Purchased from Steraloids and was not purified further: mp $159-161^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-45.2^{\circ}$ (c 0.55, $\mathrm{CHCl}_{3}$ ) $\left[\right.$ lit. $\left.{ }^{19}[\alpha]_{\mathrm{D}}-45^{\circ}\right] ;$ NMR $(100 \mathrm{MHz}) \delta 5.40(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6)$ olefinic proton), $4.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}-\right), 3.68\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 2.04 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}$ ) , 1.03 ( $3 \mathrm{H} . \mathrm{s}, \mathrm{C}(19)$ ), $0.94(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}$, $\mathrm{C}(21)), 0.69(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18))$; mass spectrum ( 70 eV ) $\mathrm{m} / \mathrm{e}$ (rel intensity) no parent ion observed, 371 (29), 370 (100, base peak), 355 (15), 339 (6), 262 (9), 255 (14), 249 (27), 213 (15), 161 (13), 160 (11), 159 (14), 147 (39), 145 (29), 143 (12), 135 (11), 133 (17), 131 (12), 121 (19), 120 (17), 119 (15), 109 (12), 107 (29), 105 (25), 95 (20), 93 (23), 91 (18), 81 (32), 79 (16), 67 (18), 55 (26), 43 (28), 41 (14).

The GC retention time of 17 was 1.2 min longer than that of 2 and peak $A$.

Methyl (20S)-3 $\beta$-Acetoxy- $5 \alpha$-cholanate (4). To a solution of 66.2 mg of 2 in 30 mL of EtOAc was added a small amount ( $\sim 5 \mathrm{mg}$ ) of $\mathrm{PtO}_{2}$. The vigorously stirred solution was placed in a hydrogen atmosphere (at a slight positive pressure) for 8 h . The solution was filtered from the catalyst and removed under reduced pressure to yield 65 mg of a white solid product. Recrystall:zation from MeOH yielded pure 4: $\operatorname{mp} 136-137.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+6.4^{\circ}\left(c 0.125, \mathrm{CHCl}_{3}\right)$; NMR ( 100 MHz ) $\delta 4.68$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}$ ) , $3.68\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.03(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}_{2^{-}}\right), 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)), 0.83(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21)), 0.68$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18)$ ); mass spectrum ( 70 eV ) m/e (rel intensity) $\mathrm{M}^{+} 432$ (11), 417 (1), 372 (97), 357 (24), 290 (20), 276 (13), 275 (19), 264 (9), 257 (5), 249 (3), 230 (35), 217 (26), 216 (40), 215 (100, base peak), 201 (16), 161 (13), 159 (10), 154 (10), 149 (18), 147 (49), 145 (20), 135 (18), 133 (17), 123 (19), 121 (29), 119 (23), 109 (25), 107 (43), 105 (25), 95 (43), 93 (39), 91 (20), 81 (51), 79 (27), 69 (18), 67 (32), 55 (42), 43 (44), 41 (21).

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{4}$ : C, 74.96; H, 10.25. Found: C, $75.06 ; \mathrm{H}$, 10.26.

The GC retention time of 4 was identical with that of peak $A$ of the steroid mixture ( $\mathrm{R}_{3}=A c$ ).

Methyl (20R)-3 $\beta$-Acetoxy- $5 \alpha$-cholanate (18). To a solution of 38 mg of 17 in 20 mL of EtOAc was added a small amount ( $\sim 5 \mathrm{mg}$ ) of $\mathrm{PtO}_{2}$. The vigorously stirred solution was placed in a hydrogen atmosphere (at a slight positive pressure) for 5.5 h . The solution was filtered from the catalyst and the solvent was removed under reduced pressure to yield 37.2 mg of a white solid product. Recrystallization from MeOH yielded pure 18 as rosettes of needles: mp $159-160^{\circ} \mathrm{C}$ (lit. ${ }^{19} \mathrm{mp} 155{ }^{\circ} \mathrm{C}$ ); $[\alpha]_{\mathrm{D}}+9.1^{\circ}\left(\mathrm{c} 0.66, \mathrm{CHCl}_{3}\right)$ (lit. $\left.{ }^{19}[\alpha]_{\mathrm{D}}+11.0^{\circ}\right)$; NMR $(100 \mathrm{MHz}) \delta 4.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}-\right), 3.68\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right) 2.03$ (3 H, s, $\left.\mathrm{CH}_{3} \mathrm{CO}_{2}-\right), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21)), 0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19))$, 0.66 (3 H, s, C(18)).

The GC retention time of 18 was 1.2 min longer than that of 4 and peak A .

Methyl (20S,22E)-3 $\beta$-acetoxy-5 $\alpha$-chol-22-enate (3). A solution of 566.2 mg ( 1.64 mmol ) of 6 in 6 mL of acetic anhydride $/ 6 \mathrm{~mL}$ of pyridine was allowed to stand at room temperature overnight. The excess acetic anhydride and pyridine were then removed in vacuo to yield a slightly yellow solid product. TLC and the ${ }^{1} \mathrm{H}$ NMR spectrum $(60 \mathrm{MHz})$ indicated quantitative acetylation of the $\mathrm{C}(22)$ hydroxy group.

To a solution of the crude acetate dissolved in 50 mL of $p$-dioxane $/ 20 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ was added 50 mg of $p$-toluenesulfonic acid mono-
hydrate. This solution was refluxed fo: 15 min then cooled to room temperature. GC analysis of the reaction solution indicated complete hydrolysis of the isomethyl ether group to the $3 \beta$-hydroxy- $\Delta^{5}$ functionality. Addition of 50 mL of $\mathrm{H}_{2} \mathrm{O}$ yielded a white precipitate which was collected by suction filtration and dried. The ${ }^{1} \mathrm{H}$ NMR $(60 \mathrm{MHz})$ spectrum was in excellent agreement with the expected structure: NMR ( 60 MHz ) $5.23(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6)$ olefinic proton), 4.17 ( $1 \mathrm{H}, \mathrm{dd}, J$ $=7$ and $\left.4 \mathrm{~Hz},-\mathrm{CHCH}_{3} \mathrm{CHHOAc}\right), 3.82(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\left.-\mathrm{CHCH}_{3} \mathrm{CHHOAc}\right), 3.52(1 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}-), 2.00\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2} \mathrm{O}-\right.$ $\left.\mathrm{COCH}_{3}\right), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)), 0.90(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21)), 0.70(3$ H, s, C(18)).
The crude 22 -acetoxy- $3 \beta$-hydroxy- $\Delta^{5}$ compound was hydrogenated in ethyl acetate solution with $\mathrm{PtO}_{2}$ in the usual manner and the crude product (no olefinic ${ }^{1} \mathrm{H}$ NMR signals; was dissolved in 55 mL of dihydropyran containing $150 \mu \mathrm{~L}$ of $\mathrm{POCl}_{3}$. After 3 h at room temperature the reaction mixture was poured onto an equal volume of $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, extracted with ether, washed with water, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ), and concentrated under reduced pressure to yield the $3 \beta$-tetrahydropranyl ether as a clear colorless liquid.

The crude oily liquid was dissolved in 75 mL of $5 \% \mathrm{KOH} / \mathrm{MeOH}$ and heated at reflux for 1 h . Isolation in the usual fashion yielded 530 mg of a slightly yellow solid, which provided pure 15 after recrystallization from MeOH: mp $154.5-157^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+32 \pm 1^{\circ}\left(\mathrm{c} 1.94, \mathrm{CHCl}_{3}\right)$; NMR ( 60 MHz ) $4.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{ROCHR}^{\prime} \mathrm{OR}^{\prime \prime}\right), 4.07-3.10(5 \mathrm{H}, \mathrm{m}$, protons $\alpha$ to oxygen atoms), $0.95(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21)), 0.80(3$ $\mathrm{H}, \mathrm{s}, \mathrm{C}(19)$ ), 0.67 (3 H, s, C(18)); mass spectrum ( 70 eV ) m/e (rel intensity) $\mathrm{M}^{+} 418$ (2), 317 (53), 299 (24), 85 (100, base peak).
Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{4}$ : $\mathrm{C}, 77.46 ; \mathrm{H}, 11.08$. Found: $\mathrm{C}, 77.20 ; \mathrm{H}$, 11.20.

The $\alpha . \beta$-unsaturated methyl ester sice chain was introduced into $15(100 \mathrm{mg}, 0.2 \mathrm{mmol})$ as described previously (i.e., 1 and 16 ). As in the case of 16 the Wittig reaction was worked up after 3 days resulting in 50.3 mg ( $45 \%$ yield) of the desired product whose NMR ( 60 MHz ) spectrum displayed signals at $6.83(1 \mathrm{H}, \mathrm{dd}, J=16$ and 9.5 Hz , $\left.-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 5.68(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CHCH}=$ $\mathrm{CHCO}_{2} \mathrm{CH}_{3}$ ), $3.67\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 0.98(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21))$, $0.79(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18)), 0.66(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18))$. Without further purification, the THP protecting group of the crude ester was hydrolyzed in 50 mL , of THF-AcOH- $\mathrm{H}_{2} \mathrm{O}(3: 2: 1)$ at $40^{\circ} \mathrm{C}$ overnight. Subsequent chromatography over thin-layer mesh silica gel resulted in 36.2 mg of a solid, homogeneous by TLC and GC, whose NMR spectrum ( 60 MHz ) was in accord with the expected trans- $\Delta^{22}-3 \beta$-hydroxy- $5 \alpha$ product. Acetylation ( $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{pyr}$ ) yielded $35 \mathrm{mg} \mathrm{o}_{2}^{2} 3$, which was recrystallized from MeOH to give long needles: $\mathrm{mp} 122-123^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}} 18 \pm 3^{\circ}$ (c 0.57 , $\left.\mathrm{CHCl}_{3}\right)$; UV $\lambda_{\max } 219 \mathrm{~nm}\left(\epsilon_{\max } 6500\right) ; \mathrm{NMR}(100 \mathrm{MHz}) \delta 6.89(1 \mathrm{H}$, $\mathrm{dd}, J=16$ and $\left.9.5 \mathrm{~Hz},-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 5.76(1 \mathrm{H}, \mathrm{d}, J=16$ $\left.\mathrm{Hz},-\mathrm{CHCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{2}\right), 4.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}-\right), 3.73(3 \mathrm{H}$, $\left.\mathrm{s},-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}_{2}-\right), 0.98(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C}(21))$, $0.80(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(19)), 0.62(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(18))$; mass spectrum ( 70 eV ) m/e (rel intensity) $\mathrm{M}^{+} 430$ (6), 415 (2), 370 (34), 257 (72), 215 (33), 201 (10), 175 (8i, 163 (9), 161 (22), 149 (20), 147 (34i, 135 (17), 133 (16), 123 (11), 121 (24), 119 (16), 114 (100, base peak), 109 (20), 107 (53), 105 (20), 95 (34), 93 (38), 91 (18), 81 (53), 79 (26), 69 (10), 67 (27), 55 (25), 43 (33), 41 (16).

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{4}$ : C, 75.31; $\mathrm{H}, 9.83$. Found: $\mathrm{C}, 75.18 ; \mathrm{H}$, 9.89 .

Preparation of $3 \beta, 20 \beta$-Diacetoxypregn-5-ene (10) from 8. To a solution of 42 mg of 8 in 5 mL of $p$-dioxane $/ 2 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ was added 5 mg of $p$-toluenesulfonic acid monhydrate. The reaction mixture was refluxed for 30 min . Precipitation with $\mathrm{H}_{2} \mathrm{O}$, filtration, and recrystallization from MeOH provided $3 \beta, 20 \beta$-dihydroxypregn-5-ene (11, $\mathrm{R}=\mathrm{H}$ ): mp $200-205.5^{\circ} \mathrm{C}$ (lit. $.^{14 \mathrm{a}} 200-201.5^{\circ} \mathrm{C}$ ). Acetylation yielded the corresponding diacetate ( $\mathrm{R}=\mathrm{Ac}$ ): $\mathrm{mp} 128.5-131^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-34 \pm$ $3^{\circ}$ (c $0.35, \mathrm{CHCl}_{3}$ ) [lit. ${ }^{14 \mathrm{c}} \mathrm{mp} 130-131^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-36 \pm 1^{\circ}$ (c 0.94 , $\mathrm{CHCl}_{3}$ )].

The ${ }^{1} \mathrm{H}$ NMR spectrum of $10(\mathrm{R}=\mathrm{Ac})$ derived from 8 was identical in all respects with that obtained for 10 derived from pregnenolone. The TLC and $R_{f}$ of 8 and $10(\mathrm{R}=\mathrm{H}$ or Ac ) were identical from both sources. No depression in the melting point was observed upon admixture of the two samples, $\mathrm{mp} 128.5-131^{\circ} \mathrm{C}$.

Preparation of $3 \beta, 20 \alpha$-Diacetoxypregn-5-ene (11) from 9. Identical treatment of 9 yielded the $20 \alpha$-epimer $11(\mathrm{R}=\mathrm{H})$, mp $177-179{ }^{\circ} \mathrm{C}$ (lit. ${ }^{14 \mathrm{a}} 177-178^{\circ} \mathrm{C}$ ), and upon acetylation the corresponding diacetate $11(\mathrm{R}=\mathrm{Ac})$ : $\mathrm{mp} 145-148^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-51.4^{\circ}$ (c 2.58, $\mathrm{CHCl}_{3}$ ) (lit. ${ }^{14 \mathrm{c}} \mathrm{mp} 145.5-146.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-53.8^{\circ}$ ). The ${ }^{1} \mathrm{H}$ NMR spectrum of $11(\mathrm{R}=\mathrm{Ac})$ derived from 9 was identical in all respects with that obtained for $11(\mathrm{R}=\mathrm{Ac})$ derived frcm pregnenolone. The TLC and $R_{f}$ for 9 and 11 ( $\mathrm{R}=\mathrm{H}$ and Ac ) were identical from both sources. An admixture of $11(\mathrm{R}=\mathrm{Ac})$ from 9 and pregnenolone gave an undepressed melting point: mp $144-147^{\circ} \mathrm{C}$.

Sea Pen Free Sterols. A $300-\mathrm{mg}$ sample of the free sterols obtained in fractions $48-54$ from the original sea pen isolation was chromatographed according to pujlished procedures ${ }^{3}$ on alumina ( 90 g , activity III). A small anount of nonsteroid material eluted from the column with $3 \% \mathrm{Et}_{2} \mathrm{O}$ /hexane. The $5 \% \mathrm{Et}_{2} \mathrm{O}$ /hexane fractions yielded three trace sterols with molecular ions at $m / e 372,382$, and 384 . The precise nature of these sterols is as yet unknown, but the presence of fragmentation at $m / e 283$ [ $\mathrm{M}^{+}-\left(\mathrm{H}_{2} \mathrm{O}+\right.$ side chain $\left.)\right]$ in the mass spectrum of the mie 372 sterol and fragments at $m / e 269$ and $271\left[\mathrm{M}^{+}-\right.$ ( $\mathrm{H}_{2} \mathrm{O}+$ side chain)] in the spectra of the $m / e 382$ and 384 sterols suggest a 4,4-dimethyl structure for the former and a 4 -methyl structure for the latter two compounds. Further elution of the column with $8 \% \mathrm{Et}_{2} \mathrm{O}$ /hexane yizlded virtually all of the material applied to the column for which GC-MS data indicated a mixture of seven sterols whose mass spectra exhibited molecular ions at $m / e 370,384,386$, $398,400,412$, and 414. N-ass spectral fragmentation patterns and GC retention tim $\in s$ relativ to authentic samples of cholesterol, stigmasterol, and the $P$. porosa sterols ${ }^{3}$ identified the above seven sterols as 24 -ncrcholesta-5, 22-dien-3-ol, 22,23-dehydrocholesterol, cholesterol, brassicasterol, canpesterol, stigmasterol, and sitosterol. The GC retention times further indicated that none of the "free" sterols had the 20 -iso stereochemistry. The "free" sterols found here and their relative ratios are essentially the same as those reported earlier. ${ }^{26}$

Registry No.-1, 63814-49-3; 2, 63814-50-6; 3, 65166-02-1; 4, 1178-02-5; 5, 25819-77-6; (20R)-5, 64783-80-8; 6, 65166-03-2; 7, 51231-23-3; 8, 65166-04-3; 9, 65166-05-4; $10(\mathrm{R}=\mathrm{H}), 901-57-5 ; 10(\mathrm{R}$ $=\mathrm{Ac}), 1913-46-8 ; 11(\mathrm{R}=\mathrm{H})$, 901-56-4; $11(\mathrm{R}=\mathrm{Ac}$, 1913-47-9; 12, 65166-06-5; 13, $56259-2-2 ; 14,65166-07-6 ; 15,65120-89-0 ; 16$, 63780-65-4; 17, 31823-ј3-7; 18, 1255-52-3; $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$, 2605-67-6; (20S)-3 $\beta$-hydroxy-20-acetoxymethylpregn-5-ene, 65120-90-3; dihydropyren, 110-87-2; methyl ( $20 S, 22 E$ )-3 $\beta$-tetrahy-dropyranyloxy-22 $\beta$-dehydro- $5 \alpha$-20-cholanate, 65120-91-4; methyl (20S,22F)-3 -hydroxy-22-dihydro- $5 \alpha, 20$-cholanate, 65166-08-7; methyl ( $20 S, 23 E$ )-3 $\beta$-hydroxy-5,6,22,23-didehydro-20-cholanate, 63780-68-7; methyl (20S)-3 $\beta$-hydroxy-20-cholanate, 63865-06-5; (21S)-3c, $5 \alpha$-cyclo-6 $\beta$-methoxy-21-acetoxymethylpregnane, 53139-4:-2.

## References and Notes

(1) (a) Financial support by the National Institutes of Health (Grant no. GM 06840) is gratefully acknowledged; (b) NIH Postdoctoral Fellow. 19761977.
(2) (a) L. J. Goad in "Biochemical and Biophysical Perspectives in Marine Biology". Vol. 3, D. C. Malins and J. R. Sargent, Ed., Academic Press, New York N.Y., 1976, pp 213-318; (b) J. T. Baker and V. Murphy, "Handbook of Marine Science, Compounds from Marine Organisms"', Vol. 1, CRC Press, Cleveland, Ohio, 1976.
(3) S. Pcpov, R. M. K. Carison, A. Wegmann, and C. Djerassi, Steroids, 28, 699 (1976).
(4) M. Kobayshi and H. Mitsuhashi, Steroids, 26, 605 (1975); also see A. G. Smith, I. Rubinstein, and L. J. Goad, Biochem. J., 135, 443 (1973).
(5) C. Djerassi, R. M. K. CarIson, S. Popov, and T. H. Varkony, "Marine Natural Products Chemistry"', D J. Faulkner and W. H. Fenical, Ed., Plenum Publishing Co., New York, N.Y., 1977, pp 111-123.
(6) D. J. Vanderah and C. Cjerassi, Tetrahedron Lett., 683 !1977).
(7) The 20 -epi steroids occur naturally as $3 \beta$-hydroxy comoounds $\left(\mathrm{R}_{3}=\mathrm{H}\right)$; however, the acetate derivative allowed easier purification and better gas chromatographic separation. Since the majority of the data was obtained on the acetate derivatives we synthesized 1-4 as the 33 -acetates.
(8) (a) W. R. Nes, T. E. Varkey, and K. Krevitz, J. Am. Chem. Soc., 99, 260 (1977); (b) W. R. Nes, T. E. Varkey, D. R. Crump, and M. Gat, J. Org. Chem., 41, 3429 (1976).
(9) G. D. Anderson, T. J. Powers, C. Djerassi, J. Fayos, and J. Clardy, J. Am Chem. Soc., 97, 388 (1775).
(10) (a) J. J. Partr dge, S. Faber, and M. R. Uskoković, Helv. Chim. Acta, 57, 764 (1974); (b) E. Steiner. C. Djerassi, E. Fattorusso, S. Magno. L. Mayol, C. Santacroce, and D. Sica, ibid., 60, 475 (1977).
(11) J. A. Steele and E. Mosettig. J. Org. Chem., 28, 571 (1963).
(12) W. G. Salmond and M. C. Sobala, Tetrahedron Lett., 1695 (1977).
(13) H. McKennis, Jr., J. Biol. Chem., 172, 313 (1948)
(14) (a) P. von Wiэland and F.: Miescher. Helv. Chim. Acta, 32, 1922 (1949); (b) W. Klyne and E. Miller, J. Chem. Soc., 1972 (1950); (c) R. B. Turner and D. M. Voitle, J. Am. Chen. Soc., 73, 2283 (1951); (d) J. Romo, G. Rosenkranz, and C. Djerassi, !. Org. Chem., 17, 1413 (1952).
(15) F. G. Bordwell, G. Scamehorn, and A. C. Knipe, J. Am. Chem. Soc., 92, 2172 (1970).
(16) (a) R. Ratcliff and R. Rocehorst, J. Org. Chem., 35, 4000 (1970); (b) J. C. Collins, W. W. Hess, and F. J. Frank, Tetrahedron Lett., 3363 (1968).
(17) O. Isler, H. Gutmann, M. Montavon, R. Ruegg, G. Ryser, and P. Zeller, Helv. Chim. Acta, 40, 1242 (1957).
(18) For double bond geometry ( $E$ ) based on the large NMR coupling constant $J_{A B}=16 \mathrm{~Hz}$, see ref 8 .
(19) D. H. Z. Barton and C. J. W. Brooks, J. Chem. Soc., 2596 (1949).
(20) J. J. Schneider, Tetrahedron, 28, 2717 (1972).
(21) C. H. Zobinson and P. Hofer, Chem. Ind. (London), 377 (1966).
(22) W. R. Nes and T. E. Varkey, J. Org. Chem., 41, 3429 (1976).
(23) T. A. Norwid, K. E. Cooney, and M. R. Uskokovie, Helv. Chim. Acta, 37, 771 (1974).
(24) E. N. Trachtenberg, C. Byon, and M. Gut, J. Am. Chem. Soc., 99. 6145 (1977).
(25) D. R. Idler, M. W. KhaliI, J. D. Gilbert, and C. J. W. Brooks, Steroids, 27,
(26) L. S. Ciereszko, M. A. Johnson, R. W. Schmidt, and C. B. Koons. Comp. Biochem. Physiol., 24, 899 (1968).
(27) Unpublished results from our laboratory
(28) Relative ratios determined from $M^{+}-60$ peaks in the mass spectra.

# Synthesis of dl-Gabaculine Utilizing Direct Allylic Amination as the Key Step 

Stephen P. Singer and K. Barry Sharpless*<br>Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received June 22, 1977


#### Abstract

Racemic gabaculine (2,3-dihydro-m-anthranilic acid) was synthesized from 3-cyclohexene-1-carboxylic acid in $23 \%$ overall yield (seven steps). The key reaction was a direct allylic amination of the tert-butyl 3 -cyclohexene-1carboxylate using bis( $N-p$-toluenesulfonyl)sulfodiimide. The positional selectivity could be influenced by steric factors with the $N, N$-dicyclohexylamine derivative giving amination almost exclusively in the j position. The effect of N -substitution on the electrochemical cleavage of allylic $p$-toluenesulfonamide compounds was investigated. While $N$-alkyl groups had little effect, $N$-acyl groups lowered the reduction potential by as much as 0.3 V .


An important aspect of the chemistry of sulfur(IV) and selenium(IV) imido compounds is the allylic amination of alkenes by bis( $N$ - $p$-toluenesulfonyl)sulfodiimide ${ }^{1,2}$ and bis( $N$ - $p$-toluenesulfonyl)selenodiimide. ${ }^{3}$ These reagents directly introduce a nitrogen, protected as the $N$ - $p$-toluenesulfonyl derivative, in an allylic position. In the past, the strategies used to create this type of functionality have relied on indirect, multistep operations. In view of the potential scope of this new reaction, it was decided to apply the allylic amination sequence to a total synthesis in order to demonstrate its overall utility.

Gabaculine (1) was first isolated from a culture filtrate of Streptomy ees toyocaenis subspecies 1039 by Mishima and co-workers in 1976. ${ }^{4}$ It was an optically active amorphous powder and was assigned the structure 1 on the basis of


1
physical and chemical data. This structure was confirmed by the total synthesis of the racemic compound (seven steps from methyl 2,5 -dihydrobenzoate, approximately $20 \%$ overall yield). ${ }^{4}$ Gabaculine is a subject of current biochemical interest since it is an inhibitor of $\gamma$-aminobutyrate aminotransferase. ${ }^{4}$ This enzyme, ${ }^{5,6}$ a member of the general class of aminotransferases, ${ }^{7}$ is directly involved in the metabolism of $\gamma$ aminobutyric acid (GABA), an important inhibitory transmitter substance in the nervous system. ${ }^{8,9}$ Recently, 1 was shown to be a specific irreversible inhibitor of $\gamma$-aminobutyrate aminotransferase. ${ }^{10}$
The allylic amine moiety in gabaculine (1) was an obvious attraction for us since it suggested that 1 might be easily constructed by a route involving direct allylic amination of a suitable cyclohexenyl precursor. According to this plan, our synthesis begins with 3 -cyclohexene-1-carboxylic acid (2). Acid 2 is commercially available and contains the complete carbon skeleton of gabaculine. It has two different allylic po-

[^2]sitions (carbons 2 and 5 ), but only amination at the 5 position will lead to 1 . It was felt that the positional selectivity could be controlled by esterification of the acid with a large, bulky group. Hopefully, this would disfavor the approach of the reagent toward the 2 position. Preliminary experiments involving the allylic amination reaction were carried out using the tert-butyl ester $3,{ }^{11}$ synthesized in $79 \%$ yield by the reaction of 2 with isobutylene under acidic conditions.



3
When 3 was added to a solution of $\mathrm{TsN}=\mathrm{S}=\mathrm{NTs}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C},{ }^{1}$ a slow reaction took place ( 5 days). Workup using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in aqueous MeOH afforded a white solid in yields ranging from $50 \%$ to $70 \%$. Although homogeneous by TLC, NMR spectra of this crude product showed two multiplets ( $\delta$ 3.9 and 4.1 in the ratio of $3: 1$ ) in the region where allylic hydrogens $\alpha$ to a $p$-toluenesulfonamido group are observed, as well as resonances due to two different tosyl groups in the aromatic region ( $\delta 7.2-7.9$ ). The minor isomer ( $\delta 4.1, \mathrm{mp}$ $120-121^{\circ} \mathrm{C}$ ) was isolated by repeated careful fractional recrystallization from $\mathrm{CHCl}_{3} /$ hexanes. In the same manner, the major isomer ( $\delta 3.9, \mathrm{mp} 83-84^{\circ} \mathrm{C}$ ) was isolated from the mother liquors. The minor isomer was assigned the structure 4 since irradation of the olefinic protons (in the presence of


4


5
$0.1 \mathrm{~N} \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O}$ ) caused collapse of the $\delta 4.1$ multiplet to a doublet ( $J=3.4 \mathrm{~Hz}$ ). The major isomer was assigned the structure 5. The analogous reaction using $\mathrm{TsN}=\mathrm{Se}=\mathrm{NTs}^{3}$ also gave a mixture of 4 and $5(45 \%$ yield) in the ratio of 1:1 (by NMR).


Although the relative stereochemistry of 4 and 5 are unimportant in terms of this particular synthesis, it is important from a mechanistic point of view and for general application to other complex cyclohexenyl systems. Allylic oxidation of conformationally fixed systems by the ene/( 2,3 ) rearrangement pathway preferentially involves the replacement of a pseudoaxial hydrogen by a pseudcaxial substituent. For example, reaction of either $\mathrm{SeO}_{2}{ }^{12}$ or $\mathrm{TsN}=\mathrm{Se}=\mathrm{NTs}^{3}$ with cholesterol results in the formation of the $4 \beta$ (axial) alcohol or sulfonamide, respectively. This preference for pseudoaxial hydrogens is a consequence of the need for maximum orbital overlap in the transition state of the ene reaction. ${ }^{13}$ Using this reasoning, the allylic sulfonamide 4 is predicted to be the cis and 5 the trans isomer.
The cis relationship in 4 was evident from the NMR decoupling experiments previously mentioned. The observed coupling constant ( $J=3.4 \mathrm{~Hz}$ ) is only consistent with the cis isomer; the corresponding trans compound should have $J=$ 10 Hz at the minimum. When 4 was treated with strong base (potassium tert-butoxide in THF) in an attempt to epimerize it to the presumably more stable diequatorial (trans) isomer, only $p$-toluenesulfonamide was isolated, probably originating from an antiperiplanar elimination of the axial sulfonamide moiety. The trans relationship in 5 was demonstrated by both NMR and chemical correlations. High-field NMR (270 $\mathrm{MHz})^{14}$ showed a symmetrical eight-line AB portion of an $\mathrm{ABXX}^{\prime}$ pattern (centered at approximately $\delta 2.1$ in ben-zene- $d_{6}$ ) for the $\mathrm{H}_{\mathrm{C}} / \mathrm{H}_{\mathrm{D}}$ methylene group in 5 . Irradiation at $\delta 4.05$ (the allylic proton $\alpha$ to sulfonamido group) caused a collapse of the multiplet to an "AB quartet" ( $J_{\mathrm{AB}}=11.77 \mathrm{~Hz}$ ) and $J_{\mathrm{BC}}$ and $J_{\mathrm{BD}}$ was determined as 6.62 Hz and 8.09 Hz , respectively. These values indicated that $\mathrm{H}_{\mathrm{B}}$ is pseudoequatorial and therefore, the sulfonamido group is pseudoaxial. The coupling constants involving $\mathrm{H}_{\mathrm{A}}$ could not be determined because of obscuring signals. Similar coupling constants were found in the assignment of stereochemistry for the products of Pd-catalyzed allylic alkylation of trans-3-acetoxy-5-carbomethoxycyclohexene. ${ }^{15}$ In an attempt to epimerize 5 to the diequatorial (cis) isomer, it was trea:ed with excess potassium tert-butoxide in THF. However, the only product isolated ( $74 \%$ yield, $\mathrm{mp} \mathrm{162-165}{ }^{\circ} \mathrm{C}$ ) was not the expected tert-butyl ester, but rather a carboxylic acid (6). This acid (6) was completely different from the carboxylic acid (7) formed from 5 by treatment with trifluoroacetic acid ( $76 \%, \mathrm{mp} 174-175^{\circ} \mathrm{C}$ ). However, treatment of 7 with excess potassium tert-butoxide in THF gave 6 in $61 \%$ isolated yield. When 6 was heated in $t$ - BuOH with a catalytic amount of $\mathrm{H}_{2} \mathrm{SO}_{4},\left(150^{\circ} \mathrm{C}\right.$, combustion tube) a tert-butyl ester different from 5 was formed; however, the extremely poor yield did not allow for complete purification and characterization of this compound.

The hydrolysis of 5 to the carboxylic acid 6 under these conditions is not without preceden:. Hydrolysis of hindered esters by potassium tert-butoxide has been known for many years, although the conditions needed are usually quite vig-

Table I

$+$

b

| X | Registry no. | Reagent | Equivalents | Totál yield | Ratio (b:a) ${ }^{a}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $-\mathrm{OCH}_{3}$ | 49543-03-5 | S | 1.2 | 80\% | 2:3b |
|  |  | Se | 1.25 | 49\% | $1: 1{ }^{\text {b }}$ |
| $\begin{aligned} & \text {-O-tert- } \\ & \text { Butyl } \end{aligned}$ | € 5121-09-7 | S | 1.25 | 70\% | 1:3 |
|  |  | Se | 1.25 | 45\% | 1:1 |
| -OCHPh, | 65121-10-0 | S | 5 | 50\% | 1:4 |
|  |  | Se | 5 | -.. c | -..- |
| $\begin{aligned} & \text { - 2,4,6-Trimethyl- } \\ & \text { phenol } \end{aligned}$ | 65121-11-1 | S | 5 | 40\% | 1:6 |
|  |  | Se | 5 | -..c | --.- |
| $-N, N$-Dicyclohexylamine | 65121-12-2 | S | 5 | 32\% | 1:20 |

${ }^{a}$ Ratio determined by NMR integration. ${ }^{b}$ Ratio confirmed by GisPC. ${ }^{c} \mathrm{~N}$ ) allylic sulfonamide could be isolated.
orous. ${ }^{16}$ A possible mechanism is base-catalyzed elimination of $t-\mathrm{BuOH}$ to form a ketene which is then trapped by KOH (normally fcund as an impurity in commercial potassium tert-butoxide). ${ }^{17}$


In order to improve the positional selectivity of the allylic amination reaction, a survey of different ester derivatives was undertaken (Table I). The compounds listed in Table I were all (except for the me-hyl ester) prepared by reaction of the acid chloride with the appropriate alcohol or amine. The isomer ratio in the product mixture (isolated by chromatography) was determined by NMR integration of the allylic sulfonamide protons (generally found around $\delta 4.0$ ). By analogy with compounds 5 and 6 , the signal at lower field was assigned

to the 2-p-toluenesulfonylamido isomer (b) and the upper field signal to the 5 isomer (a). Two trends can be observed in Table I; first the sulfur-based reagent is more sensitive to steric factors than the selenium reagent, and secondly, the

Table II. Methods for Cleavage of Sulfonamide Groups

| Method | Ref |
| :--- | :--- |
| Electrochemical | 23 |
| (a) Tetramethylammonium amalgam $/ \mathrm{MeOH}$ | 24 |
| (b) Pb cathode/ NaOH in aqueous methanol | 25 |
| (c) $\mathrm{DMF} / \mathrm{R}_{4} \mathrm{~N}^{+} \mathrm{X}^{-}$(controlled potential) | 23 |
| (d) $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{R}_{4} \mathrm{~N}^{+} \mathrm{X}^{-}$(controlled potential) | 26 |
| Scdium napthalene | 27,28 |
| Sodium bis(2-methoxyethoxy)aluminum hydride | 29 |
| Sodium-ammonia | 30 |
| HBr-phenol | 31 |
| Pyridine hydrochloride | 31 |
| 5C\% Sodium amylate | 31 |
| Concentrated HCl | 31 | isolated yield of product is reduced when the steric bulk is increased. In the case of the $N, N$-dicyclohexylamine derivative, the allylic amination can be directed almost exclusively to the 5 position; however, the yield of product is low. Because cf this and potential difficulties with the hyd=olysis of these very hindered compounds, it was decided to continue the synthesis with the tert-butyl ester 5.

Having 5 in hand, the next step was the introduction of $\alpha, \beta$-unsaturation in order to form the dienois ester system. The classical and still widely used procedure for this type of transformation is halogenation-dehydrohalogenation. However, in recent years alternative methods, based on phenyl selenoxide eliminations ${ }^{18,19}$ and on the related phenyl sulfoxide and methyl sulfoxide eliminations, ${ }^{20}$ have been developed.

The dianion of 5 was generated with a slight excess of lithium cyclohexylisopropylamide in THF at $-78{ }^{\circ} \mathrm{C} .{ }^{21}$ After quenching the enolate with 2 equiv of dry diphenyl diselenide, the resulting crude phenyl selenide (which was not isolated) was directly oxidized in THF at $0{ }^{\circ} \mathrm{C}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$. From the reaction, the tert-butyl ester of $N$ - $p$-toluenesulfonylgabaculine (8) was isolated in $82 \%$ yield as a white crystalline solid

imp $90-92{ }^{\circ} \mathrm{C}$ ). Only traces of aromatic compounds were found.

Removal of the tert-butyl ester from 8 was accomplished jy treatment with trifluoroacetic acid for 5 min at room semperature. ${ }^{22}$ Removal of volatile material under high vacudm gave $N$ - $p$-toluenesulfonylgabaculine (9) as a gummy

semisolid in quantitative yield. Unfortunately, all attempts at the recrystallization of 9 failed. In addition, 9 was somewhat thermally sensitive, decomposing to a dark, tarry material

Table III. Comparison of Reduction Potentials

Registry no. | $E_{1 / 2}\left(m^{2}\right.$ |
| :---: |
| $\mathrm{TEAB}^{a}$ in MeOH$)^{b}$ |

after about 1 day at room temperature. It was generally prepared as needed and used in crude form.

Only the cleavage of the $N-p$-toluenesulfonyl group of 9 remained in order to complete the synthesis of 1 . However, the lack of facile methods for the cleavage of sulfonamide groups has been a long-standing problem and many different approaches have been tried. Table II lists some of the methods. Because of the sensitive nature of the desired product, only the first two methods, electrochemical and sodium naphthalene, were considered worth trying.

When 9 was subjected to deprotection by either of these two methods under various conditions, no gabaculine was found. The only products which were isolated (in low yields) seemed by NMR to have one or both of the double bonds reduced. Similar treatment of 8 gave approximately the same results. The tert-butyl ester in 8 was stable to these reductive conditions.
In order to clarify the situation, the reduction potentials of 8 and 9 , as well as the saturated derivative 5 , were measured by polarography (Table III). The results indicate that the $\alpha, \beta$-double bond is the most easily reducible function present ( $E_{1 / 2}$ ranging from -1.73 to -2.12 V ). The sulfonamide group is apparently not reduced until much higher potentials (approximately -2.4 V ). This left two alternatives: (1) removal of the Ts group before the introduction of the $\alpha, \beta$ double bond and reprotection of the resulting amino group, or (2) lowering the reduction potential of the sulfonamide group below that of the double bond.
It is known ${ }^{26,32}$ that electron-withdrawing substituents on aromatic sulfonamide groups lower the reduction potential. Alternatively, almost nothing is known about the effects of substitutions on the nitrogen of a primary sulfonamide. Using $N$ - $p$-toluenesulfonylcyclohex-2-enamine ${ }^{3}$ as a model substrate, the reduction potentials of a number of N -substituted derivatives were measured (Table IV). The compounds were prepared by alkylation (or acylation) of the sodium salt (prepared from the allylic sulfonamide plus NaH ) in DMF with the appropriate reagent.
The use of an electron-withdrawing acyl group clearly reduces the reduction potential of the sulfonamide. The fact that the reduction wave is due to reduction of the Ts group was demonstrated by a preparative scale electrolysis of the $N$ -tosyl-tert-butoxycarbonyl derivative at -2.1 V ( 0.2 M TEAB in MeCN ). The only products isolated were the carbamate 10 ( $78 \%$ yield) and the starting allylic sulfonamide ( $22 \%$ ). Unfortunately, the reduction potential of the sulfonamide was


10
still higher than the $\alpha, \beta$ double bond, so it jecame necessary to remove the protecting group before the unsaturation was introduced.
In an attempt to prepare the $t$-BOC derivative of 5 , a $20 \%$ $4 / 80 \% 5$ mixture was subjected to 1.2 equiv of NaH in DMF, followed by 1.5 equiv of tert-butcxycarbonyl azide. ${ }^{33}$ After heating at $70^{\circ} \mathrm{C}$ for a few hours, the only product formed was 11 ( $100 \%$ based on 5 ) while 4 was recovered ( $90 \%$ based on 4 ).


11
These products were easily separated by column chromatography and so allowed for a convenient method of removing the "wrong" isomer without the need for a fractional recrystallization (and consequent loss of material).

The $N$-tosyl carbamate 11, a yellow oil, had an $E_{1 / 2}=-2.06$ V. Preparative scale controlled potential electrolysis at -2.1 V ( $0.2 \mathrm{M} \mathrm{TEAB} / \mathrm{MeCN}$ ) gave, in analogy to the model compound, two products: the desired alylic carbamate 12 and the

starting allylic sulfonamide 5 . The isolated yields depended on concentration and time of reaction, ranging from $76 \% 12$ and $12 \% 5(2.4 \mathrm{~g}$ of 11 in 100 mL of electrolyte, 3 h ) to $64 \% 12$ and $28 \% 5(15.0 \mathrm{~g} 11 \mathrm{in} 300 \mathrm{~mL}$ of electrolyte, 15 h$)$. Although the origin of 5 was uncertain, one possible explanation was that the strong bases generated during the reduction cause the hydrolysis of the tert-butoxycarbonyl group. Addition of excess phenol ( 5 equiv) to act as a proton source ${ }^{26}$ during the electrolysis prevented the formation of 5 and improved the yield of 12 . However, the isolated yields were still variable, ranging from $80 \%$ ( 4.8 g of 11 in 100 mL of electrolyte, 6 h ) to $92 \%$ ( 0.6 g of 11 in 100 mL of electrolyte, 1.5 h ).

The advantage of using a tert-butoxycarbonyl derivative in the previous reactions lies in its facile hydrolysis under mild acidic conditions, which allows it to be removed at the same time as the tert-butyl ester. Because of their acid sensitivity, $t-B C C$ protecting groups have found much use in peptide chemistry. ${ }^{34}$
Wien 12 was subjected to the same reaction sequence (phenyl selenoxide elimination ${ }^{18,19}$ ) employed to dehydrogenate 5 to 8 , none of the corresponding diene 13 was found. The problem did not lie in the formation of the dianion (formed at -60 to $-65{ }^{\circ} \mathrm{C}$ ) nor in the quenching with diphenyl diselenide since the selenylated product was formed in good yield. Oxidation of the crude $\alpha$-phenyl seleno ester by various mettods ( $\mathrm{H}_{2} \mathrm{O}_{2}$ in THF, $\mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pyridine, $\mathrm{NaIO}_{4}$ in $\mathrm{CH}_{3} \mathrm{OH}$ and Chloramine-T under phase transfer conditions) gave only complex mixtures of products.

Since the phenyl selenoxide route did not seem viable for the formation of 13 , the dianion was alternatively quenched

Table IV. Effect of N -Substitution on Reduction Potentials

| Registry no. | $E_{1 / 2}(0.2 \mathrm{M}$ <br> TEAB <br> $\mathrm{MeCN})^{b}$ |  |
| :--- | :--- | :--- |
| -H | $65121-16-6$ | -2.31 V |
| $-\mathrm{CH}_{3}$ | $65149-42-0$ | -2.30 V |
| $-\mathrm{CH}_{2} \mathrm{P}_{2}$ | $65120-92-5$ | -2.29 V |
| $-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}(\mathrm{Ac})$ | $65120-93-6$ | -1.91 V |
| $\left.-\mathrm{C}(=\mathrm{O}) \mathrm{OC}_{1} \mathrm{CH}\right)_{3}(t-\mathrm{BOC})$ | $65120-94-7$ | -2.06 V |
| $a$ TEAB $=$ tetraethylammonium bromide. $b$ Vs. calomel |  |  |
| refererce electrodes. |  |  |

with iodine by the method of Rathke and Lindert. ${ }^{35}$ The resulting crude $\alpha$-iodo ester was then treated with base in benzene at room temperazure to give 13 in $90 \%$ isolated yield. The

only other product isolated ( $9 \%$ ) was the 2,5 -dihydrobenzene derivative 14, which was unstable in the presence of air and

quickly ( 10 rin at room temperature) aromatized to the corresponding $m$-anthranilate ester 15 . Of the various bases tried (DBU, Dabco, and $\mathrm{Et}_{3} \mathrm{~N}$ ), Dabco (diazobicyclo[2.2.2]octane) gave the highest yield and cleanest product mixture. GLPC analysis showed less than $1 / 2 \%$ of 5 present in 13 , which was a white crystal-ine solid, mp $99-101^{\circ} \mathrm{C}$.

The protecting grocps of 13 were best removed by distilled trifluoroacetic acid urder strictly oxygen-free conditions for 2 min followed by removal of the volatile material under high vacuum. The residue 16 (the trifluoroacetate salt of 1 ) was

generally not :solated, sut dissolved in $\mathrm{H}_{2} \mathrm{O}$ and directly eluted through an ion-exchange resin. Use of undistilled $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ under the same concitions caused some aromatization to $m$-anthranilic acid.

Use of the cation-exchange resin SP Sephadex C-25 (used




$a$ (i) Isobutylene, $\mathrm{H}_{2} \mathrm{SO}_{4}$, ether, $25^{\circ} \mathrm{C}$; (ii) (a) 1.2 equiv of $\mathrm{TsN}=\mathrm{S}=\mathrm{NTs}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}$; (b) $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $60 \% \mathrm{CH}_{3} \mathrm{OH}-$ $\mathrm{H}_{2} \mathrm{O}$, (iii) (a) NAH, DMF, $25{ }^{\circ} \mathrm{C}$; (b) teri-BOC azide; (iv) electrolysis ( -2.1 V ) in 0.2 M TEAB in MeCN ; (v) (a) 3.6 equiv of lithium cyclohexylisopropylamide, $\mathrm{THF},-78^{\circ} \mathrm{C}$; (b) $\mathrm{I}_{2}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$; (c) DABCO, benzene, $25^{\circ} \mathrm{C}$; (vi) $\mathrm{CF}_{3}$. $\mathrm{CO}_{2} \mathrm{H}$; (vii) ion-retarding resin.
by Mishima to isolate 1 from the HCl salt ${ }^{4}$ ) or the related Dowex AG50W-X8 (Bio-Rad Laboratories) to isolate 1 was not totally satisfactory. When a solution of $2 \% \mathrm{NH}_{4} \mathrm{OH}$ was added in order to remove 1 from the resin, a dark brown, fluorescent impurity was formed which was difficult to separate from the gabaculine. The amount of this impurity was probably small since no peaks other than those of 1 were visible in the NMR spectra. The use of AG11A8 ion-retardation resin (Bio-Rad Laboratories) ${ }^{36}$ gave much better results, since ammonium hydroxide was not necessary to remove 1 from the resin. Lyophilization of the appropriate fractions (identified by TLC with visualization by UV and ninhydrin test) gave $d l$-gabaculine (1) as an amorphous off-white powder in $68 \%$ yield from 13. This material, mp $194-196{ }^{\circ} \mathrm{C}$ dec (after recrystallization from aqueous $\mathrm{MeOH}, \mathrm{lit} .{ }^{4} \mathrm{mp} 196-197^{\circ} \mathrm{C}$ dec) gave NMR, IR, and UV data consistent with the published values. The TLC behavior was identical with an authentic sample. A small sample of 1 was treated with HCl gas in MeOH at $0^{\circ} \mathrm{C}$ to give dl -gabaculine hydrochloride salt, mp $195-199{ }^{\circ} \mathrm{C}$ dec (lit. $.^{4} \mathrm{mp} 198-200^{\circ} \mathrm{C}$ dec) which gave an undepressed melting point upon admixture with an authentic sample of the racemic hydrochloride obtained from Mishima.

A summary of the exact route used to synthesize dl-gabaculine (1) is shown in Scheme I. This synthesis is comparable to Mishima's ${ }^{4}$ both in terms of length and overall yield. Nei-
ther is without fault, particularly in the area of positional selectivity. However, one advantage of this synthesis is that the starting material, 3-cyclohexene-1-carboxylic acid, has been resolved via the brucine salt into the $R$ and $S$ enantiomers. ${ }^{37}$ Although this has not been done, use of the optically active cyclohexene carboxylic acid 2 should lead to optically active gabaculine. Since only $l$-gabaculine is active toward $\gamma$-aminobutyrate aminotransferase, ${ }^{4}$ this will have the effect of increasing the overall yield of the active agent.

## Experimental Section

General Comments. Elemental microanalyses were performed by Midwest Microlab, Ltd. (Indianapolis, Ind.) and by Robertson Laboratory (Florham Park, N.J.). Melting points were determined on a Thomas-Hoover capillary melting point apparatus and are uncorrected, as are the boiling points.

In general, reagent grade solvents were used without further purification. Tetrahydrofuran and benzene were always freshly distilled from purple sodium-benzophenone solutions under nitrogen. Chlorinated solvents (methylene chlor:de, chloroform, carbon tetrachloride) were used after passage through alumina and storage over $4 \AA$ molecular sieves. All oxygen or water sensitive reactions were carried out under a dry nitrogen atmosphere in flame-dried glassware (this will be called "anhydrous" conditions). Organic extracts of reaction mixtures were dried over anhydrous magnesium sulfate unless noted otherwise. Evaporation refers to removal of solvent under water aspirator pressure on a roto-vac (bath temperature $<30^{\circ} \mathrm{C}$ ).

The following abbreviations will be used: $t_{\mathrm{r}}=$ GLC retention time under the specified conditions and $R_{f}=$ TLC mobility relative to the solvent front ( $=1$ ).

Tetraethylammonium bromide (Eastman Organic Chemicals) was recrystallized from $\mathrm{CHCl}_{3} / \mathrm{CCl}_{4}$ and dried at $110{ }^{\circ} \mathrm{C}$ under vacuum for 12 h . Spectra-grade acetonitrile (stored over $4 \AA$ sieves) was used for the electrochemical experiments (approximately the same results were found using acetonitrile which had been distilled first from $\mathrm{CaH}_{2}$ and then from $\mathrm{P}_{2} \mathrm{O}_{5}$ ).

All ion-exchange resins were washed and prepared according to the manufacturer's instructions before use.

Polarographic measurements were made using a Princeton Applied Research Model 174A Polarographic Analyzer and a standard divided polarographic cell. Connection with the reference electrode (Corning Calomel catalog 476000 ) was by an Agar bridge (3-5\% Difco BactoAgar in $1: 1$ saturated $\mathrm{KCl} /$ distilled $\mathrm{H}_{2} \mathrm{O}$ ). Solutions (genera:ly $10^{-2}$ to $10^{-3} \mathrm{M}$ ) were deaerated by a $\mathrm{N}_{2}$ stream for at least 3 min . Using 0.2 M TEAB in MeCN, the solvent discharge potential was -2.9 V .
Controlled potential electrolysis was performed using a Princeton Applied Research Model 371 potentiostat-galvanostat. Triply distilled Hg was used for the working electrode (cathode) and either a graphite rod or a Pt wire wrapped with Pt gauze for the counterelectrode (anode). The cell was divided by means of an unglazed, porous porcelain cup (Coors No. 70004) which had been previously extracted with refluxing acetone and then dried at $110^{\circ} \mathrm{C}$ under vacuum. The electrolysis cell was flushed with a slow stream of $\mathrm{N}_{2}$ and, before the addition of substrate, preelectrolyzed at a potential 100 mV more negative than the desired potential.
tert-Butyl 3-Cyclohexene-1-carboxylate (3). Isobutylene was condensed at $-78^{\circ} \mathrm{C}$ (dry ice/isc propyl alcohol bath) in a $100-\mathrm{mL}$ three-necked round-bottomed flask equipped with a dry ice condenser. Approximately $30-40 \mathrm{~mL}$ was transferred by cannala to a precooled Fisher-Porter pressure bottle containing $10.0 \mathrm{~g}(79.4 \mathrm{mmol})$ of 3 -cyclohexene-1-carboxylic acid (Frinton Labs.) and 1 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 20 mL of ether. The reaction vessel was sealed and allowed to warm to room temperature. After 14 h of stirring (magnetic), the pressure bottle was opened slightly (caution!) and the excess isobutylene was allowed to evaporate. After neutralizing the residue with $\mathrm{NaHCO}_{3}$ (cooling was necessary), it was taken up in ether, which was washed twice with bicarbonate and once with brine, and dried. Filtration and evaporation afforded 13.94 g of a yellowish oil which was distilled (bp $44-46^{\mathrm{c}} \mathrm{C}$ at 0.6 Torr) to give 11.38 g ( $79 \%$ ) of tert-butyl 3-cyclohexene-1-carboxylate as a clear oil: IR (film) 3030, 2980, 2930, 1730 (ester), 1475, 1455, 1435, 1390 (tert-butyl), 1370 (tert-butyl), 1310, 1230, 1160 (ester). 1000, 850 and $650 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.65(2 \mathrm{H}$, broad s, olefinic), $2.4-1.8(7 \mathrm{H}, \mathrm{m}$, ring H$)$ and 1.45 ( $9 \mathrm{H}, \mathrm{s}$, tert-butyl). This reaction has been run on scales up to 35 g ( 0.28 mol ) of acid with comparable results.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ : C, $72.49 ; \mathrm{H}, 9.95$. Found: $\mathrm{C}, 72.40 ; \mathrm{H}$, 10.10.

Preparation of $\operatorname{Bis}(\boldsymbol{N}$-p-toluenesulfonyl)sulfodiimide
(TsN=S=NTs) from $\quad N$-Sulfinyl-p-toluenesulfonamide ( $\mathbf{T s N}=\mathbf{S}=\mathbf{O}$ ). The $N$-sulfinyl- $p$-toluenesulfonamide used here was prepared by a modification of Kresze's ${ }^{38}$ procedure; the details of our mod:fied method are given in the accompanying paper ${ }^{39}$ in this issue.
The following preparation of $\mathrm{TsN}=\mathrm{S}=$ NTs follows Kresze's procedure. ${ }^{38} N$-Sulfinyl- $p$-toluenesulfonamide ( $98 \mathrm{~g}, 0.45 \mathrm{~mol}$ ) was dissolved in 100 mL of dry benzene under a dry nitrogen atmosphere in a glovebag (due to the great moisture sensitivity of the product all of the following operations should be carried out under a dry atmosphere in a glovebag or a drybox). Dry pyridine ( 0.75 mL ) was added, and the loosely stoppered (to allow for $\mathrm{SO}_{2}$ evolution) flask was allowed to stand overnight in the glovebag with a slight flow of nitrogen passing through the bag. The sulfodiimide precipitated and was collected by filtration (in the glovebag). The yellow solid was washed twice with small portions of dry carbon tetrachloride and then dried under high vacuum to afford 75 g ( $90 \%$ ) of $\operatorname{bis}(N$ - $p$-toluenesulfonyl)sulfodiimide, $\mathrm{mp} 43-45^{\circ} \mathrm{C}$ (lit. ${ }^{38} \mathrm{mp} 48-50^{\circ} \mathrm{C}$ ). This compound is extremely sensitive to moisture and should be stored in a desiccator and handled only in the dry atmosphere of a glovebeg or a drybox.

Reaction of TsN $=\mathbf{S}=\mathbf{N T}$ Ts with 3. Preliminary Experiment. tert-3utyl 3-cyclohexene-1-carboxylate ( $0.91 \mathrm{~g}, 5 \mathrm{mmol}$ ) was added to a stirred solution of $3.45 \mathrm{~g}(9.3 \mathrm{mmol})$ of $\mathrm{TsN}=\mathrm{S}=\mathrm{NTs}$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a $50-\mathrm{mL}$ round-bottomed flask under anhydrous conditions. After 3 days at room temperature, the dark reaction mixture was concentrated to a thick oil which was redissolved in 25 mL of $60 \%$ $\mathrm{CH}_{3} \mathrm{OH}$ containing 3.0 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$. After stirring overnight, the yellowish solution was taken up in 1:1 EtCAAc/ether which was washed once with $1: 14 \% \mathrm{NaOH} /$ brine and brire, and dried. Filtration and evaporation left 2.02 g of yellowish oil which was purified by column chromatography ( 75 g of silica gel; eluted with EtOAc/hexane mixtures). After concentration of the appropriate fractions, 1.1 g (63\%) of a pale yellow oil [ $R_{f}(35 \% \mathrm{EtOAc} /$ hexanes $)=0.56$ ] was recovered. NMF showed the product to consist of a mixture of two compounds (see text).
Rejeated recrystallization from $\mathrm{CHCl}_{3} /$ hexanes produced a pure sample of one of the isomers which was identified as cis-tert-butyl 2-(p-toluenesulfonamido)-3-cyclohexene-1-carboxylate (4), mp $120-121^{\circ} \mathrm{C}$ : IR (KBr) 3170 (N-H), 2980, 1695 (H-bonded ester), 1595, 1455, 1390 (tert-butyl), 1370 (tert-butyl), $1340\left(\mathrm{SO}_{2}\right), 1310,1160$ $\left(\mathrm{SO}_{2}\right), 1075$ and $920 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.2-7.9(4 \mathrm{H}, \mathrm{q}$, aromatic), 5.4 ar.d $5.75(2 \mathrm{H}, \mathrm{m}$, olefinic), $4.95(1 \mathrm{H}, \mathrm{d}, \mathrm{N}-\mathrm{H}), 4.1$ ( $1 \mathrm{H}, \mathrm{m}$, allylic $\mathrm{R}_{2} \mathrm{CFN}$ ), $2.45\left(3 \mathrm{H}, \mathrm{s}\right.$, aromatic $\left.-\mathrm{CH}_{3}\right), 1.8-2.4(5 \mathrm{H}$, m, ring H$)$ and 1.45 ( $Э \mathrm{H}, \mathrm{s}$, tert-butyl). When the olefinic proton at $\delta 5.4$ was irradiated $1 \mathrm{CDCl}_{3}$ containing $0.1 \mathrm{~N} \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O}$ ), the $\dot{o} 4.1$ multiplet collapsed to a doublet, $J=3.4 \mathrm{~Hz}$. Irradiation at approximately $\delta 2.4$ caused the same multiplet to collapse to a doublet, $J=7 \mathrm{~Hz}$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 61.51 ; \mathrm{H}, 7.17 ; \mathrm{N}, 3.98$. Found: C, 61.41: H, 7.16; N, 3.70.

Concentration of the mother liquors from above and further recrystallization ( $\mathrm{CHCl}_{3} /$ hexanes) gave the second isomer which was identified as trans-tert-butyl 5-( $p$-toluenesulfonamido)-3-cyclo-hexere-1-carboxylate (5), mp 83-84 ${ }^{\circ} \mathrm{C}$ : IR (KBr) 3280 (NH), 2980, 1710 :ester), $1595,1450,1390$ (tert-butyl), 1370 (tert-butyl), 1340 $\left(\mathrm{SO}_{2}\right), 1310,1160\left(\mathrm{SO}_{2}\right), 1080$ and $820 \mathrm{~cm}^{-1}$ : NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.2-7.9$ ( $4 \mathrm{H}, \mathrm{q}$, aromatic), 5.35 and $5.75(2 \mathrm{H}, \mathrm{m}$. olefinici, $5.0(1 \mathrm{H}, \mathrm{d}, \mathrm{NH})$, 3.9 ( $1 \mathrm{H}, \mathrm{m}$, allylic $\mathrm{R}_{2} \mathrm{CHN}$ ), 2.45 ( 3 H , s, aromatic - $\mathrm{CH}_{3}$ ), 1.8-2.4 (4 $\mathrm{H}, \mathrm{m}$, ring H) and 1.45 ( $9 \mathrm{H}, \mathrm{s}$, tert-butyl).
Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 61.51 ; \mathrm{H}, 7.17$; $\mathrm{N}, 3.98$. Found: C, 61.63; H, 7.24; N, 3.88.

Reaction of $\mathbf{T s N}=\mathbf{S e}=\mathbf{N T s}$ with 3. Preliminary Experiment. The selenium diimide reagent ( 7.5 mmol ) was prepared by stirring a mix:ure of 0.69 g of selenium metal ( 8.7 mmol ) and 3.42 g of anhydrous chloramine- $\mathrm{T}(15 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 20 h . tert-Butyl 3-cyclohexene-1-carboxylate $10.91 \mathrm{~g}, 5$ mmol ) was added to the resulting white slurry. After 2 days. the dark reaction mixture was quenched with $1: 14 \% \mathrm{NaOH} / \mathrm{brine}$. EtOAc/ ether ( $1: 1$ ) was added and both phases were filtered through Celite. The organic phase was separated, wash $\rightleftharpoons d$ once with $1: 14 \% \mathrm{NaOH} /$ brine and brine, and dried. Filtration anc evaporation afforded about 3 g of crude product which was purified by column chromatography (as previously described) to give 790 mg (after 2 h in vacuo, $45 \%$ ) of a slightly yellow oil. NMR integration of the multiplets at $\delta 4.1$ and $\delta 3.9$ showed an approximate ( $\pm 10 \%$ ) 1:- mixture of 4 and 5 .

Allylic Amination of tert-Butyl 3-Cyclohexene-1-carboxylate (3). Best Conditions. tert-Butyl 3-cyclohexene-1-carboxylate (3) $(27.5 \mathrm{~g}, 0.151 \mathrm{~mol})$ was added to a stirred solution of 80.0 g of $\mathrm{TsN}=\mathrm{S}=\mathrm{NTs}(0.216 \mathrm{~mol})$ in 300 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a $500-\mathrm{mL}$ roundbottomed flask under anhydrous conditions. After 8 days at room temperature, the reaction mixture was concentrated and the residue
was redissolved in 300 mL of $\mathrm{CH}_{3} \mathrm{OH}$. Water ( 200 mL ) was added followed by 70 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in three portions. After 16 h , the reddish solution was tasen up in 350 mL of 1:1 EtOAc/ether which was washed twice with $1: 14 \% \mathrm{NaOF}$ /brine and once with brine, and dried. Filtration and evaporation gave a dark red-yellow oil which was passed through a plug of silica gel ( 80 g ) with $15 \% \mathrm{EtOAc} /$ hexanes. Concentration of the filtrate gave 49.6 g of crude product. Trituration with 200 mL of cyclohexane while cooling (crystallization was usually induced by scra:ching or with seed crystals) afforded 33.33 g (after drying in vacuc) of a mixture of 4 and 5 ( $63 \%$; by NMR, $20 \% 4$ and $80 \%$ 5), $\mathrm{mp} 89-95^{\circ} \mathrm{C}$.

The mother liquors fr.om above were concentrated and chromatographed on 200 g of silica gel (packed with hexanes; eluted with 500 mL of hexanes. $5 \% \mathrm{EtOA} \mathrm{c} /$ hexanes, then 2 L of $10 \% \mathrm{EtOAc} /$ hexanes; 100 mL fracticns). Comjination of appropriate fractions and evaporation afford $\epsilon \mathrm{d} 5.9 \mathrm{~g}$ of a red-yellow oil. Recrystallization from cold cyclohexane as above gave an additional 4.03 g of the same mixture of 4 and 5 (total overall yield of the mixture of isomers $70 \%$ ).

Reaction of 5 with Fotassium tert-Butoxide. Potassium tertbutoxide ( $360 \mathrm{mg}, 3.2 \mathrm{mmol}$, Aldrich Chemical Co.) was added to a stirred solution of $200 \mathrm{mg}(0.57 \mathrm{mmol})$ of 5 in 10 mL of THF in a two-necked, round-bottoned flask under anhydrous conditions. After 36 h at room temperatur2, water was added and the reaction mixture acidified with 1 N HCl , to $\mathrm{pH} \sim 1$ ) and extracted with 1:1 EtOAc/ ether. The organic phasє was washed once with brine and dried. Filtration and evaporation gave a yellowish oil which was recrystallized from $\mathrm{CHCl}_{3} /$ hexanes to jive cis-5-( $p$-toluenesulfonamido)-3-cyclo-hexene-1-carboxylic acid $6(124 \mathrm{mg}, 74 \%), R_{f}(10 \% \mathrm{EtOH} / \mathrm{EtOAc})=$ $0.1, \mathrm{mp} 162-165^{\circ} \mathrm{C}$ : IR (KBr) 3600-3000 (broad band, carboxylic acid $\mathrm{OH}), 3250(\mathrm{NH}), 1735$ and 1705 (carboxylic acid), $1595,1450,1400$, $1325\left(\mathrm{SO}_{2}\right), 1295,1250,1235,1150\left(\mathrm{SO}_{2}\right), 1075,930$, and $815 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}+\mathrm{Me}_{2} \mathrm{SO} \cdot d_{6}\right) \delta 11.5(1 \mathrm{H}$, broad s, exchangeable with $\mathrm{D}_{2} \mathrm{O}, \mathrm{CO}_{2} \mathrm{H}$ ), 7.2-7.9 (4 H, q, aromatic), $6.9(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}), 5.2-5.8(2$ H , broad m, olefinic), 3.55 ( $1 \mathrm{H}, \mathrm{m}$, allylic $\mathrm{R}_{2} \mathrm{CHN}$ ), $2.45(3 \mathrm{H}$, s, aromatic $-\mathrm{CH}_{3}$ ) and 1.8-2.5 ( 5 H , m, ring H ). Equivalent results were obtained if the eeaction rixture was refluxed for 1 h irstead of stirring 36 h at room temperature.
Reaction of $\mathbf{5}$ with Trifluoroacetic Acid. One gram of 5 (2.85 mmol ) was dissolved in $\leq .0 \mathrm{~mL}$ of trifluoroacetic acid. After 15 min , the volatile material was removed by high vacuum and the residue recrystallized $1 \mathrm{CHCl}_{3} /$ hexanes). trans-5-( $p$-Toluenesulfonamido)3 -cyclohexene-1-carboxylic acid ( $0.64 \mathrm{~g}, 76 \%$ ) 7, $R_{f}(10 \% \mathrm{EtOH} /$ $\mathrm{EtOAc})=0.65$, was obtained: $\mathrm{mp} 174-175^{\circ} \mathrm{C}$; IR (KBr) $3600-3000$ (broad band, carboxylic acid), 3360 (NH), 1740 and 1705 (carboxylic acid), 1595, 1455, 1405, 1〔 $25\left(\mathrm{SO}_{2}\right), 1295,1250,1235,1150\left(\mathrm{SO}_{2}\right), 1075$, 930,885 , and $815 \mathrm{~cm}^{-1}$; NMR ( $\left.\mathrm{CDCl}_{3}+\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 11.0(1 \mathrm{H}$, broad $\mathrm{s}, \mathrm{CO}_{2} \mathrm{H}$ ), $7.2-7.9(4 \mathrm{H}, \mathrm{q}$, aromatic) $7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}), 5.6$ and $5.35(2$ $\mathrm{H}, \mathrm{m}$, olefinic), $3.95\left(1 \mathrm{H}, \mathrm{m}\right.$, allylic $\mathrm{R}_{2} \mathrm{CHN}$ ), 2.45 ( $3 \mathrm{H}, \mathrm{s}$, aromatic $-\mathrm{CH}_{3}$ ) and 1.8-2.5 ( $5 \mathrm{H}, \mathrm{m}$, ring H ). While the spectre of 6 and 7 were similar, they wore not superimposable.

Isomerization of $\mathbf{7}$ to $\mathbf{3}$ with Potassium tert-Butoxide. A stirred mixture of 75 mg of $7(0.2 .5 \mathrm{mmol})$ and $200 \mathrm{mg}(1.8 \mathrm{mmol})$ of potassium tert-butoxide in 5 mL of THF was refluxed for $\delta \mathrm{h}$ in a $25-\mathrm{mL}$ round-bottomed flask fitted with a reflux condenser under anhydrous conditions. After cooling, the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, acidified with 1 N HCl , and then extracted with EtO.4c. The organic phase was washed once with brine and dried. Filtration and evaporation gave a yellowish oil ( 82 mg ) which was recrystallized twice from $\mathrm{CHCl}_{3}$ /hexanes to give a white solid ( $46 \mathrm{mg}, 61 \%$ ) whish was identical (TLC, NMR, and IR) wi h 6.
tert-Butyl 3-(p-Toluenesulfonamido)-2,3-dihydrobenzoate (8). trans-tert-Butyl 5-(p-toluenesulfonamido)-3-cyclohexene-1carboxylate $5(1.05 \mathrm{~g} .2 .99 \mathrm{mmol})$ was added to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right.$, dry ice/isopropyl alcohol) solution of lithium cyclohexylisopropylamide (prepared at $-78^{\circ} \mathrm{C}$ by the addition of 3.0 mL of 2.4 M ( 7.2 mmol ) $r_{r}-\mathrm{BuLi}$ in nexanes to $1.38 \mathrm{~mL}(7.6 \mathrm{mmol})$ of cyclohexylisopropylamine in a $100-\mathrm{mL}$ three-necked, round-bottomed flask under anhydrous conditicns). After $1 / 2 \mathrm{~h}$, a precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $2.34 \mathrm{~g}(7.5 \mathrm{mmol})$ diph $\supseteq$ nyl diselenide (recrystallized from hexanes and dried in vacuo) in 1 C mL of THF was added quickly by cannula using positive $\mathrm{N}_{2}$ pressure. After 2.5 h with gradual warming to room temperature, the reaction was quenched with water ( 25 mL ) and extracted twice with 1:1 EtOAc/ether. The organic phase was washed once with $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~N} \mathrm{HCl}$, bicarbonate and brine, and then dried. Filtration and evaporation afforded a yellow oil, which was redissolved in 50 mL of THF, cooled to $0^{\circ} \mathrm{C}$ (ice bath), and 3.4 g of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (30 mmol ) added in three portions over 1.5 h . After another 1.5 h at room temperature, the colorless reaction mixture was taken up in $1: 1$ ether/EtOAc which was washed once with bicarbonate and brine, and dried. Filtration and evaporation gave 1.45 g of a light yellowish oil.

This material, although fairly pure by TLC. was best purified by column chromatography ( 60 g of alumina activity III, eluted with $\mathrm{EtOAc} /$ hexane mixtures). Concentration of the appropriate fractions gave 960 mg of a slightly yellow oil, which upon tri-uration with cyclohexane gave tert-butyl 3-(p-toluenesulfonamido)-2,3-dihydrobenzoate $8(840 \mathrm{mg}, 82 \%)$ as a white crystalline solid $R_{f}(35 \% \mathrm{EtOAc} /$ hexanes) $=0.63, \operatorname{mp} 90-92{ }^{\circ} \mathrm{C}$ : IR $(\mathrm{KBr}) 3250\left(\mathrm{NH}^{\prime}, 2980,1725\right.$, and $: 705$ (ester), 1595, 1580, 1440, 1370, $1330\left(\mathrm{SO}_{2}, 116\left(1\left(\mathrm{SO}_{2}\right), 1095\right.\right.$, and $810 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.25-7.9$ ( 4 H, q. $\varepsilon$ romatic), $6.95(1 \mathrm{H} . \mathrm{d}$, $\alpha$-hydrogen), $5.8-6.2(2 \mathrm{H}, \mathrm{m}$, olefinic), $5.0(1 \mathrm{H}, \mathrm{d}$, exchangeable with $\left.0.1 \mathrm{~N} \mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right), 4.1(1 \mathrm{H}, \mathrm{m}$, collapses to d of d in base, allylic $\mathrm{R}_{2} \mathrm{CHN}$ ), 2.6 ( $2 \mathrm{H} . \mathrm{d}$ of d, $-\mathrm{CH}_{2}$ ), 2.45 ( 3 H . s. aromatic $-\mathrm{CH}_{3}$ ) and $1.5\left(9 \mathrm{H}, \mathrm{s}\right.$, tert-butyl); $\mathrm{UV}_{\text {max }}(\mathrm{MeOH}) 239 \mathrm{~nm}(\log є 4.07)$ and 283 nm Iє 4225).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 61.86$; H. 6.63; $\mathrm{N}, 4.00$. Found: C, 61.92; H, 6.80; N, 3.78.
$\boldsymbol{N}$-( $\boldsymbol{p}$-Toluenesulfonyligabaculine (9). The diene $8(50 \mathrm{mg} .0 .14$ mmol) was dissolved in 1 mL of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ under $\mathrm{N}_{2}$. After 5 min . the solvent was removed under high vacuum to a:ford a gummy residue. This material ( $42 \mathrm{mg}, 100 \%$ ) was temperature sensitive and could not se recrystallized $\left(\mathrm{CCl}_{4}, \mathrm{CHCl}_{3} /\right.$ hexanes, aqueous EtOH$)$ : NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.05(1 \mathrm{H}, \mathrm{d}, \alpha$-hydrogen), $7.2-7.8(6 \mathrm{H}, \mathrm{m}$, aromatic and olefinic), $5.15\left(1 \mathrm{H}, \mathrm{m}\right.$, allylic $\left.\mathrm{R}_{2} \mathrm{CHN}\right), 5.00(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}), 2.8(2 \mathrm{H}, \mathrm{m}$, $-\mathrm{CH}_{2-}$ ) and $2.45\left(3 \mathrm{H}, \mathrm{s}\right.$, aromatic $\left.-\mathrm{CH}_{3}\right)$. Cleavage of the tert-butyl ester with HCl gas in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-10^{\circ} \mathrm{C}(1 \mathrm{~h})$, followed by concentration by high vacuum, gave the same material. Because of its gummy nature and instability, 9 was generally not isolatec.
trans-tert-Butyl 5-( $\boldsymbol{N}$-tert-Butoxycarbonyl-p-toluenesulfonamido) 3-cyclohexene-1-carboxylate (11). The allylic sulfonamide mixture obtained by allylic amination of 3 ( $20 \% 4 / 80 \% 5,25 \mathrm{~g}$. 71.2 mmol ) was added in small portions with stirring and cooling (ice bath) to a suspension of 4.3 g of $\mathrm{NaH}(50 \%$ in oil, 89.6 mmol$)$ in 250 mL of DMF in a 500 mL round-bottomed flask ander anhydrous conditions. After warming to room temperature ( -h ), tert-butoxycarbonyl azide ${ }^{33}(15.3 \mathrm{~g}, 106.9 \mathrm{mmol})$ was added. After heating at $60-70^{\circ} \mathrm{C}$ for 13 h , the reaction was cautious!y quenched with small pieces of ice. EtOAc/ether ( $1: 1,250 \mathrm{~mL}$ ) was adde 1 and the organic phase washed three times with $\mathrm{H}_{2} \mathrm{O}$ and once with brine. and dried. Filtration and evaporation afforded 43.4 g of yellowish oil.

Column Chromatography ( 400 g of Silica Gel, Eluted with EtOAc/Hexanes). Concentration of the appropriate fractions af forded 25.69 g (dried 5 h in vacuo, $80 \%, 100 \%$ based on 5 ) of 11 as a thick yellowish oil, $R_{f}(25 \%$ EtOAc/hexanes) $=0.64$ : IR (film) 2980, 2940, 1740-1705 (broad band; ester and carbemate 1595, 1480, 1460, 1395, and 1370 (tert-butyl), $1360\left(\mathrm{SO}_{2}\right), 126 C^{\prime}, 116\left(1\left(\mathrm{SO}_{2}\right), 1090,850\right.$, 835,820 , and $740 \mathrm{~cm}^{-1}$; NMR ( $\left.\mathrm{CDCl}_{3}\right) \delta 7.25-7.95(4 \mathrm{H}, \mathrm{q}$, aromatic), 5.5-6.0 ( $2 \mathrm{H}, \mathrm{m}$, olefinic), 5.2 ( $1 \mathrm{H}, \mathrm{m}$, allylic $\mathrm{R}_{2} \mathrm{C}-\mathrm{NN}$ ), $2.45(3 \mathrm{H}, \mathrm{s}$, aromatic $\left.-\mathrm{CH}_{3}\right), 2.0-2.5\left(4 \mathrm{H}, \mathrm{m}\right.$, overlapping $\left.-\mathrm{CH}_{2-}\right), 1.55(9 \mathrm{H}$. distorted t , tert-butyl) and 1.45 ( $9 \mathrm{H}, \mathrm{s}$, tert-butyl); mass spectrum ( 70 $\mathrm{eV}) \mathrm{m} / \mathrm{e} 451\left(\mathrm{M}^{+}\right), 395(\mathrm{M}-56$, loss of isobutylere $), 339(\mathrm{M}-112$, loss of two isobutylene $+\mathrm{CO}_{2}$ ), 216, 183, 139, 84 , and 82 (base peak). The NMR signal at $\delta 1.55$ is assigned to the tert-butoxycarbonyl group; the splitting is possibly caused by hir.derec rotation because of the $N$-tosyl group. The trans stereochemistry is assumed on the basis of the starting material.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 61.17 ; \mathrm{H}, 7.36 ; \mathrm{N}, 3.10$. Found: C, 60.90; H, 7.36; N, 3.11.

Further elution of the cclumn and concentration of the appropriate fractions gave 5.57 g of crude $4\left[R_{f}(25 \% \mathrm{EtOAc} /\right.$ hexanes $\left.)=0.45\right]$. Recrystallization from $\mathrm{CHCl}_{3} /$ hexanes afforded a total ( 2 crops) of $4.37 \mathrm{~g}(17.5 \%, 90 \%$ recovery based on 4$)$ of 4 which was identical with the previously isolated material.

Controlled Potential Electrolysis of 11 . In an electrolysis cell, $2.43 \mathrm{~g}(5.4 \mathrm{mmol})$ of 11 was added to 100 mL of preslectrolyzed 0.2 M TEAB/MeCN at -2.1 V (residual current $=1 \mathrm{~mA}$. The current initially rose to 450 mA and then decayed to 10 mA after 3 h . TLC ( $25 \%$ EtOAc/hexanes) showed no starting material remaining, so water ( 100 mL ) was added and the dark solution was extracted with ether. The organic phase was washed once with water and brine, and dried. Filtration and evaporation left a yellowish oil. Column chromatography ( 80 g of silica gel, eluted with EtOAc/hexanes) affo-ded 320 mg ( $17 \%$ ) of $5, R_{f}(25 \% \mathrm{EtOAc} /$ hexanes $)=0.45$ (identical with a previously isolated sample), and 1.22 g (after 2 h in vacuo, $76 \%$ ) of 12 as a clear oil, which solidified upon standing, $R_{f}(25 \% \mathrm{EtOAc} /$ hexanes $)=0.71$. Recrystallization from a minimum amount of petroleum ether ( 1 $\mathrm{mL} / 1 \mathrm{~g}$ ) gave fluffy white crystals, $\mathrm{mp} 65-6 \delta^{\circ} \mathrm{C}$ : IR ( KBr ) 3390 and 3320 (NH), 2980, 2930, 1735 (ester), 1710 (carbama-e), 1520, 1395 and 1370 (tert-butyl), $1320,1250,1160,1055,1045, \varepsilon 70$ and $850 \mathrm{~cm}^{-1}$; NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 5.7(2 \mathrm{H}, \mathrm{m}$, olefinic). $4.55(1 \mathrm{H} . \mathrm{m} . \mathrm{NH}) .4 .25(1 \mathrm{H}$, m . allylic $\mathrm{R}_{2} \mathrm{CHN}$ ), $1.45(9 \mathrm{H}, \mathrm{s}$, tert-butyl) end 1.2-2.4 (5 H, m. ring

H ); mass spectrum ( 70 eV ) m/e $297\left(\mathrm{M}^{+}\right), 262\left(\mathrm{M}-15\right.$, loss of $\left.\mathrm{CH}_{3}\right)$, 241 ( $\mathrm{M}-56$, loss of isobutylene), 224 ( $\mathrm{M}-73$, loss of tert-butoxy) and 185 (base peak, $\mathrm{M}-112$, loss of two isobutylenes).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{4}$ : C, 54.61: H. 9.15; N, 4.71. Found: C, 64.43; H, 9.14; N, 4.48.

When the reaction was repeated using $15.0 \mathrm{~g}(33.2 \mathrm{mmol})$ of 11 in 300 mL of $0.2 \mathrm{M} \mathrm{TEAB} / \mathrm{MeCN}, 15 \mathrm{i}$ was needed for completion. Isolation in the same manner ( 300 g of silica gel) afforded $6.29 \mathrm{~g}(64 \%)$ of 12 and $3.23 \mathrm{~g}(28 \%)$ of 5.

Controlled Potential Electrolysis of 11 in the Presence of Phenol. The $N$-tosylcarbamate $11(4.82 \mathrm{~g}, 10.7 \mathrm{mmol})$ was added to a preelectrolyzed solution of 5.0 g of phenol $(53 \mathrm{mmol})$ in 100 mL of $0.2 \mathrm{M} \mathrm{TEAB} / \mathrm{MeCN}$ at -2.1 V (residual current $=8 \mathrm{~mA}$ ). After 6 h (the electrolysis was slightly exothermic), the current had decayed to 17 mA . Isolation as previously described gave $2.66 \mathrm{~g}(84 \%)$ of crude product. Trituration with 2 mL of petroleum ether afforded 2.45 g (total of 2 crops, $80 \%$ ) of 12 .
Using $590 \mathrm{mg}(1.3 \mathrm{mmol})$ of 11 and $650 \mathrm{mg}(6.8 \mathrm{mmol})$ of phenol (under exactly the same conditions), 380 mg ( $98 \%$ ) of crude product was obtained. Recrystallization from petroleum ether gave a total ( 2 crops) of 357 mg ( $92 \%$ ) of 12 .
tert-Butyl 3-(tert-Butoxycarbonylamino)-2,3-dihydrobenzoate (13). Dehydroiodination. A sclution of cooled $\left(-78^{\circ} \mathrm{C}\right)$ lithium isopropylcyclohexylamide was prepared using $10.75 \mathrm{~mL}(24.6$ mmol ) of $2.4 \mathrm{M} n-\mathrm{BuLi}$ and $4.5 \mathrm{~mL}(24.7 \mathrm{mmol})$ of isopropylcyclohexylamine in 40 mL of THF in a $100-\mathrm{mL}$ three-necked round-bottomed flask. The allylic carbamate $12(2.0 \mathrm{~g}, 6.7 \mathrm{mmol}$ ) was added and after 10 min the cooling bath was changed to one maintained at -65 to $-60^{\circ} \mathrm{C}$ for 1 h . The resulting clear yellow solution of dianion was added using a cannula and positive $\mathrm{N}_{2}$ pressure to a cooled ( $-78^{\circ} \mathrm{C}$ ) and stirred solution of $6.26 \mathrm{~g}(24.7 \mathrm{mmol})$ of $\mathrm{I}_{2}$ in 30 mL of THF in a $250-\mathrm{mL}$ round-bottomed flask under anhydrous conditions. After 2 h , the cooling bath was replaced by an ice bath for another 1.5 h . After an additional $1 / 2 \mathrm{~h}$ at room temperature, the reaction was quenched with water $(20 \mathrm{~mL})$ and extracted with ether which was washed once with cold 1 N HCl , with aqueous sodium bisulfite until colorless, then once with bicarbonate, and brine, and finally dried.

Filtration and evaporation gave a light yellowish oil which was immediately dissolved in 80 mL of benzene and $2.0 \mathrm{~g}(17.8 \mathrm{mmol})$ of diazabicyclo[2.2.2] octane (Dabcol was added in one portion. After stirring overnight, the reaction was taken up in ether which was washed once with cold 1 N HCl , bicarbonate, and brine, and dried. Concentration afforded 2.6 g of yellcwish oil which was purified by column chromatography ( 200 g of silica gel, eluted with EtOAc/hexanes) to give two compounds, $A$ and $B$.

Compound A ( 180 mg of a white semisolid, 9\%) was tentatively identified as tert-butyl 5-(tert-bctoxycarbonylamino)-2,5-dihydrobenzoate (14), $R_{f}(25 \% \mathrm{EtOAc}$ /hexanes $)=0.64$ : $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.8$ (1 H. m. $\alpha$-hydrogen of $\alpha, \beta$-unsaturated ester). $5.6-6.0(2 \mathrm{H}, \mathrm{m}$, olefinic). $4.9(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 4.7\left(1 \mathrm{H}, \mathrm{m}\right.$, allylic $\left.\mathrm{R}_{2} \mathrm{CHN}\right) .2 .9$ ( $\mathrm{H} . \mathrm{d}$, allylic $-\mathrm{CH}_{2}$ ), $1.5(9 \mathrm{H}, \mathrm{s}$, tert-butyl) and $1.45(9 \mathrm{H}, \mathrm{s}$, tert-butyl).

This compound was unstable in the presence of air, decomposing completely to tert-butyl $N$-(tert-butoxycarbonyl)-m-anthranilate (15), $R_{f}\left(25 \%\right.$ EtOAc/hexanes) $=0.76, \operatorname{mp~} 112-115^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{CHCl}_{3}$ /hexanes): IR ( KBr pellet) $3340(\mathrm{NH}$ ), 2980, 2930, 1715-1680 (broad band, ester and carbamate), 1510, 1390, and 1370 (tert-butyl), 1305, 1245, 1170, 1110, 8:0, and $855 \mathrm{~cm}^{-1}$; NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 7.1-7.9(4 \mathrm{H}, \mathrm{m}$, aromatic), $7.0(1 \mathrm{H}$. broad $\mathrm{s}, \mathrm{NH}), 1.55(9 \mathrm{H}, \mathrm{s}$, tert-butyl) and $1.5(9 \mathrm{H}, \mathrm{s}$, tert-butyl).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$ : C, 65.50; H, 7.90; N. 4.77. Found: C, 65.39; H, 8.11; N, 4.79.

Compound B ( 1.80 g of a clear oil) was triturated with approximately 1 mL of petroleum ether to afford $1.78 \mathrm{~g}(90 \%)$ of tert-butyl 3-(tert-butoxycarbonylaminol-2,3-dihydrobenzoate (13) as a fluffy white solid, $R_{f}(25 \%$ EtOAc/hexanes $)=0.57: \mathrm{mp} 99-101^{\circ} \mathrm{C}: \mathrm{IR}(\mathrm{KBr})$ 3350 (NH), 2980, 2930, 1720-1680 (broad band, ester, and carbamate). 1510,1395 , and 1370 (tert-butyl), 1280, 1255, 1165, 1095, 1050, 850, 760 , and $720 \mathrm{~cm}^{-1}$; NMR ( $\mathrm{CHCl}_{3} /$ hexanes) $\delta 7.0(1 \mathrm{H}, \mathrm{m}, \alpha$-hydrogen, 6.1 ( $2 \mathrm{H}, \mathrm{m}$, olefinic), 4.9 ( 1 H , m, allylic $\mathrm{R}_{2} \mathrm{CHN}$ ), 2.6 ( 2 H . d, of d, methylene), $1.5(9 \mathrm{H} . \mathrm{s}$, tert-butyl), and $1.45(9 \mathrm{H}, \mathrm{s}$, tert-butyl); mass spectrum ( 70 eV ) m/e $295\left(\mathrm{M}^{+}\right), 260,239(\mathrm{M}-56$, loss of isobutylene), 183 and 139 (base peak); $\mathrm{UV}_{\text {max }}(\mathrm{MeOH}) 284 \mathrm{~nm}$ ( $\epsilon 6240$ ); GLPC analysis ( $2 \mathrm{~m} \times 2 \mathrm{~mm}, 5 \%$ OV-17 on $80 / 100$ mesh Gas Chrom Q, 195 $\left.{ }^{\circ} \mathrm{C}\right)$ of $13\left(t_{\mathrm{r}}=3.4 \mathrm{~min}\right)$ showed it to be contaminated with less than $1 / 2 \%$ of $12\left(t_{\mathrm{r}}=2.9 \mathrm{~min}\right)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{4}$ : C. $65.05 ; \mathrm{H}, 8.53 ; \mathrm{N}, 4.74$. Found: C , 64.94; H. 8.32; N. 4.55.
dl-Gabaculine (1). The diene $13(511.2 \mathrm{mg}, 1.7 \mathrm{mmol})$ was dissolved in 1.5 mL of purified trifluoroacetic acid (distilled at $72^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ and stored in a no-air container) under oxygen-free condi-
tions (exothermic reaction). After 2 min , all of the volatile material was removed under high vacuum leaving, after 2 h , a dark semisolid residue. Addition of a little distilled $\mathrm{H}_{2} \mathrm{O}$ caused a white crystalline solid to precipitate (presumably the trifluoroacetate salt of 1). After warming gently to redissolve the solid, the solution was applied to a $1 \times 20 \mathrm{~cm}$ column of Bio-Rad AG11A8 ion-retardation resin ${ }^{36}$ and eluted with distilled $\mathrm{H}_{2} \mathrm{O}$. Lyophilization of the appropriate fractions (generally the first $3-10 \mathrm{~mL}$ of eluent, visualized by UV and ninhydrin test after spotting on a TLC plate) gave 169 mg ( $70 \%$ ) of crude dlgabaculine (1), mp $180-185^{\circ} \mathrm{C}$ dec (lit. ${ }^{4} \mathrm{mp} 196-197^{\circ} \mathrm{C} \mathrm{dec}$ ). Recrystallization from MeOH containing a minimum amount of $\mathrm{H}_{2} \mathrm{O}$ gave 2 crops of an off-white solid: first crop ( 83 mg ), $\mathrm{mp} 184-186^{\circ} \mathrm{C}$ dec; second crop ( 32 mg ). $\mathrm{mp} 194-196^{\circ} \mathrm{C}$ dec. A third crop ( $49 \mathrm{mg}, \mathrm{mp}$ $182-186^{\circ} \mathrm{C} \mathrm{dec}$ ) was recovered by addition of ether to the mother liquors for a total of $164 \mathrm{mg}(68 \%)$ of $1: \mathrm{UV}_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 275 \mathrm{~nm}(\epsilon 8500)$ (lit. ${ }^{4} 275 \mathrm{~nm}(\epsilon 8600)$ ). NMR and IR data were consistent with the published values. ${ }^{4}$ TLC analysis ( $7.5 \mathrm{EtOH}, 2.5 \mathrm{H}_{2} \mathrm{O}$, trace $\mathrm{NH}_{4} \mathrm{OH}$ ) showed a single spot, $R_{f}=0.64$, which cospotted with an authentic sample derived from dl -gabaculine hycrochloride.
dl-Gabaculine Hydrochloride Salt. dl-Gabaculine (mp 194-196 ${ }^{\circ} \mathrm{C}$ from above, $5 \mathrm{mg}, 36 \mu \mathrm{~mol}$ ) was dissolved in 0.5 mL of cooled (ice bath: absolute MeOH which had been saturated with dry HCl gas. The solvent was immediately removed by high vacuum to afford a white solid. Recrystallization from acetone containing a little methanol gave 4 mg (63\%) of dl -gabaculine hydrochloride, $\mathrm{mp} 195-199^{\circ} \mathrm{C}$ dec (lit. ${ }^{4} \mathrm{mp} 198-200^{\circ} \mathrm{C}$ dec). Admixture with an authentic sample of razemic gabaculine hydrochloride had no effect on the melting point.

Acknowledgment. We kindly thank Dr. Mishima for copies of the original NMR spectre of 1 and its HCl salt, the experimental details of his synthesis, and for the authentic sample of dl-gabaculine hydrochloride. We are indebted to the National Institutes of Health (GM 21686) and the Na tional Science Foundation (MPS 74-21260) for financial support. We are grateful to our colleagues, Harold R. Rogers and George M. Whitesides, for assistance using their preparative electrolysis equipment.

Registry No. $-1,59556-18-2 ; 1 \cdot \mathrm{HCl}, 59556-17-1 ; 4,65120-95-8 ; 6$, 65120-96-9; 7, 65120-97-0; 11, 65120-98-1; 12, 65120-99-2; 13, 6512:-00-8; 14, 65121-01-9; 15, 65121-0£-0; TsN=S=NTs, 851-06-9; $\mathrm{TsN}=\mathrm{Se}=\mathrm{NTs}$, 60123-29-7; isobutylene, 115-11-7; 3-cyclohexene1 -carboxylic acid, 4771-80-6; $N$-sulfinyl- $p$-toluenesulfonamide, 4104-47-6; selenium, 7782-49-2; chloramine-T, 127-65-1; trifluoroacetic acid, 76-05-1; lithium cyclohexylisopropy amine, 32400-20-7; diphenyl diselenide, 1666-13-3; tert-tutoxycarbonyl azide, 1070-19-5.

## References and Notes

(1) K. B. Sharpless and T. Hori, J. Org. Chem., 41, 176 (1976).
(2) A. Schönberger and G. Kresze, Just'ss Liebigs Ann. Chem., 1725 (1975).
(3) K. B. Sharcless. T. Hori, L. K. Truesdale, and C. O. Diefrich, J. Am. Chem SoC., 98, 269 (1976).
(4) K. Kobayashi. S. Miyazawa, A. Terahara, H. Mishima, and H. Kurihara, Tetrahedron Lett., $53{ }^{7}$ (1976).
(5) A. E. Schousboe, J. Wu, and E. Roberts. J. Neurochem., 23, 1189 (1974).
(6) E. M. Scott and W. B. Jacoby, J. Biol. Chem., 234, 932 (1958)
(7) A. E. Braurstein, Enzymes, 9, Chapter 10 (1973).
(8) C. F. Baxter, in "Handbook of Neurochemistry", Vol. 3. A. Lajtha, Ed., Plenum Press, New York, N.Y., 1970, Chapter 9.
(9) B. Meldrurr. Int. Rev. .Veurobiol., 17, Chapter 1 (1975).
(10) R. R. Rando and F. Bangerter. J. Am. Chem. Soc., 98, 6762 (1976); R. R. Rando and F. W. Bancerter, ibid., 99, 5141 (1977); R D. Allan. G. A. R. Johnstone, and B. Twitchin, Neurosci. Lett., 4, 51 (1977); Y. Matsui and T. Deguchi. Life Sci., 20, 1291 (1977).
(11) T. Valega, J. Econ. Entomol., 60, 835 (1967).
(12) O. Rosenheim and W. W. Starling. J. Chem. Soc., 377 (1937).
(13) H. M. R. Hoffman, Ancew. Chem., Int. Ed. Engl., 8, 555 (1969).
(14) The 270-MHZ NMR spectra were taken at the Southern New England High Field NMR Facility. This investigation was supported in part by N.I.H. Research Grant No. 1-P07-PR00798 from the Division of Research Resources.
(15) B. M. Trost and T. Vernoeven, J. Org. Chem., 41, 3215 (1976).
(16) D. E. Pears $n$ and C. R. Buehler, Chem. Rev., 27, 45 (1974).
(17) Heathcock and Clark have reported hydrolytic opening of an ester by tert-butoxice, and they also suggested a ketene intermediate [R. D. Clark and C. H. Heathcock, J. Org. Chem., 41, 1396 (1976)
(18) K. B. Sharpless, K. Gordon, R. Lauer, D. Patrick, S. Singer, and M. Young Chem. Scr., 8A, 9 (1975).
(19) H. J. Reich J. M. Renja, and I. L. Reich, J. Am. Chem. Soc., 97, 5434 (1975).
(20) B. M. Trost. T. N. Salznann, and K. Hiroi, J. Am. Chem. Soc., 98, 4887 (1976).
(21) M. W. Rathke and A. Lindert. J. Am. Chem. Soc., 93, 2318 (1971)
(22) D. A. Corniorth, J. Chem. Soc. C, 2799 (1969).
(23) V. G. Maira 10 vsky, Angew. Chem., Int. Ed. Engl., 15 (5). 281 (1976)
(24) K. Okumura. T. Iwasak , M. Matsuoka, and K. Matsumotn, Chem. Ind., 929 (1971).
(25) L. Horner and H. Neurrann, Chem. Ber., 98, 3462 (1965)
(26) P. T. Cottrell and C. K. Mann. J. Am. Chem. Soc., 93, 3579 (1971).
(27) S. Ji, L. B. Gortler, A. Waring, A. Battisti, S. Bank. W. D. Closson, and P Wriede. J. Am. Chem. Soc., 89, 5311 (1967).
(28) W. D. Closson. S. Ji, and S. Schulenberg. J. Am. Chem. Soc.. 92, 650 (1970).
(29) E. H. Gold and E. Babad, J. Org. Chem.. 37, 2208 (1972)
(30) V. du Vigneaud and O. K. Behrens, J. Biol. Chem., 117, 27 (1937)
(31) S. Searles and S. Nokima, Chem. Rev., 59, 1077 (1959).
(32) L. Horner and R. J. Sinjer, Tetrahedron Lett., 1545 (1969).
(33) Caution: tert-Butoxycartonyl azide (Aldrich Chemical Co. I has been recently found to be extremely shock sensitive and thermally unstable at temperatures above $80^{\circ} \mathrm{C}$, decomposing with apparent detonation IW. Fenton. Chem. Eng. News, 54 122), 3 (1976); H. Koppel, ibid., 54 (39). 5 (1976).) It is no longer commercially available. In these experiments. no trouble was experienced
(34) L. A. Carpino, Acc. Chem. Res., 6, 191 (1973).
(35) M. W. Rathke and A. Lindert, Tetrahedron Lett., 3995 (1971).
(36) Bio-Rad Laboratories Chemical Division, Technical Bulletin 1005. April 1973.
(37) W. von E. Djering, M. Franck-Neumann, D. Hasselmarn, and R. L. Kaye, J. Am. Chem. Soc., 94, 3833 (1972).
(38) G. Kresze and W. Wucherpfennig, Angew. Chem., Int. Ed. Engl., 6, 149 (1967).
(39) T. Hori, S. P. Singer, ar d K. B. Sharpless. J. Org. Chem., following paper in this issue.

## Allylic Deuteration and Tritiation of Olefins with $\boldsymbol{N}$-Sulfinylsulfonamides

Tetsuo Hori, Stephen P. Singer, and K. Barry Sharpless*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

## Recelved June 22, 1977

Recently. we have explored the synthetic applications of the reactions of both bis( $N-p$-toluenesulfonyl)selenodiimide ${ }^{1-3}$ and $\operatorname{bis}\left(N\right.$ - $p$-toluenesulfonyl)sulfodiimide. ${ }^{4,5}$ These aza analogues of $\mathrm{SeO}_{2}$ and $\mathrm{SO}_{2}$ are powerful enophiles in their reactions with olefins and eventually result in the formation of allylic sulfonamides. Kresze and Schönberger independently discovered that the sulfur diimide species effect allylic amination of olefins. ${ }^{6}$ We now report that the ene reaction ${ }^{7}$ of the related monooxo compounds, the $N$-sulfinylsulfonamides, ${ }^{8}$ is reversible under mild conditions and that this reversibility can be exploited to specifically introduce deuterium (or tritium) into the allylic position of an alkene.

When 1.1 equiv of 1 was stirred with $\beta$-pinene in benzene for 3 h at $25^{\circ} \mathrm{C}$, a $1: 1$ adduct, the $N$-tosylsulfinamide 3 , was is olated in $89 \%$ yield (Scheme I). However, upon standing in moist air at room temperature for a few days or upon strong heating ( $>150^{\circ} \mathrm{C}$ ), 3 was found to decompose with the liberation of $\beta$-pinene. When 3 was refluxed in benzene, no change occurred until an excess of $\mathrm{H}_{2} \mathrm{O}$ was added which resulted in the formation of $\beta$-pinene and $p$-toluenesulfonamide. The observed behavior is consistent with a reversible ene reaction. However, initial hydrolysis of the allylic sulfinamide adduct tc. an allylic sulfinic acid, which then undergoes retroene reaction, is another possibility.

When the $\mathrm{H}_{2} \mathrm{O}$ was replaced by $\mathrm{D}_{2} \mathrm{O}$, exchange of the acidic $\mathrm{N}-\mathrm{H}$ proton followed by retroene reaction led to the incorporation of a deuterium in the allylic position. In the case of $\beta$-pinene (Scheme II), the recovered material was $86 \% d_{1}$ and $14 \% d_{0}$ with the deuterium being introduced trans ( $>97 \%$ ) to the dimethyl bridge as shown by ${ }^{2} \mathrm{H} \mathrm{NMR}^{9,10}$ and confirmed by the loss of the deuterium upon oxidation with $\mathrm{SeO}_{2}$ to trans-pinocarveol. ${ }^{11}$ These results are similar to the stereospecific retroene reaction of the deuterated adduct of $\beta$-pinene and methyl phenyl glyoxylate ${ }^{10}$ with the exception that in the эresent case much lower temperatures are needed.

Table I shows the results for the allylic deuteration of a variety of olefins. Generally, the olefins were recovered in yields greater than $50 \%$ and greater than $75 \%$ monodeuterated. It was not necessary to isolate the initial ene adduct. It should oe pointed out that the reaction is not general since some cyclic olefins as well as electron-poor or hindered olefins are poor substrates for this system. Among the compounds which failed to form an isolable ene adduct were cyclohexene, 4-tertbutylcyclohexene, $\Delta^{2}$-cholestene, cholesterol, and $\alpha$-pinene. Under forcing conditions, 4-tert-butylcyclohexene gave tert-butylbenzene in good yield. ${ }^{12}$
$l$-Carvone is the only example in Table I of an olefin with exchangeable protons. Exchange of the crude deuterated product with ethanolic NaOH at $60^{\circ} \mathrm{C}$ for 3 h gave $l$-carvone -hat was $>75 \% d_{1}$. NMR integration indicated that the deueerium was located in the vinyl methyl group (although Büchi and Wüest ${ }^{13}$ have shown that the major product of $\mathrm{SeO}_{2}$ oxi-

[^3]Scheme I




$3, \mathrm{R}=\mathrm{Ts}$
Scheme II

Scheme III

5
dation of $l$-carvone is the racemic tertiary allylic alcohol). In support of the proposed location of the deuterium, the initial 1:1 adduct was found to have the structure $5 .{ }^{15}$ In addition,

there was no loss in the optical activity of the recovered deuterated $l$-carvone. During the reaction, some aromatization ${ }^{12}$ of the $l$-carvone to dehydrocarvacrol (2-methyl-5-isopropenylphenol) occurred.

Of course, alkenes can be tritiated in the same manner using $\mathrm{T}_{2} \mathrm{O}$ in place of $\mathrm{D}_{2} \mathrm{O}$. As shown in Scheme III, $\alpha$-methylstyrene with a specific radioactivity of $0.8 \mathrm{mCi} / \mathrm{mmol}$ was isolated when 2 mmol of its crystalline adduct 5 was refluxed for 20 h in 5 mL of benzene containing 0.1 mL of $\mathrm{T}_{2} \mathrm{O}(1 \mathrm{Ci} / \mathrm{mL})$. Correcting for the 2 mmol of protons introduced with the adduct 5 , the specific activity of the medium was $7.7 \mathrm{mCi} /$ mmol of $\mathrm{H}^{+}$. Therefore tritium was incorporated into the olefin at a specific radioactivity $10 \%$ that of the reaction medium. This calculation is based on the notion that only one allylic hydrogen is available for exchange. This would be true if the $N$-sulfinylsulfonamide ( $\mathrm{TsN}=\mathrm{S}=\mathrm{O}$ ) hydrolyzed as it

Table I. Allylic Deuteration of Alkenes

| Case | Olefin | Registry no. | Reagent ${ }^{\text {b }}$ | Product ${ }^{\text {a }}$ | Registry no. | Deuterium incorporation ${ }^{a}$ | Recovery ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\hat{\mu}$-Pinene | 127-91-3 | 1.2 TsNSO ${ }^{e}$ | $4$ | 6う025-52-7 | $\begin{aligned} & 14 \% d_{0} \\ & 86 \% d_{1} \end{aligned}$ | 59\% |
| 2 | $\beta$-Pinene |  | $2 \mathrm{MsNSO}{ }^{f}$ |  |  | $3 \% d_{0}$ $94 \% d$ $4 \% d_{2}$ | 51\% |
| 3 |  | 64976-2 $1-1$ |  |  |  | $\begin{array}{r} 4 \% d_{0} \\ 95 \% d_{1} \\ 3 \% d_{2} \end{array}$ | 78\% |
| 4 | 1-Dodecene | 112-41-4 | 3 TsNSO |  | 64976-21-2 | $4 \% d$ 93\% d $2 \% d$ | 46\% |
| 5 | Citronellol methyl ether | 55915-71-3 | 2 TsNSO |  | 64976-22-3 | $11 \% d_{0}$ $87 \% d$ $2 \% d_{2}$ | 68\% |
| 6 | $\alpha$-Methylstyrene | 98-83-9 | 1.2 TsNSO |  | 64976-23-4 | $\begin{aligned} & 15 \% d_{0} \\ & 84 \% d_{1} \\ & 1 \% d_{2} \end{aligned}$ | 79\% |
| 7 | l-Carvone | 6485-40-1 | 2 TsNSO |  | 64976-24-5 | $\begin{aligned} & \text { (Crude)(Exchanged) } \\ & 13 \% d_{0} \quad 16 \% d_{0} \\ & 46 \% d_{1} \quad 82 \% d_{1} \\ & 35 \% d_{2} \quad 2 \% d_{2} \\ & 6 \% d_{3} \\ & \text { (Crude)(Exchanged) } \end{aligned}$ | $\begin{aligned} & 39 \% \\ & \text { (After } \\ & \text { exchange) } \end{aligned}$ |
| 8 | $l$-Carvone |  | 2 MsNSO |  |  | $\begin{array}{rc} 16 \% d_{0} & 16 \% d_{0} \\ 20 \% d_{1} & \\ 37 \% d_{2} & 75 \% d_{1} \\ 25 \% d_{3} & \\ 2 \% d_{4} & 9 \% d_{2} \end{array}$ | $\begin{aligned} & 39 \% \\ & \text { (After } \\ & \text { exchange) } \end{aligned}$ |

$a$ See the Experimental Section for all details. The location of the deuterium was determined by NMR. ${ }^{b}$ TsNSO $=N$. sulfinyl- $p$-toluenesulfonamide. $\mathrm{Ms} N S O=N$-sulfinylmethanesulfonamide. The numbers refer to the number of equivalents used. ${ }^{c}$ Based on starting olefin. ${ }^{d}$ Adduct heated in benzene $/ \mathrm{D}_{2} \mathrm{O}$ at $140^{\circ} \mathrm{C}$ for 10 h (sealed tube). ${ }^{e}$ Registry no.: 4104-47-6. $f$ Registry no.: 40866-96-4.
was produced in the retroene process. However, the validity of this assumption was challenged by the following experiment: under the same conditions described above, the $\mathrm{T}_{2} \mathrm{O}$ was replaced with 0.1 mL of $\mathrm{D}_{2} \mathrm{O}$ and this gave $\alpha$-methylstyrene which was $25 \% d_{0}, 40 \% d_{1}, 22 \% d_{2}$. and $10 \% d_{3}$. Apparently, under these conditions (much less water than is usually employed), the ene and retroene reactions are occurring several times over before the $N$-sulfinylsulfonamide ( $\mathrm{TsN}=\mathrm{S}=\mathrm{O}$ ) is hydrolyzed.

Aithough this single example of allylic tritiation was performed using an isolated sulfinamide adduct, the in situ method (in which the adduct is formed in benzene and then $\mathrm{D}_{2} \mathrm{O}$ or $\mathrm{T}_{2} \mathrm{O}$ is added directly to the solution of the crude adduct in benzene) is much simpler and should be preferable in most cases where allylic tritiation is desired. We have found that the sulfinamide adducts are often too unstable to isolate. Moreover, if one wished to allylically tritiate a few micrograms of olefin, isolation of the adduct would not be feasible.

One consequence of the ene/retroene mechanism is the loss of stereochemistry in the case of di- and trisubstituted olefins. For example, reaction of either cis- or trans-5-decene with 1 followed by hydrolysis afforded the same mixture of $23 \%$ cisand $77 \%$ trans- 5 -decene. Similar results were found for ( $Z$ )and ( $E$ )-3-methyl-2-hexene (the recovered olefin in both cases was $33 \%(Z)$ and $67 \%(E)$ ). Control experiments showed the olefins were stable (no cis-trans isomerization) to the conditions of the retroene-hydrolysis procedure.

If a suitable $\beta$-hydrogen is ava:lable, a side reaction involving syn elimination of the allylic sulfinamide group to a



diene sometimes competes with the retroene reaction. The yield of diene was generally less than $15 \%$. However, diene formation can be made the exclusive event by obstruction of the retroene sathway through alkylation of the nitrogen of the intermediate allylic sulfinamides. As a particular example (Scheme IV), pyrol.sis (by GLPC injection) of the $N$ methylsulfinamide derivative 6 (obtained in only $26 \%$ yield) from 1-phenylcyclohexene gave a $90 \%$ yield of 2-phenyl1,3 -cyclohexadiene and none of the isomeric diene. ${ }^{14}$ Similarly, cyclooctene and ( $E$ )-5-decene were transformed to $1,3-\mathrm{cy}$ clooctadiene and 4,6 -decadiene, respectively. ${ }^{15 a}$ This sequence
effects symmetrical (i.e., $\Delta^{2}$-olefin $\rightarrow \Delta^{1,3}$-diene) dehydrogenation of an olefin to a conjugated diene, but this new diene synthesis is limited by the fact that the $N$-methylsulfinamide adducts are generally formed in poor overall yield. ${ }^{15 \mathrm{~b}}$ In contrast to allylic sulfoxides, ${ }^{16}$ these derivatives have given no indication of undergoing 2,3 -sigmatropic rearrangement. ${ }^{17}$

In summary, the reversible ene reaction of $N$-sulfinylsulfonamides represents a convenient procedure for the allylic deuteration and tritiation of certain alkenes.

## Experimental Section

All mass spectra were collected using a Hitachi Perkin-Elmer F.MU-6E mass spectrometer and the percentage of deuterium incorporation was calculated using standard techniques ${ }^{18}$ including corrections for natural abundance. Kugelrohr dist llation refers to bulb-to-bulb distillation using a Būchi kugelrohr apparatus. The temperatures reported are the air bath temperatu-es at which the material distilled and are not the true boiling points.
$\boldsymbol{N}$-Sulfinyl-p-toluenesulfonamide (1). A. This procedure is a s.ightly modified version of Kresze's. ${ }^{8,20}$ In a $2.0-\mathrm{L}$ round-bottomed flask fitted with a reflux condenser and a $\mathrm{CaCl}_{2}$ dryinj tube, a mixture of 250 g of $p$-toluenesulfonamide ( 1.46 mol , Eastman Organic Chemicals) and 200 g of thionyl chloride ( 1.68 mol ) in 1.0 L of dry benzene was heated for 5 days at reflux. After cooling to room temperature the solvent and excess $\mathrm{SOCl}_{2}$ were evaporated, first at aspirator pressure, then under high vacuum, to leave approximately 300 g of dark orange oil. Kugelrohr distillation in th-ee 10 J -g portions gave a total of 196 g of $1\left(130-140^{\circ} \mathrm{C}, 0.06\right.$ Torr, $\left.62 \%\right)$ wich crystallized upon standing to a bright yellow solid, mp $47-51^{\circ} \mathrm{C}$ (lit. ${ }^{8} \mathrm{mp} 53$ ${ }^{\circ} \mathrm{C}$ ).
B. Addition of $1 \% N, N$-dichloro- $p$-toluenesulfonamide ${ }^{21}$ decreased the time needed for completion. For example, the reaction of 125 g of $\mathrm{TsNH}_{2}(0.73 \mathrm{~mol})$ and 1.73 g of thionyl chlcride ( 1.46 mol ) in 100 mL of benzene at reflux (using a $\mathrm{CaCl}_{2}$ drying tube as above) was complete in only 16 h . Evaporation followed by kugelrohr distillation as above gave 1 in $69 \%$ yield. This modified procedure ( $B$ ) represents a great saving in time (only 16 h instead of 5 days) with no decrease in yield. Note also that procedure B employs different proportions of reactants and solvent than procedure $A$.
$N$-Sulfinylmethanesulfonamide (2). ${ }^{19}$ Follow.ng procedure A above, 2 was prepared using 15.5 g of methanesulfonamide ( 16 mmol ) and 14 mL of $\mathrm{SOCl}_{2}$ ( 19 mmol ) in 30 mL of benzene. Kugelrohr dist.llation ( $165^{\circ} \mathrm{C}, 0.02 \mathrm{Torr}$; lit. ${ }^{8} \mathrm{bp} 80^{\circ} \mathrm{C}, 10^{-4}$ Torr) yave $13.9 \mathrm{~g}(62 \%$ ) of bright yellow oil.

Reaction of 1 with $\beta$-Pinene. To a $100-\mathrm{mL}$ round-bottomed flask under anhydrous conditions containing a solution of 5.4 g of TsNSO ( 24.9 mmol ) in 50 mL of benzene (THF or $\mathrm{CH}_{3} \mathrm{CN}$ gave equivalent results) was added, with stirring and cooling (ice bath), 3.6 mL of $\hat{\beta}$-pinene ( 22.7 mmol ). After stirring overnight at room temperature, the solution was concentrated to about one-half of its volume and cooled. The resulting white precipitate was collected and washed with a small amount of hexanes. After drying in vacuo, 7.13 g of 6.6 -dimethylbicyclo[3.1.1] hept-2-en-2-yl- $N$-( $p$-toluenestlfonyl)methylsulfinamide (3) was obtained ( $89 \%$ ), mp 137-139 ${ }^{\circ} \mathrm{C}$ : IR ( KBr ) 3050 ( NH ), 2920 (CH), 1595, 1375 ( $\mathrm{SO}_{2}$ ), 1320, 1185, 1165 ( $\mathrm{SO}_{2}$ ), 1080, 1065, 860 , and $815 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.0(1 \mathrm{H}$, broad s, exchangeable with $\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}$ ), 7.9-7.2 ( $4 \mathrm{H} . \mathrm{q}$, aromatic), 5.60 ( 1 H , broad s, olefinic), $3.55\left(2 \mathrm{H}\right.$, broad s, $\left.-\mathrm{CH}_{2} \mathrm{~S}\right), 2.4\left(3 \mathrm{H}\right.$, s, aromatic $\left.-\mathrm{CH}_{3}\right)$, $2.2(5 \mathrm{H}, \mathrm{m}$, ring -H$), 1.2\left(3 \mathrm{H}\right.$, s. $\left.-\mathrm{CH}_{3}\right), 1.0(1 \mathrm{H}, \mathrm{m}$, bridgehead and $0.7(3 \mathrm{H}, \mathrm{d}$, $-\mathrm{CH}_{3}$ ). Upon standing at room temperature in the solid state, 14 s.owly decomposed to $\beta$-pinene and a solid residue consisting mostly of $\mathrm{TsNH}_{2}$.
Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2}: \mathrm{C}, 57.76 ; \mathrm{H}, 6.56 ; \mathrm{N}, 3.96$. Found: C , 57.00; H, 6.90; N, 3.80.

Allylic Deuteration of $\beta$-Pinene with TsNSO (1). A solution of 520 mg of TsNSO ( 2.4 mmol ) in 20 mL of benzene was prepared in a $50-\mathrm{mL}$ round-bottomed flask under anhydrous con lition. $\beta$-Pinene ( 0.32 mL 2 mmol ) was added with stirring. The reaction could be conveniently monitored by GLPC for the disappearance of olefin (after the removal of the adduct by passing an aliquct through a plug of neutral alumina with hexanes). When the reaction was complete ( 6 h ), 2 mL of $\mathrm{D}_{2} \mathrm{O}$ ( $>99.7 \%$ isotopic purity, obtained from Merck Sharp \& Dohme, Ltd.) was added to the flask. After stirring at room temperature for 15 min while fitting the flask with a reflux condenser, the mixture was heated (oil bath at $90^{\circ} \mathrm{C}$ ) for 12 h (after which time no adduct remained by TLC). The benzene layer was separated and passed through a short column of silica gel ( 30 g ) with hexanes ( 50 mL ). The resulting solution was concentrated to leave 190 mg of crude
product which was kugelrohr distilled $\left(90-100^{\circ} \mathrm{C}\right.$, water aspirator pressure) to give 162 mg of trans-3-deuterio- $\beta$-pinene (59\%): NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.5\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}\right), 2.35(3 \mathrm{H}, \mathrm{m}$, ring H$), 1.9(3 \mathrm{H}, \mathrm{m}$, ring H), $1.4(1 \mathrm{H}, \mathrm{d}$, bridgehead H$), 1.25\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right)$ and $0.7(3 \mathrm{H}, \mathrm{s},-$ $\mathrm{CH}_{3}$ ). Mass spectral analysis showed the deuterated $\beta$-pinene to be $14 \% d_{0}$ and $86 \% d_{1}$.

Allylic Deuteration of 1 -Carvone Using TsNSO. A mixture of 1.0 g of $l$-carvone (Aldrich, $6.66 \mathrm{mmol},[\alpha]^{25} \mathrm{D}-55.6^{\circ}$ (c $8.65, \mathrm{EtOH}$ )) and 2.89 g of TsNSO ( 13.3 mmol ) was stirred in 20 mL of benzene in a $50-\mathrm{mL}$ round-bottomed flask (anhydrous conditions) for 24 h . GLPC showed no olefin remaining, so 12 mL of $\mathrm{D}_{2} \mathrm{O}(>99.7 \% d)$ was added and the mixture refluxed for 7.5 h . The reaction was cooled, taken up in ether which was washed once with $\mathrm{H}_{2} \mathrm{O}$ and once with brine, and dried. Filtration and evaporation left 700 mg of crude oil which was kugelrohr distilled ( $50-70^{\circ} \mathrm{C}, 0.5$ Torr) to give 450 mg of deuterated $l$-carvone contaminated with approximately $5 \%$ dehydrocarvacrol. Pure $l$-carvone, isolated by preparative GLPC ( $8 \mathrm{ft} \times 1 / 4 \mathrm{in}$. $20 \%$ SE-30 on $45 / 60$ mesh Chromsorb W. $150^{\circ} \mathrm{C}$ ) was $13 \% d_{0}, 46 \% d_{1}, 35 \% d_{2}$ and $6 \% d_{3}$, and showed little change in optical rotation ( $[\alpha]^{25} \mathrm{D}-54.7^{\circ}$ (c 8.45, EtOH )).

The excess deuterium was exchanged by heating the crude deuterated $l$-carvone ( 250 mg ) in 5 mL of $60 \% \mathrm{EtOH}$ containing 3 drops of $50 \% \mathrm{NaOH}$ solution at $50-60^{\circ} \mathrm{C}$ for 3 h in a $25-\mathrm{mL}$ round-bottomed flask under $\mathrm{N}_{2}$. Extraction with hexane (washed once with $\mathrm{H}_{2} \mathrm{O}$ and once with brine, and dried) followed by evaporation gave 240 mg of yellowish oil which was kugelrohr distilled to give 230 mg of 10 -deu-terio-l-carvone ( $90 \%$, $39 \%$ overall): NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 6.75(1 \mathrm{H}, \mathrm{m}$, olefinic), $4.7\left(2 \mathrm{H}\right.$, broad s, $\left.=\mathrm{CH}_{2}\right), 2.5(5 \mathrm{H}, \mathrm{m}$, ring H) and $1.75(5 \mathrm{H}$, two overlapping $\mathrm{s},-\mathrm{CH}_{3}$ and $-\mathrm{CH}_{2} \mathrm{D}$ ). A pure sample of 10 -deu-terio-l-carvone was collected by preparative GLPC: $16 \% d_{0}, 82 \% d_{1}$, and $2 \% d_{2},[\alpha]^{25}$ D $-55.0^{\circ}$ (c $9.45, \mathrm{EtOH}$ ).

Allylic Tritiation of $\alpha$-Methylstyrene. In a dry $25-\mathrm{mL}$ roundbottomed flask fitted with a reflux condenser and $\mathrm{CaCl}_{2}$ trap, a mixture of 670 mg of $N$-( $p$-toluenesulfony) $)$ - 2 -phenyl-2-propenylsulfinamide ${ }^{6}$ ( 2 mmol , recrystallized from $\mathrm{CHCl}_{3}$ and dried in vacuo) and 0.1 mL of $1 \mathrm{Ci} / \mathrm{mL} \mathrm{T}_{2} \mathrm{O}(100 \mathrm{mCi})$ in 5 mL of benzene was refluxed for 14 h . After cooling, 5 mL of pentane was added and the organic phase eluted through a $7.0 \times 0.5 \mathrm{~cm}$ silica gel column with an additional 5 mL of pentane (this removes the $\mathrm{T}_{2} \mathrm{O}$ and the $p$-toluenesulfonamide). The resulting solution was concentrated to afford 120 mg of an oil which was kugelrohr distilled ( $80-90^{\circ} \mathrm{C}$, water aspirator pressure) to give 110 mg (49\%) of tritiated $\alpha$-methylstyrene: specific radioactivity $=1.78 \times 10^{6} \mathrm{dpm} / \mu \mathrm{mol}$ or $0.8 \mu \mathrm{Ci} / \mu \mathrm{mol}$; GLPC analysis ( 6 ft $\times 0.125 \mathrm{in}$. OV-17 on $80 / 100$ mesh Gas Chrom Q, $70^{\circ} \mathrm{C}$ ) showed only one peak which coinjected with an authentic sample. Redistillation of the product caused no change in the specific activity. The original $100 \mu \mathrm{~L}$ of $\mathrm{T}_{2} \mathrm{O}$ contained about 11 mmol of protons and another 2 mmol of protons were introduced with the sulfinamide adduct. Thus the 100 mCi of activity was distributed over 13 mmol of protons resulting in a specific activity for the reaction medium of $7.7 \mathrm{mCi} / \mathrm{mmol}$ of $\mathrm{H}^{+}$. The activity of the $\alpha$-methylstyrene was $0.8 \mathrm{Ci} / \mathrm{mmol}$, which represents incorporation of tritium into the sample at a specific radioactivity $10 \%$ that of the reaction medium (based on replacement of one allylic hydrogen). Replacement of $\mathrm{T}_{2} \mathrm{O}$ by 0.1 mL of $\mathrm{D}_{2} \mathrm{O}$ under identical conditions and workup gave $\alpha$-methylstyrene which was $25 \%$ $d_{0}, 40 \% d_{1}, 22 \% d_{2}$, and $10 \% d_{3}$.

2-Phenylcyclohex-2-enyl- $\boldsymbol{N}$-methyl- $\boldsymbol{N}$-( $\boldsymbol{p}$-toluenesulfonyl) sulfinamide. In a $50-\mathrm{mL}$ round -bottomed flask with a magnetic stirrer, under anhydrous conditions, 3.25 g of TsNSO ( 15 mmol ) was added to a solution of 1.0 g of 1-phenyl-1-cyclohexene ( 6.3 mmol , Aldrich Chemical Co.) in 20 mL of benzene. After 36 h , the reaction mixture was cooled in a refrigerator for approximately 1 h . The resulting precipitate was collected by suction filtration (washed with 25 mL of dry pentane) and dried ( $1.90 \mathrm{~g}, 80 \%$ yield of 2-phenylcyclo-hex-2-enyl- $N$-( $p$-toluenesulfonyl)sulfinamide). This solid ( 5 mmol ) was suspended in 40 mL of benzene and 0.80 mL of $\mathrm{Et}_{3} \mathrm{~N}(5.7 \mathrm{mmol})$ was added followed by 0.6 mL of dimethyl sulfate ( 96.3 mmol ). After 2 h at room temperature, the reaction was taken up in ether which was washed twice with $\mathrm{H}_{2} \mathrm{O}$, once with brine, and dried. Filtration and evaporation left 0.96 g of a white solid which was purified by column chromatography ( 25 g of silica gel, packed with hexane and eluted with 100 mL : hexanes, $5 \%$; EtOAc/hexanes, $10 \%$, 15\%; 10-mL fractions). Concentration of the appropriate fractions gave $0.52 \mathrm{~g}(26 \%)$ of the $N$-methyl adduct (recrystallized from EtOAc/hexanes), mp 160-161 ${ }^{\circ} \mathrm{C}$ (decomposition with evolution of gas), $R_{f}=0.47$ ( $35 \% \mathrm{EtOAc} /$ hexanes), not very soluble in ether, benzene, or EtOAc : $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ 2940, 1595, 1490, 1445, $1360\left(\mathrm{SO}_{2}\right) .1305,1165\left(\mathrm{SO}_{2}\right), 1090.900$, and $890 \mathrm{~cm}^{-1}$; NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 7.2-7.9(4 \mathrm{H}), 4.15\left(1 \mathrm{H}\right.$, broad s, $\left.\mathrm{R}_{2} \mathrm{CHS}\right)$, $2.4\left(6 \mathrm{H}\right.$, s, aromatic $-\mathrm{CH}_{3}$ and $\mathrm{NCH}_{3}$, addition of shift reagent causes spliting into 2 singlets in ratio of $-: 1$ ) and 2.4-1.8 ( $6 \mathrm{H}, \mathrm{m}$, ring H ).

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}_{2}$ : $\mathrm{C}, 61.67 ; \mathrm{H}, 5.95 ; \mathrm{N}, 3.60$. Found: C , 61.56; H, 5.98; N, 3.64.

Pyrolysis of 2-Phenylcyclohex-2-enyl- N -methyl- N -( $\boldsymbol{p}$-toluenesulfonylisulfinamide. Injection of a $25 \%$ solution of the N methyl adduct in $\mathrm{CH}_{3} \mathrm{OH}$ directly into the gas chromatograph (injection port temperature $250^{\circ} \mathrm{C}$ ) gave (by area $\%$ ) $6.4 \% 1$-phenylcyclohexene, $3.6 \%$ biphenyl, and $90 \%$ diene.
The diene was isolated by preparative GLPC ( $20 \mathrm{ft} \times 3 / 8 \mathrm{in}$. stainless steel, $20 \%$ Carbowax 20 M on $45 / 60$ mesh Chromsorb W at $200^{\circ} \mathrm{C}$, $t_{r}$ $=22 \mathrm{~min}\left(t_{\mathrm{r}}(\right.$ biphenyl $)=26.5 \mathrm{~min}, t_{\mathrm{r}}(1$-phenylcyclohexene $)=19 \mathrm{~min}$, collected at liquid $\mathrm{N}_{2}$ temperatures). The resulting oil was weighed and dissolved in cyclohexane: $\mathrm{UV}_{\text {max }} 279 \mathrm{~nm}(\epsilon 7500)$.

Some biphenyl ( 230 nm ) was present. Both 2 -phenyl-1,3-cyclohexadiene ( $276 \mathrm{~nm}(\epsilon 8140$ )) and 1-phənyl-1,3-cyclohexadiene ( 303 $\mathrm{nm}(\epsilon 13800)$ are known. ${ }^{14}$ Not more than $14 \%$ of the 1 -phenyl isomer can be present in the isolated samples.

Both 1-phenylcyclohexene and biphenyl were identified by coinjection which authentic samples. Biphenyl was isolated and found to be identical (TLC, melting point, and mixture melting point) with an authentic sample.

Acknowledgments. We are grateful to our colleagues, Yak Cheung and Christopher T. Walsh, for assistance with the tritium incorporation experiments. We thank the National Science Foundation (CHE 74-21260) and the National Institutes of Health (GM 21686) for financial support.

Registry No.-p-Toluenesulfonamide, 70-55-3; thionyl chloride, 7719-09-7; $N, N$-dichloro- $p$-toluenesulfonamide, 473-34-7; methanesulfonamide, 3144-09-0; $N$-( $p$-toluenesulfonyl)-2-phenyl-2propenylsulfinamide, 64976-25-6; $\alpha$-methyl- $\beta$-tritriostyrene, 64976-26-7; 1-phenyl-1-cyclohexene, 771-98-2; 2-phenyl-cyclohex-2-enyl- $N$-( $p$-toluenesulfonvl)sulfinamide, 64976-27-8; 2-phenylcyclohex-2-enyl- $N$-methyl- $N$-( $p$-toluenesulfonyl)sulfinamide, 64976-28-9; biphenyl, 92-52-4; 2-phenyl-1,3-cyclohexadiene, 15619-34-8; 1-phenyl-1,3-cyclohexadiene, 15619-32-6.

## References and Notes

(1) K. B. Sharpless. T. Hori, L. K. Truesdale and C. O. Dietrich, J. Am. Chem. Soc., 98, 269 (1976).
(2) K. B. Sharpless, K. M. Gordon, R. F. Lauer, D. W. Patrick, S. P. Singer, and M. W. Young, Chem. Scr., 8A, 9 (1975).
(3) K. B. Sharpless and S. P. Singer, J. Org. Chem., 41, 2504 (1976).
(4) K. B. Sharp ess and T. Hori, J. Org. Chem., 41, 176 (1976).
(5) S. Singer and K. B. Sharpless, preceding paper in this issue.
(6) N. Schönberger and G. Kresze, Jus'us Liebigs. Ann. Chem., 1725 (1975).
(7) For a general review, see H. M. R. Hoffmann. Angew. Chem., Int. Ed. Engl., 8, 556 (1969). The first example of an ene reaction of an $\mathrm{O}=\mathrm{S}=\mathrm{N}-$ noiety was in 1966 [E. Kataev and V. Plemenkov, J. Org. Chem. USSR, 2, 1119 (1966)]. The ene reaction of $N$-sulfinylsulfonamides was also discovered כy Kresze (ref 6).
(8) G. Kresze and W. Wucherpfennig. Angew. Chem., Int. Ed. Engl., 6, 149 i1967).
(9) R. K. Hill, J. W. Morgan, R. V. Shetty, ard M. E. Synerholm, J. Am. Chem. Soc., 96, 4201 (1974).
(10) V. Garsky, D. Koster, and R. T. Arnold, J. Am. Chem. Soc., 96, 4207 (1974).
(11) M. A. Umbreit and K. B. Sharpless, J. Am. Chem. Soc., 99, 5526 (1977).
(12) Kresze has also noticed aromatization in the reaction of sulfur diimides with certain olefins [G. Kresze and N. Schönberger, Justus Liebigs Ann. Chem., 847 (1974)].
(13) G. Buchi and H. Wüest, J. Org. Chem., 34, 857 (1969)
(14) P. J. Grinsdaie, J. Org. Chem., 33, 1116 (1968).
(15) ia) S. P. Singer, Ph.D. Thesis, Massachusetts Institute of Technology, Jan 1977. Cyclooctene afforded the $N$-methyl adduct (mp $109-111^{\circ} \mathrm{C}$ ) in $34 \%$ jield, and destructive kugelrohr distillation of the adduct at $150-175^{\circ} \mathrm{C}$ gave 1,3 -cyclooctadiene in $75 \%$ yield. (E)-5-Decene gave the N -methyl adduct in $46 \%$ yield and destructive kugelrohr distillation ( $150-175^{\circ} \mathrm{C}$ ) produced 4.6 -decadiene (as a mixture of $E$ and $Z$ isomers) in $72 \%$ yield. (b) The methylation of the initial ene adducts appears to be the source of :he trouble, but in spite of considerable effort (ref 15a), we were not able :o obtain high yields in this step. In the case of cyclooctene and (E)-5decene the ene adducts with Ts $\mathrm{N}=\mathrm{S}=\mathrm{O}$ were dissolved in DMF and :reated witr aqueous $\mathrm{Me}_{4} \mathrm{NOH}$ followed by $\mathrm{CH}_{3}$ l to afford the N -methyl adducts mentioned above.
(16) D. A. Evans and G. C. Andrews, Acc. Chem. Res., 7, 147 (1974).
(17) n an attemot to force 3 or its N -methul derivative to undergo 2,3 rear--angement to either an allylic alcohol or allylic sulfonamide, it was treated with various thiophiles ( $\mathrm{Et}_{2} \mathrm{NH}, \mathrm{Et}_{2} \mathrm{NH}-\mathrm{HCl}, \mathrm{Ac}_{2} \mathrm{O}$, trivalent phosphorus sompounds, thiols, thioacetic acid, and $\mathrm{HgCl}_{2}$ ). Only $\beta$-pinene could be recovered in all cases.
(18) <. Biemann, "Mass Spectrometry, Crganic Chemical Applications'", McGraw-Hill, New York, N.Y., 1962.
(19) This experiment was performed by John-Stephen Taylor and we are grateful for his assistance.
(20) TsNSO is also obtainable $\left(80 \%\right.$ yield) by reaction of $\mathrm{TsNCl}_{2}$ with $\mathrm{SOCl}_{2}$ : W. A. Zunrebeld, Ph.D. Thesis, University of Amsterdam, 1969. We are grateful to Professor W. N. Speckamp of the University of Amsterdam for informing is of this ncvel and effective route to TsNSO.
(21) (a) For preparation of $\mathrm{TsNCl}_{2}$, see F. Muth, in Houben-Weyl, "Methoden der Organishen Chem e", 4th ed, Georg Thieme Verlag, Stuttgart, Vol. 9, 1955, p 642. (b) $\mathrm{TsNCl}_{2}$ is also available from Pfaltz and Bauer, Inc. and MC \& B Manufacturinc Chemists.

## Aliphatic Azoxy Compounds. 7. Unsymmetrical (Dialkoxymethyl)phenyldiazenes: Deoxygenation of an Azoxy Function ${ }^{1}$

## K. Grant Taylor* and J. Brandon Simons

Department of Chemistry, University of Louisviile, Louisville, Kentucky 40208

## Rectived September 2, 1977

In an investigation of the reactivity of the biologically important distal carbon atom of a model azoxyalkane, we observed that la was converted, in good yield, to phenyldimethoxymethyldiazeze (2a). ${ }^{2}$ We wanted to know if the reaction conditions pernitted the incorporation of two different alkoxyl grouy nucleo ${ }^{\text {hiles }}$ into 2 or if alkoxyl group interchange (e.g., via addition to tautomer $3^{3}$ ) would prevent this. In so doing we wantel to learn more about the scope of this reaction for the synthesis of compounds 2 , ar. unusual, and new, class of azo com Jound. Herein we report on the preparation, stability, and sjectral properties of $\mathbf{2 b}$-d, results which apply in a practical way to the questions raised above.

The starting azoxy compound 1 c was prepared by the procedure usきd previcusly for $\mathbf{l a , b , d} .^{2}$ Compounds $\mathbf{l b - d}$ were smoothly converted to liquids $\mathbf{2 b}$-d by treatment with triethylamine in methanol at $25^{\circ} \mathrm{C}$ in the presence of a drying agent (see Scheme I). Conversion of 1 to 2 was $95-98 \%$ complete as determined by VPC; isolated yields of $49-58 \%$ of $98 \%$ pure 2 were cbtained after silica gel chromatography. Diazene 2c was prepared in zomparable yield by alternate routes starting with 1a in 1-propanol and using triethylamine or potassium hydroxide as bases. Diazene 2c was stable for more than 1 day in refluxiny 0.05 N aqueous methanolic potassium hydroxide solution, conditions expected to hydrolyze hydrazone 3 should it be formed in situ. In contrast, 2c was quickly destroyed in 0.03 N hydrochloric acid at room temperature.


3

Table I. Spectral Features of (Dialkoxymethyl)phenyldiazenes $\mathbf{2}^{\boldsymbol{a}}$

| Compd | Registry no. | R | ${ }^{1} \mathrm{H}$ chemical shift, $\delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)$ |  |  |  |  | $\begin{gathered} \mathrm{UV} \lambda_{\text {max }}(\mathrm{EtOH}), \\ \mathrm{nm}(\log \epsilon) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | CH | $\mathrm{OCH}_{3}$ | $\alpha$ | $\beta$ | $\gamma$ |  |
| $2 \mathbf{b}^{\text {b }}$ | 65102-03-6 | $-\mathrm{CH}_{2 \alpha} \mathrm{CH}_{3 \beta}$ | 5.09 | 3.48 | $3.80{ }^{\text {c }}$ | 1.19 |  | 269 (3.92), 215 (3.95) |
| $2 c^{\text {d }}$ | 65102-04-7 | $-\mathrm{CH}_{2 \alpha} \mathrm{CH}_{2 \beta} \mathrm{CH}_{3 \gamma}$ | 5.02 | 3.53 | $3.72{ }^{\text {c }}$ | 1.63 | 0.95 | 268 (3.96), 215 (4.01) |
| $2 d^{b}$ | 65102-05-8 | $-\mathrm{CH}_{2 \alpha} \mathrm{CH}_{\beta}=\mathrm{CH}_{2 \gamma}$ | 5.18 | 3.55 | 4.38 | 5.0-5.4 | 5.6-6.2 | 269 (3.92), 214 (4.02) |

${ }^{a}$ All compounds showed NMR absorptions at $\delta 7.7$ for $o-\mathrm{Ph}$ and at $\delta 7.5$ for $m$ - and $p$ - Ph protons; IR absorptions included those at 1520 (medium, $\nu_{\mathrm{N}=\mathrm{N}}$ ), 1120 and $1060 \mathrm{~cm}^{-1}$ istrong, $\nu \mathrm{CO}$ acetal). ${ }^{b} \mathrm{NMR}$ solvent: acetone- $d_{6}{ }^{c}$ Diastereotopic splitting of the expected multiplet was observed. ${ }^{d} \mathrm{NMR}$ solvent: $\mathrm{CCl}_{4}$.

The structures of $\mathbf{2 b}$-d are based on their elemental analyses and the spectral data gathered in Table I. The spectral features which distinguish the diazenes 2 from a possible (tautomeric) hydrazone structure are (1) the chemical shift of the methylidyne H , $\hat{\delta} 4.9-5.2$ (vs. $\delta>6.5$ for the usually broad phenylhydrazone $\mathrm{NH}^{4}$ ), (2) the value of the UV extinction coefficient ( $\epsilon$ ) for the $260-280-\mathrm{nm}$ absorption of phenylalkyldiazenes near $10000^{5}$ (vs. 18000-20 000 for the similar absorption of phenylhydrazones ${ }^{6}$ ), and (3) the absence of NH stretch in the IR spectra of 2 (vs. $\nu_{\mathrm{NH}}$ of $3300-3450 \mathrm{~cm}^{-1}$ for hydrazones ${ }^{6}$ ).

The conversion of 1 to 2 , analogous to the conversion of di(1-butyl)diazene oxide to 1-butyl-2-pentyldiazene by methyllithium, ${ }^{7}$ joins the growing list of selective transformations which can be effected at both distal ${ }^{2}$ and proximal ${ }^{8}$ carbon atoms of azoxyalkanes.

## Experimental Section

General. For instruments used see the Experimental Section of ref 2 . VPC analyses were performed using the following aluminum tubing columns: A, $4 \mathrm{ft} \times 0.25 \mathrm{in}$. $10 \%$ SE- 30 on Chromosorb W (AW and DMCS); B, $6 \mathrm{ft} \times 0.25 \mathrm{in}$. $5 \%$ silicone oil Dow 710 on Chromosorb W (AW and DMCS); C, $6 \mathrm{f}=\times 0.125 \mathrm{in} .5 \%$ UCW 98 on Diatoport S. Dialkyldiazene oxides are animal carcinogens. However, phenylhydroxymethyldiazene 1 -oxicie ( $1, \mathrm{R}=\mathrm{H}$ ) produced no tumors in rats at dose levels which with dimethyldiazene oxide produced tumors with $100 \%$ frequency. ${ }^{9}$
( $Z$ )-Phenylpropoxymethyldiazene 1-Oxide (1c). The title compound was prepared in $85 \%$ yield using the silver carbonate procedure described in ref 2. Preparative VPC (column A) provided an analytical sample: NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{o}-\mathrm{Ph}), 7.4(\mathrm{~m}, 3 \mathrm{H}$, $m$ - and $p-\mathrm{Ph}$ ), $5.15\left(\mathrm{~s}, 2 \mathrm{H}\right.$, distal $\mathrm{CH}_{2}$ ), $3.62\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 1.71(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CCH}_{2}$ ), 0.97 (t, $3 \mathrm{H}, \mathrm{CH}_{3}$ ); IR (neat) $1490,1425,1355$, and 1325 $\mathrm{cm}^{-1} ; \mathrm{UV} \lambda_{\max }\left(95 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 247 \mathrm{~nm}(\epsilon 10500)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 61.84; $\mathrm{H}, 7.27$. Found: C, 61.61; H, 6.98.
( $\boldsymbol{E}$ )-(Methoxyethoxymethyl) phenyldiazene (2b). ${ }^{10}$ A mixture of $0.560 \mathrm{~g}(3.1 \mathrm{mmol})$ of $1 \mathrm{~b}, 0.50 \mathrm{~g}$ of triethylamine, 0.50 g of magnesium sulfate, and 0.25 g of calcium sulfate in 7 mL of methanol was stirred 1 day at room temperature. After filtration and concentration in vacuo the resulting red oil was chromatographed over 30 g of silica gel. Elution with benzene gave $0.30 \mathrm{~g}(50 \%)$ of $95 \%$ pure $\mathbf{2 b}$ as a red oil. Preparative VPC using column B gave an analytical sample. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ : $\mathrm{C}, 61.84 ; \mathrm{H}, 7.74$. Found: $\mathrm{C}, 62.00 ; \mathrm{H}, 7.38$.
( $E$ )-(Methoxypropoxymethyl)phenyldiazene (2c). This compound was prepared from Ic and methanol in $58 \%$ yield, $98 \%$ pure, by the method described for 2b. Preparative VPC on column A gave an analytical sample. Alternately, 2c was prepared in similar yield from la and 1-propanol using triethylamine as base and from la, 1propanol, and 0.2 mol equiv of 1 N KOH . Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C. 63.44; H, 7.74. Found: C, 63.22; H, 7.57.
(E)-(Methoxy-2-propenoxymethyl)phenyldiazene (2d). This compound was prepared from 1d in $49 \%$ yield by the method used to make 2b. Preparative VPC asing column B gave an analytical sample. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 64.06; $\mathrm{H}, 6.84$. Found: $\mathrm{C}, 63.88 ; \mathrm{H}$, 6.78.

Stability Studies. A solution of 0.10 g of 2 c in 0.5 mL of 0.1 N açueous hydrochloric acid and 1.0 mL of methanol was stirred at room temperature. VPC analysis (column C) after 1 h showed no trace of 2 c .

VPC analysis (column C) of a solution of $2 \mathbf{c}$ in 0.5 mL of methanolic 0.1 N KOH and 0.5 mL of water showed no loss of 2 c after 1 day at reflux and $10 \%$ loss of 2 c after 6 days at reflux.

Registry No.-1b, 57496-83-0; 1c, 65102-06-9; 1d, 57496-85-2; methanol, 67-56-1.

## References and Notes

(1) (a) This work was supported in part by the donors of the Petroleum Research Fund, administered by the American Chemical Society; (b) For part 6, see K. G. Taylor, S. R. Isaac, and J. L. Swigert, J. Org. Chem., 41, 1146 (1976).
(2) K. G. Taylor and M. S. Clark, Jr., d. Org. Chem., 41, 1141 (1976).
(3) (a) A. J. Bellamy and R. D. Guthrie, J. Chem. Soc., 3628 (1965); (b) R. A. Cox and E. Buncel, 'The Chemistry of the Hydrazo, Azo and Azoxy Groups'", Part 2, S. Patai, Ed., Wiley, New York, N.Y., 1975, Chapter 18; (c) B. V. Ioffe and V. S. Stopskij, Tetrahedron Lett., 1333 (1968).
(4) G. J. Karabatsos and R. A. Taller, J. Am. Chem. Soc., 85, 3624 (1963).
(5) (a) P. C. Iffland, L. Salisbury, and W. R. Schaefer, J. Am. Chem. Soc., 83, 747 (1961); (b) A. J. Bellamy and R. D. Guthrie, J. Chem. Soc., 2788 (1965).
(6) R. O'Connor, J. Org. Chem., 26, 4375 (1961).
(7) F. D. Greene and S. S. Hecht, J. Org. Chem., 35, 2482 (1970).
(8) R. A. Moss and M. Matsuo, J. Am. Chem. Soc., 99, 1643 (1977), and reterences cited therein.
(9) Norman D. Nigro, Department of Surgery, Wayne State University School of Medicine, private communication.
(10) The assignment of compounds $\mathbf{2}$ as $E$ diastereomers is based on the $\hat{0} 7.7$ chemical shift of the ortho protons of the phenyl rings. These protons resonate at $\delta 6.4$ in (Z)-alkylphenyldiazenes. ${ }^{11}$
(11) S. N. Ege and R. R. Sharp. J. Chem. Soc. B, 2014 (1971).

# An Improved Method for the Synthesis of Stabilized Primary Enamines and Imines 

James A. Kloek* and Kindrick L. Leschinsky<br>Monsanto Agricultural Products Company, Research Department, St. Louis, Missouri 63166

## Received Septemter 27, 1977

Primary $\beta$-enamino carbonyl compounds are interesting as potential intermediates in the synthesis of natural and synthetic compounds possessing biological activity. They are rendered especially versatile by their reactivity at both nitrogen and the $\alpha$ carbon, with the possibility existing of systematically directing reaction at either site. ${ }^{1}$ Established syntheses of these compounds proceed from the corresponding $\beta$-dicarbonyl compound using ammonia ${ }^{2}$ or a synthetic equivalent of ammonia ${ }^{3}$ to form the enamine. Although these methods are useful, both lack generality when dealing with multifunctional compounds which are sensitive to the strongly basic and nucleophilic reagents required by each. Thus, the Dieckmann-Prelog method ${ }^{2}$ (direct treatment with ammonia) is time consuming and apparently limited to structurally simple $\beta$-keto esters. ${ }^{3}$ The Takaya method, ${ }^{3}$ while more general in scope, requires in its second step the use of sodium ethoxide in refluxing ethanol, conditions which are often destructive to other moieties in a potential substrate, particularly exchangeable esters.

This note describes a new method for effecting this transformation which uses a markedly less nucleophilic reagent and proceeds under acid catalysis. $N$-Trimethylsilyliminotri-
Entry
${ }^{a}$ All compounds listed had physical and spectral properties consistent with those in the literature or satisfactory elemental analysis. $b$ Yields represent isolated material and have not been maximized in all cases.
phenylphosphorane (I) (easily prepared from triphenylphosphine and azidotrimethylsilane ${ }^{4}$ ) reacts with $\beta$-dicarbonyl compounds (II) in the presence of a molar equivalent of a secondary alcohol and a catalytic amount of $p$-toluenesulfonic acid to afford the corresponding $\beta$-amino- $\alpha, \beta$-unsaturated carbonyl compounds (III). The results are summarized in


Tab.e I. As can be seen from entry 7, the reagent also forms unccnjugated imines, providing they are stable to the reaction concitions. Particularly noteworthy is the lack of ester excharge in the $\beta$-keto esters.

The observation that no reaction takes place in the absence of the alcohol suggests that the method proceeds by in situ generation of iminotriphenylphosphorane. ${ }^{5}$ Thus the initial step is cleavage of the nitrogen-silicon bond to form the unprotected iminophosphorane anc the corresponding trimethylsilyl alkoxide IV. ${ }^{6}$ Condensation with the ketone then follows, affording the desired product III and triphenylphosphine oxide. Credence to this mechanism is lent by the repcrt that iminotriphenylphosphorane itself undergoes a similar condensation with certain exceptionally reactive ketones. ${ }^{5,7}$

The principal limitation seems to be the stability of the product to the reaction conditions. Thus, when the sequence was employed with cyclohexanone, the ketone was consumed
and triphenylphosph ne oxide was produced, but no volatile products were found. Presumably the imine was formed and then underwent rand $>m$ selfcondensation.

In summary, the rethod described has the following advantages. It allows for the rapid, one-step conversion of appropriate ketones to their corresponding primary enamines or imines. It is the only method available for effecting this conversion without the use of strong bases and/or nucleophiles, thus allowing synthesis of a wider variety of target molecules, particularly those containing exchangeable esters. Lastly, the reagent is easily synthesized and can be readily manipulated without fear of atmospheric hydrolysis.

## Experimental Section

General Procedure for the Condensation of $\boldsymbol{N}$-Trimethylsilyliminotriphenylphosphorane (I) with Ketones. To a solution of 1 molar equiv each of the desired keto compound, isopropyl alcohol, and I in a convenient amount of benzene was added a catalytic amount of $p$-toluenestilfonic acid. The resulting solution was refluxed until the reaction was complete ( $4-8 \mathrm{~h}$ ). The solution was cooled, concentrated on a rotary evapcrator, and diluted with ether. The resulting precipitate of triphenylohosphine oxide was removed by filtration, and the filtrate was concentrated again. The resulting crude product was purified by distillation.

Registry No.-I, 13\&92-06-3.

## References and Notes

(1) Successful control of the site of reactivity has been achieved in a recently completed synthetic study involving certain phytotoxins: J. A. Kloek and K. L. Leschinsk $\%$, manuscr $p$ in preparation.
(2) (a) W. Dieckman, Justus Liebigs Ann. Chem., 317, 27 (1901); (b) V. Prelog and S. Szpilfogel, Helv. Chim. Acta, 28, 1684 (1945).
(3) T. Takaya, H. Yoshimoto, and E. Imoto, Bull. Chem. Soc. Jpn., 41, 2176 (1968).
(4) L. Birkofer, A. Ritter, and P. Richter, Chem. Ber., 96, 2750 (1963).
(5) (a) R. Appel and A. Hauss, Chem. Ber., 93, 405 (1960); (b) Z. Anorg. Allg. Chem., 311, 290 (1961).
(6) L. Birkofer, A. Ritter, and S. M. Kim, Chem. Ber., 96, 3099 (1963).
17) While one could picture iminotriphenylphosphorane itself effecting the transformation described here, its experimental use proves to be less than ideal. Since simple exposure to the atmosphere results in hydrolysis to ammonia and triphenylphosphine oxide, rigoro ssly anhydrous conditions are required for its synthesis, storage, and use. Reactions of this reagen with other than the most highly reactive of ketones are thus often complicated by decomposition of the reagent. In contrast, the trimethylsilyl-protected compound employed here is stable to atmospheric moisture and requires no undue care in its manipulations.

## Studies in the ( + )-Morphinan Series. 4. ${ }^{1}$ A Markedly Improved Synthesis of ( + )-Morphine

Ikuo Iijima, ${ }^{2 a}$ Jun-ichi Minamikawa, ${ }^{2 b}$ Arthur E. Jacobson, Arnold Brossi and Kenner C. Rice*

Medicinal Chemistry'Section, National Institu'e of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, Bethesda, Marylana 20014

Received September 16, 1977
The absolute configuration of the morphinan skeleton of - )-sinomenine ( 1$)^{3}$ is enantiomeric to natura. ( - )-morphine, and conversion of 1 into $(+)$-morphine (10) was reported by


1

$2 \mathrm{a}, \mathrm{R}_{1}=\mathrm{OCH}_{3} ; \mathrm{R}_{2}=\mathrm{H}$ b, $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{OCH}_{3}$

$3, R_{1}, R_{1}=O ; R_{3}=H$

$\mathrm{CH}_{2} \mathrm{O}$
$4, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3} ; \mathrm{R}_{3}=\mathrm{H}$
$6, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3} ; \mathrm{R}_{3}=\mathrm{Br}$


7, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OCH}_{3} ; \mathrm{R}_{3}=\mathrm{CH}_{3}$
8, $\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{O} ; \mathrm{R}_{3}=\mathrm{CH}_{3}$
9, $\mathrm{R}_{1}=\mathrm{O} \mathrm{O} ; \mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{CH}_{3}$
$10, \mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
$11, R_{1}=O A c ; R_{2}=H ; R_{3}=A=$
Goto's group. ${ }^{4 a-c}$ To define morphine's interaction with opiate receptors more clearly, ${ }^{5}$ we wanted to prepare large quantities of unnatural enantiomer 10 and several of its congeners. We now summarize our results that followed, in principal, Goto's original scheme, ${ }^{4 a-c}$ but which implemented novel reactions and the findings of others, especially those of Rapoport et al. ${ }^{6}$ Rapoport's results in the natural ( - ) series became available only after we had started our project. A tenfold increase in the overall yield of (+)-morphine (10), previously reported by

Goto, from (-)-sinomenine (1) was accomplished as follows.

Catalytic reduction ${ }^{7}$ of 1 afforded a mixture of two diastereomers ( $\mathbf{2 a}$ and $\mathbf{2 b}$ ) which was separated by preparative thin-layer chromatography. The equilibrium mixture was reestablished by brief boiling of either isomer in methanol. Deuterium exchange of $\mathbf{2 a}$ and $\mathbf{2 b}$ allowed definitive assignment of the chemical shift of the C-5 and C-7 protons. Assuming that the preferential conformation of ring C is the chair form, the absolute configuration of 2 a and 2 b at $\mathrm{C}-7$ could be determined. Major isomer 2a and minor isomer 2b were assigned $7 R$ (axial H ) and $7 S$ (equatorial H ) configurations, respectively, for the following reasons. The chemical shift of the C-7 equatorial proton, due to the shielding effect of the carbonyl group in the $7 S$ isomer, lies upfield of the C-7 axial proton in the $7 R$ isomer, in accord with previous work on $\alpha$-methoxydecalones. ${ }^{8}$ The chemical shift of the $\mathrm{C}-7$ proton of the $7 S$ isomer was $\delta 3.36(\mathrm{t}, J=3.5 \mathrm{~Hz})$ and that of the $\mathrm{C}-7$ proton in the $7 R$ isomer was $\delta 3.90$ (center of d of d, $J=7,12$ Hz ), and the coupling constants were of the magnitude expected. The equatorially oriented C-7 methoxyl group in the $7 R$ isomer was deshielded by the carbonyl group ( $\delta 3.43$ ), as compared with the methoxy group in the $7 S$ isomer ( $\delta 3.30$ ), again in accord with $\alpha$-methoxydecalones. ${ }^{8}$ Molecular models (Dreiding) indicate that the major product might well be the $7 R$ isomer because of the less sterically hindered methoxyl group. The $\mathrm{C}-5$ equatorial proton in both $7 R$ and $7 S$ isomers was considerably deshielded, presumably due to its proximity to the aromatic ring (see Experimental Section). A similar effect was noted in dihydrothebainone. ${ }^{6}$

Since the next step, the acid-catalyzed $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization of $2 a$ and $2 b$ to 3 , with loss of methanol, proceeds under conditions which equilibrate the two epimers, the mixture was treated directly with polyphosphoric acid at $65-70^{\circ} \mathrm{C}$. Ketone 3 is rather stable under these reaction conditions, in contrast to Goto's ${ }^{9}$ more drastic conditions; and yields of desired ketone 3 were consistently 70-75\%.
Introduction of a double bond in the 7,8 position of $\mathbf{3}$ is not easy, and attempts to introduce it by direct oxidation were unsuccessful. This could, however, be accomplished by phenylselenation and oxidative elimination, but only after the $N$-methyl group was replaced by a $N$-carbethoxy group. ${ }^{10}$ Meanwhile, Rapoport's modification for converting (-)dihydrocodeinone (enantiomer of 3 ) into ( - )-codeinone (enantiomer of 8) became known ${ }^{6}$ and was successfully implemented in our plan, which now took the following course: ketalization of 3 to dimethyl ketal 4 ( $98 \%$ ); elimination of methanol with $p$-toluenesulfonic acid in chloroform to give enol methyl ether 5 (83\%); addition of methyl hypobromite, leading to bromodimethyl ke:al $6(75 \%)$; elimination of HBr with potassium tert-butoxide in $\mathrm{Me}_{2} \mathrm{SO}$ at room temperature instead of $60^{\circ} \mathrm{C}^{6}$ to give 7 (87\%); and deketalization of 7 with $5 \% \mathrm{HCl}$ instead of $\mathrm{AcOH}^{6}$ to give ( + )-codeinone ( $8 ; 96 \%$ ).

Compounds 3 and 5-8 showed the properties previously reported by Goto et al., and 3-8 had properties identical with the corresponding compounds in the $(-)$ series prepared as described by Rapoport, ${ }^{6}$ except for the optical rotation. Reduction of unsaturated ketone 8 with sodium borohydride in methanol ${ }^{11}$ afforded ( + )-codeine (9), which was converted into $(+)$-morphine (10) by O-demethylation ${ }^{12}$ with boron tribromide in chloroform. Unknown ( + )-heroin (11) was obtained from 10 by treatment with acetic anhydride. Crystallization from ethyl acetate gave prisms identical with authentic (-)heroin (enantiomer of 11), except for the sign of optical rotation. (-)-Heroin showed specific optical rotation $10^{\circ}$ higher than previously reported. ${ }^{13}$
$(+)$-Codeine (9), (+)-morphine (10), and ( + )-heroin (11) showed no analgesic activity on subcutaneous injection in mice in routine screening for centrally active analgesics. Unnatural
$(+)$-morphine (10) showed interesting central effects when injected intracerebrally in rats, suggesting the existence of multiple morphine receptors in the brain. ${ }^{14}$

## Experimental Section

Melting points were determined on a Thomas-Hoover melting point apparatus and are corrected. Elemental analyses were performed by the Section on Microanalytical Services and Instrumentation of this Laboratory. The identity and chemical purity of 3-11 were confirmed by direct comparison with authentic sam.ples of the enantiomeric ( - ) series. IR, NMR (using tetramethylsilane at $\delta 0.0$ as an internal reference), and mass spectra were obtained on Perkin-Elmer 257, Varian Model HR-220, and Hitachi RMU-6E ( 70 eV ) instruments, respectively. Optical rotations were measured with a Perkin-Elmer Model 141 polarimeter. Silica gel GF plates fo- analytical and preparative TLC were purchased from Analtech, In $2 .$, Newark, Del.
$7(R)$ - and $7(S)$-(+)-Dihydrosinomenine ( 2 a and 2 b ). Sinomenine ( $1 ; 16.6 \mathrm{~g}, 50.40 \mathrm{mmol}$ ) was dissolved in $\mathrm{MeOH}(450 \mathrm{~mL})$ and hydrogenated using $10 \% \mathrm{Pd} / \mathrm{C}$ as a catalyst until the absorption of hydrogen soopped at approximately 1 mol. After filtration of the catalyst, the solvent was evaporated to give an oil residue which solidified on the addition of ether ( 200 mL ), and the product was collected by filtration. This product ( 16.5 g ) melted at $190-195^{\circ} \mathrm{C}$ (lit. $7^{7}$ $\mathrm{mp} 198^{\circ} \mathrm{C}$ ) and was used for conversion to 3 without further purification. Preparative TLC of a portion ( 150 mg ) of this mixture of position 7 epimers over silica gel $\mathrm{GF}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}, 9: 1\right)$ gave as the major component :he lower $R_{f} 7 R$ epimer ( $100 \mathrm{mg}, 67 \%$ ), which showed, after crystallization from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (1:10), mp 196.5-197.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{23} \mathrm{D}$ $+121^{\circ}\left(\mathrm{c} 1.28, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 1732 \mathrm{~cm}^{-1}$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.60$ ( $2 \mathrm{H}, \mathrm{AB}$ system, $J=8 \mathrm{~Hz}$, aromatic H :, 6.44 ( 1 H , brd s. OH ) , 4.30 ( $1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}, \mathrm{C}-5$ equatorial H ), $3.9{ }^{4}$ ( $(\mathrm{H} . \mathrm{dd}, J=7,12 \mathrm{~Hz}, \mathrm{C}-7$ axial H), $3.80\left(3 \mathrm{H}, \mathrm{s}\right.$, aromatic $\left.\mathrm{OCH}_{3}\right)$, $6.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-7 \mathrm{OCH}_{3}\right), 2.41$ ( $3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{CH}_{3}$ ), $2.25(1 \mathrm{H} . \mathrm{d}, J=13 \mathrm{~Hz}, \mathrm{C}-5$ axial H).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4}: \mathrm{C}, 68.86 ; \mathrm{H} .7 .60: \mathrm{N}, 4.23$. Found: C, 69.04; H, 7.54; N, 4.18.

The higher $R_{f} 7 S$ epimer ( $39 \mathrm{mg}, 26 \%$ ) was obtained as the minor isomer and showed, after crystallization from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (1:10), mp 196.5-197.5 ${ }^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}+87^{\circ}\left(\mathrm{c} 1.49, \mathrm{CH}^{-1} \mathrm{I}_{3}\right)$; IR ( $\mathrm{CHCl}_{3}$ ) $1725 \mathrm{~cm}^{-1}$; NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 6.64(2 \mathrm{H}, \mathrm{dd}, J=8 \mathrm{~Hz}$ a aromatic H$), 6.26(1 \mathrm{H}$, brd $\mathrm{s}, \mathrm{OH}), 4.07(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}, \mathrm{C}-5$ equatorial H$), 3.82(3 \mathrm{H}, \mathrm{s}$, aromatic $\mathrm{OCH}_{3}$ ), $3.36(1 \mathrm{H}, \mathrm{t} . J=3.5 \mathrm{~Hz}, \mathrm{C}-7$ equatorial H$), 3.30(3 \mathrm{H}$, s, C-7 $\mathrm{OCH}_{3}$ ), $2.73(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}, \mathrm{C}-5$ axial H). $2.42(3 \mathrm{H} . \mathrm{s}, \mathrm{N}-$ $\mathrm{CH}_{3}$ ).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4}: \mathrm{C}, 68.86 ; \mathrm{H}, 7.60 ; \mathrm{N}, 4.23$. Found: C, 69.08; H, 7.54; N, 4.13.
( + )-Dihydrocodeinone (3). The mix $u r e$ of 2 a and 2 b from above $(3.00 \mathrm{~g}, 9.05 \mathrm{mmol})$ and polyphosphoric acid (Matheson, Coleman and Bell, 60 g ) was heated at $65-70^{\circ} \mathrm{C}$ for 1.25 h while stirring. The cooled reaction mixture was basified by the careful addition of ammonium hydrcxide ( $28 \%$ ) at $0{ }^{\circ} \mathrm{C}$, saturated with NaCl , and extracted with $\mathrm{CHCl}_{3}$. The extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to afford a solid, which was recrystallized from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CHCl}_{3}$ (3:1) to give 3 (1.98 g, 73\%): mp 196.5-197.5 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{9} \mathrm{mp} \mathrm{19}$ - $-198^{\circ} \mathrm{C}$ ); $[\alpha]^{23}{ }_{\mathrm{D}}+205.3^{\circ}$ (c $\left.0.9, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit} .{ }^{9}[\alpha]_{\mathrm{D}}+207.4^{\circ}\left(\mathrm{CHCl}_{3}\right)\right]$.
Conversion of ( + )-Dihydrocodeinone (3) to ( + )-Codeine (9). $(+)$-Codeine (9) was prepared from ( + )-dihydrocodeinone (3) essentially as described by Rapoport ${ }^{6}$ in the $(-)$ series via the following intermediates. (+)-Dihydrocodeinone dimethyl ketal 4: mp 121-122 ${ }^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}+167.2^{\circ}$ (c 1.1, EtOH) [lit. ${ }^{15}(-)$ enantiomer of 4: mp $122-123^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-151^{\circ}$ (c 0.9, EtOH)]. ( + )-8,14-Dihydrothebaine (5): mp. $162-163{ }^{\circ} \mathrm{C}$; $[\alpha]^{23}{ }_{\mathrm{D}}+268.6^{\circ}$ (c 1.1, $\mathrm{C}_{6} \mathrm{H}_{6}$ ) [lit. ${ }^{4 \mathrm{c}} \mathrm{mp}$ 162-163 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+268.2^{\circ}$ (c 1.544, $\mathrm{C}_{6} \mathrm{H}_{6}$ ) ]. (+)-7-Bromodihydrocodeinone dimethyl ketal 6: mp $116-117^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}+165.1^{\circ}$ (c 1, $\mathrm{CHCl}_{3}$ ) $\left[\right.$ lit. ${ }^{4 \mathrm{c}}$ $\left.\mathrm{mp} 117^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+164.5^{\circ}\left(\mathrm{c} 1.536, \mathrm{CHCl}_{3}\right)\right]$. Treatment of 6 with potassium tert-butoxide at $25^{\circ} \mathrm{C}(48 \mathrm{~h})$ :nstead of $60^{\circ} \mathrm{C}^{6}$ gave ( + ). codeinone dimethyl ketal 7: mp 135-136.5 ${ }^{\mathrm{C}} \mathrm{C}$; $[\alpha]^{23} \mathrm{D}+238.3^{\circ}$ (c 1.2 , EtOH ) $\left[\mathrm{lit} .{ }^{4 \mathrm{c}} \mathrm{mp} 138^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+236^{\circ}(\mathrm{c} 1.016, \mathrm{EtOH})\right]$. Hydrolysis of 7 with. $5 \% \mathrm{HCl}\left(0.5 \mathrm{~h}, 75^{\circ} \mathrm{C}\right)$ instead of $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}^{6}$ gave ( + )-codeinone (8): mp $185-186{ }^{\circ} \mathrm{C}$; $[\alpha]^{23} \mathrm{D}+204.5^{\circ}$ (c 1 , EtOH) [lit. ${ }^{4 \mathrm{~d}} \mathrm{mp} 186$ $\left.{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+206.0^{\circ}(\mathrm{EtOH})\right]$. Reduction of 8 with $\mathrm{NaBH}_{4}$ in MeOH gave $\left(+\right.$ )-codeine (9): mp $157.5-158.5^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}+136.2^{\circ}$ (c 0.7, EtOH) [lit. ${ }^{4 \mathrm{a}} \mathrm{mp} 158^{\circ} \mathrm{C},\left[\alpha{ }^{25} \mathrm{D}+137.4^{\circ}\right.$ (c $0.743, \mathrm{EtOH}$ )].
(+)-Morphine (10). To a stirred solut.on of $\mathrm{BBr}_{3}(6.00 \mathrm{~g}, 24 \mathrm{mmol})$ in $\mathrm{CHCl}_{2}(70 \mathrm{~mL})$ was added $9(1.167 \mathrm{~g}, 3.9 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ at $23-26^{\circ} \mathrm{C}$ over a $2-\mathrm{min}$ period, and stirr.ng was continued for 15 min . The reaction mixture was poured into a stirred mixture of ice ( 32 g ) and $\mathrm{NH}_{4} \mathrm{OH}\left(28 \% \mathrm{NH}_{3}, 8 \mathrm{~mL}\right)$ and stirred for 30 min at $0^{\circ} \mathrm{C}$. The crystalline material which formed was filtered. washed with cold $\mathrm{CHCl}_{3}$ and then water, and dried to give $10(800 \mathrm{mg})$. The aqueous
phase from the filtrate was saturated with NaCl and extracted with $\mathrm{CHCl}_{3}-\mathrm{EtOH}$ (3:1). The combined extracts were evaporated, and the residue was pu-ified by silica gel thin-layer chromatography using $\mathrm{CHCl}_{3}-\mathrm{MeOH} 8: 2$ ) as a solvent to yield $10(241 \mathrm{mg})$. Total yield was $88 \%$. Recrystallization fr m MeOH gave $10 \cdot \mathrm{H}_{2} \mathrm{O}$ as colorless prisms: $\mathrm{mp} 253-255^{\circ} \mathrm{C} ;[\alpha]^{2{ }^{2}} \mathrm{D}+132.1^{\circ}(\mathrm{c} 0.49, \mathrm{MeOH})$ ) $\left[\mathrm{lit} .^{4 \mathrm{a}} \mathrm{mp} 247-248^{\circ} \mathrm{C}\right.$, $\left[\left.\alpha\right|^{23}{ }^{3}+132.1^{\circ}(c 0.383, \mathrm{MeOH})\right]$.
Anal. Calcd for $\mathrm{C}_{1 ;} ; \mathrm{H}_{19} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 67.30 ; \mathrm{H}, 6.98 ; \mathrm{N}, 4.62$. Found: C, 67.47; H. 7.2 $;$; N, 4.63
$(+)$-Heroin (11). A mizture of $10(285 \mathrm{mg}, 1 \mathrm{mmol})$ and acetic anhydride 12 mL ) was heated at $90-100^{\circ} \mathrm{C}$ for 4 h . Ether was added to the cooled solut.on, and the mixture was basified with $10 \% \mathrm{KOH}$ while cooling. The et ier phase was separated, the aqueous phase was extracted with ether, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent wa: evapora ed to give a solid, which was recrystallized from AcOEt to afford $1 .(295 \mathrm{mg}, 80 \%)$ : $\mathrm{mp} 169-170.5^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}$ $+176^{\circ}(\mathrm{c} 0.63, \mathrm{MeOH})\left[\mathrm{li}, .^{13}(-)\right.$ enantiomer of $11: \mathrm{m} \geqslant 173^{\circ} \mathrm{C},[\alpha]^{25} \mathrm{D}$ $-166.4^{\circ}$ ( c 1.49, MeOH) .
Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{2}=\mathrm{NO}_{5}: \mathrm{C}, 68.28 ; \mathrm{H} .6 .28 ; \mathrm{N}, 3.79$. Found: C, 67.97; H, 6.37; N, 3.44.

Acknowledgment. We would like to thank Drs. Mario Aceto, Louis Harris, and Everette L. May, Medical College of Virginia, fcr their ecouragment. The analgesic screening of the compounds mer tioned was carried out by Mrs. Louise Atwell of our laboratcry. We also thank Dr. Mikio Takeda, Tanabe Seiyaku Rese arch Laboratory, and Dr. Wataru Nagata, Shionogi Seivaku Research Laboratory, fo: the generous gifts of $(-)$-sinomenine used in this work.

Registry No.-1, 11f-53-7; 2a, 65120-75-4; 2b, 65120-76-5; 3, 64520-24-7; 4, 65165-95-9 5, 65165-96-0; 6, 65165-97_; 7, 65165-98-2; 8, 65494-91-9; Ч, 64520-25-8; 10, 65165-99-3; 11, 65166-00-9.

## References and Notes

(1) I. lijima, K. C. Rice, anc A. Brossi, Melv. Chim. Acta, 60, 2135 (1977).
(2) (a) $V$ siting Scientist, NIMMDD, 1975-1977. (b) Visiting Scientist, NIAMDD. 1976-1978.
(3) H. L. Holmes. Alkaloids (N. Y.). 2, 219 (1952).
(4) (a) K Goto and I. Yamanoto, Proc. Jpn. Acad., 30, 769 (1954); (b) 33, 477 (1957); (c) 34, 60 (1958); (d) K. Goto, ' 'Sinomenine, an Optical Antipode of Morphine Alkaloids" Kitasato Institute. Tokyo. 1964, p 96.
(5) A. H. Becker? and A. F. Casy, J. Pharm. Pharmacol., 6, 986 (1954); P. S. Portoghese. J. Pharm. Eci., 55, 865 (1966): A. Goldstein L. I. Lowney, and B. K. Pol, Proc. Natl. Acad. Sci. U.S.A., 68, 1742 (1971;; C. B. Pert and S. H. S7yder, Science, 19, 1011 (1973); E. J. Simon, J. M. Hiller, and I. Edelman, Proc. Natl. Acad. Sci. U.S.A., 70, 1941 (1973) L. Terenius. Acta Pharmacol. Toxicol., 33, 377 (1973).
(6) D. D. Weller and H. Rapoport. J. Med. Chem. 19, 1171, (1976)
(7) K. Goto and S. Mitsui, Bull. Chem. Soc. Jpn., 5, 282 (1930).
(8) L. M. Jackman and S. Sternhell in "Applications of Vuclear Magnetic Resonance Spectroscopy in Organic Chemistry", 2nd ed. Pergamon Press. Elmsford, N.Y.. 1969, ₹ 241
(9) K. Goto and I. Yamamoto. Proc. Jpn. Acad., 36, 145 (1960); 34, 60 (1958).
(10) I. lijima. K. C. Rice, anc J. V. Silverton, Heterocycles, B, 1157 (1977). (11) M. Gates, J. Am. Cherr. Soc., 75, 4340 (1953).
(12) K. C. Rice, J. Med. Chem., 20, 164 (1977).
(13) The Merck Index 1976 No. 2925: $[\alpha]^{25}{ }_{\mathrm{D}}-166^{\circ}$ (c 1.49, $\mathrm{CH}_{3} \mathrm{OH}$ ). Our rigorously purified sample of ( - )-heroin showed $[\alpha]^{25} \mathrm{D}-174.7^{\circ}$ (c 1.15 , MeOH ) after recrystallization from ethyl acetate and drying. A satisfactory combustion analysis was obtained on this sample.
(14) Y. F. Jacquet. W. A. Klee, K. C. Rice, I. lijima, and J. Minamikawa, Science, 198, 842 (1977).
(15) H. Rapoport. H. R. Reist, and C. H. Lovell, J. Am. Chem. Soc., 78, 5128 (1956).

## Cleavage of Tetrahydrofuran by Lithium Bis(2,6-di-tert-batylphenoxy)aluminum Hydride

H. Haupenstock* and N.-L. Yang

The City University of New York, The College of Staten Island, Stater Island, New York 10301

Received August 16, 1977
The reaction of litt.ium aluminum hydride $\left(\mathrm{LiAlH}_{4}\right)$ with 2 or 3 molar equiv of 2,6 -di-tert-butylphenol (I) at room temperature gives lithium bis(2,6-di-tert-butylphenoxy)aluminum hydride ( $I^{-} ;$eq 1). This is confirmec in Table I for

Table I. Reaction of Lithium Aluminum Hydride with Phenols in THF

| Entry | $\mathrm{LiAlH}_{4}$, mol | Phenol | Amount, mol | Reflux time, $h$ | Ketone | Amount, mol | \% redn | $\mathrm{H}_{2} \mathrm{evol}^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.010 | I | 0.020 | 16 |  |  |  |  |
| 2 | 0.015 | PhOH | 0.030 | 19 |  |  |  | 0.029 |
| 3 | 0.020 | I | 0.060 | 16 |  | 0.01 | $0^{\text {b }}$ | 0 |
| 4 | 0.015 | I | 0.045 | 5 |  | 0.011 | $0^{c}$ | 0 |
| 5 | 0.015 | I | 0.045 | 0 | $+\square=$ | 0.01 | $96^{\text {d }}$ | 0.013 |

${ }^{a}$ Moles of $\mathrm{H}_{2}$ evolved on hydrolysis. ${ }^{b}$ Recovered $97 \%$ ketone; GLC analysis using 3,3.5,5-tetramethylcyclohexanone as an internal standard. ${ }^{\text {c }}$ Recovered $93 \%$ ketone; GLC analysis using thə same internal standard: traces of alcohols present. ${ }^{d}$ Alcohol ratio was $53 \%$ cis and $47 \%$ trans (normalized to $100 \%$ ).
reactions in tetrahydrofuran (THF), and in each case 2 molar equiv of $\mathrm{H}_{2}$ are evolved as measured by a wet test meter. A

third 2,6-di-tert-butylphenoxy group is difficult to introduce presumably due to steric hindrance. ${ }^{1.2}$ On ref.uxing the clear colorless solutions very little additional $\mathrm{H}_{2}$ is evolved ir. the experiments using 3 molar equ:v of $\mathrm{I},{ }^{3}$ and ir all the experiments with I no hydrogen is evolved on hydrolysis with $10 \%$ sulfuric acid after the reflux period (Table I, entries 1,3 , and 4i. Refluxing of the hydride solutions was ca-ried out under a blanket of nitrogen, although oxygen was not rigorously removed from the system. The absence of hydrogen on hydrolysis implies that no Al-H bonds are present after refluxirg, and this was confirmed by the virtual absence of reduction of 4-tert-butylcyclohexanone added after the reflux period Table I. entries 3 and 4). The recovered ketone is unreacted rather than formed by hydrolysis of an enolate as shown by i) a carbonyl stretching band at $1706 \mathrm{~cm}^{-1}$ in the IR spectrum of a reaction mixture sampled prior to hydrolysis, ( 21 the absence of gas evolution during addition of the ketone, and (3) in an experiment in which $\mathrm{LiAlH}_{4}$ was added to a reaction mixture prior to hydrolysis, the epimeric alcohol ratio was found to be $86 \%$ trans and $14 \%$ cis, close to that reported for the reduction of 4-tert-butylcyclohexanone with $\mathrm{LiAlH}_{4}$ in THF. ${ }^{4}$

On the other hand, in the absence of heating the hydride species II reduces 4 -tert-butylcyclohexar.one in a normal ranner, giving $53 \%$ cis and $47 \%$ trans alcohols with very little residual ketone (Table I, entry 5).

A solution formed by the reac:ion of $\mathrm{LiAlH}_{4}(0.04 \mathrm{~mol})$ with I ( 0.08 mol ) in THF and refluxed for 18.5 h was hydrolyzed with water and sodium hydroxide solution ${ }^{5}$ ( $n o \mathrm{H}_{2}$ evolution occurred on hydrolysis), and the product was d.stilled. n- Eutyl alcohol ( 0.061 mol ) was isolated and identified by IR. NMR, and GLC comparison with an authentic sample. This alcohol undoubtedly was formed from the cleavage of THF by II on heating. The cleavage of THF can be explained by two different mechanisms. One involves radical formation (eq 2) followed by ring openirg of the tetrahydrofuranyl radizal. ${ }^{6}$ Radical cleavage of the THF ring could result in the formation of an aldehyde ${ }^{7}$ group which would be reduced by II, thus

accounting for the destruction of the $\mathrm{Al}-\mathrm{H}$ bonds. Assuming that no free I remains after the reaction of 2 molar equiv of I with $\mathrm{LiAlH}_{4}$, the radicals must initially be produced by thermal homolysis of Al-O- $\mathrm{C}_{6} \mathrm{H}_{3}-2,6-(t-\mathrm{Bu})_{2}$ bonds. Thermal homolysis of an Al-C bond has been observed with diphenyltritylaluminum. ${ }^{8}$ In this case a stable triphenylmethyl radical was formed, while in the present example a relatively stable phenoxyl radical would be produced.

A direct attack of the hydride species II on THF via a polar mechanism seems unlikely, although it cannot be ruled out, from a consideration of the markedly different behavior of phenol itself, as shown in Table I, entry 2. After refluxing a THF solution of lithium aluminum diphenoxyhydride (III) for 19 h , acidic hydrolysis produced the calculated quantity of residual hydrogen, and the original number of hydride equivalents in $\mathrm{LiAlH}_{4}$ was quantitatively accounted for. If the sterically hindered reagent II was able to directly attack THF, the less hindered and electronically similar reagent III would be expected to do the same.

It is conceivable that II exists in equilibrium with a tricoordinate aluminum species IV, as shown by eq $3 .{ }^{9}$ Species


IV can form a complex with THF, leading to its reduction. If this mechanism is correct, then the formation of IV may be attributed to steric hindrance inherent in species II (as compared with its absence in III).

There is another difference in behavior between phenol and I. With the reagent III the reaction mixture remained clear and colorless before and after heating. In the reactions of I a deep yellow to orange color always developed soon after the reflux period. Small amounts of a dark brown crystalline solid were isolated. Various samples of this material melted fairly sharply between 206 and $209^{\circ} \mathrm{C}$. The solid was shown to be an approximately equimolar mixture of $3,3^{\prime}, 5,5^{\prime}$-tetra-tertbutyldiphenoquinone ( V ) and the diphenol VI by NMR, IR, and UV comparison with samples of $V$ and VI prepared independently. Compounds V and VI are probably formed from the phenol I by radical reactions, possibly involving compound VIII as an intermediate. ${ }^{10} 2,6-\mathrm{Di}$-tert-butylphenoxy radicals can combine through the para positions to form VI. ${ }^{11}$ The isolated dark brown crystalline mixture of V and VI is much darker in color than each of the separate components. This may be due to quinhydrone-type complex formation in the solid state. Evaporation of a THF solution of V and VI gave a similar deep brown solid. A quinhydrone complex of the

methyl analogues of V and VI (tert-butyl groups replaced by methyl) has been reported. ${ }^{12}$
In order to distinguish between the radical mechanism of ring cleavage and a polar mechanism involving a tricoordinate aluminum reagent such as IV, the deuterated reagent VIII was


VIII
prepared by the reaction of $\mathrm{LiAlD}_{4}$ with 2,4,6-tri-tert-butylphenol ${ }^{14}$ in THF. The reaction misture was refluxed, and following hydrolysis with aqueous base, ${ }^{5}$ the deuterated $n$ butyl alcohol was isolated by distillation. Analysis by NMR spectroscopy clearly showed the product to be $\mathrm{CH}_{2} \mathrm{DCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$. Thus, the racical mechanism involving the formation and reduction of an aldehyde is ruled out, and a mechanism involving cleavage by a tricoordinate aluminum species such as IV is supported. The mechanism can either involve intramolecular (eq 4) or intermolecular (eq 5) attack by hydride.



The radical reactions leading to products V and VI are apparently unrelated to the cleavage of THF.

## Experimental Section

2,6-Di-tert-butylphenol (I) was obtained from the Aldrich Chemical Co. and was fractionally distilled through a 12 -in helix-packed column, giving a clear colorless distillate, bp $105{ }^{\circ} \mathrm{C}(8 \mathrm{~mm}) .2,4,6$-Tri-tertbutylphenol ofas purified by recrystallization from aqueous ethanol. Lithium aluminum deuteride was obtained from the Alfa Ventron Corp. 4-tert-Butylcyclohexanone was purified by distillation. Tetrahydrofuran was distilled from $\mathrm{LiAlH}_{4}$ through a helix-packed column immediately before use. $\mathrm{LiAlH}_{4}$ solutions in THF were obtained
from the Alfa Ventron Corp., and the molarity was checked by measurement of hydrogen evolution on reaction with a phenol-THF solution. GLC analysis was carried out with a Hewlett Packard Model 5750 instrument. NMR analysis was carried out on a Jeol MH-100 instrument.

Preparation of Lithium Bis(2,6-di-tert-butylphenoxy)aluminum Hydride (II). A $100-\mathrm{mL}$ three-neck flask with a magnetic stirring bar was flamed under nitrogen, and 10 mL of a 1.0 M $\mathrm{LiAlH}_{4}-\mathrm{THF}$ solution wes added by pipet in a drybox. The flask was then fitted under nitroger with a reflux condenser and an equilibrated dropping funnel and attazhed to a wet test meter separated from the flask by a $\mathrm{CaSC}_{4}$, trap. Tre nitrogen was discontinued, and a solution of the phenol ( $=; 4.12 \mathrm{~g}, C .02 \mathrm{~mol})$ in THF was added dropwise with stirring. After the additicn the reaction flask was disconnected from the wet test meter and again placed under a nitrogen atmosphere and heated under reflux (oil bath) for 16 h . On cooling under nitrogen the reaction mixture turned deep yellow. Hydrolysis of the reaction mixture attached to the wet test meter with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ resulted in no gas evolution.
In experiments involving the addition of 4-tert-butylcyclohexanone, the reaction mixture was worked up by extracting with ether, washing the organic layer consecutively with saturated $\mathrm{NaHCO}_{3}$ and NaCl solutions, and drying over anhydrous $\mathrm{MgSO}_{4}$. The solutions were concentrated by distillation through a helix-packed column and analyzed by GLC on an $12 \mathrm{ft} \times 1 / 8$ in $5 \%$ Carbowax 20 M column at 136 ${ }^{\circ} \mathrm{C}$ after addition of an in ernal standard.
Preparation of $3,3^{\prime}, 5$, E' $^{\prime}$-Tetra-tert-butyldiphenoquinone (V). 2,6-Di-tert-butylphenol II) was oxidized by alkaline ferricyanide according to the procedure of Cook, English, and Wilson. ${ }^{13}$ The product consisted of redd sh brown needles: mp $245-247{ }^{\circ} \mathrm{C}$ (lit. mp $240-241,{ }^{12} 246{ }^{\circ} \mathrm{C}^{8}$ ); IR (cerbonyl band) $1600 \mathrm{~cm}^{-1}$ (s); NMR ( $\mathrm{CDCl}_{3}$ ) $\delta 1.38$ (s, 36 H ), 7.66 (s, 4 - $)$.
Preparation of $4,4^{\prime}$-Dihydroxy- $3,3^{\prime}, 5,55^{\prime}$-tetra-tert-butyldiphenol (VI). The diphenoquinone $\mathrm{V}(1 \mathrm{~g}, 0.0025 \mathrm{~mol})$ in 20 mL of THF was reduce 1 with $0.01 \mathrm{~mol}^{\text {of }} \mathrm{LiAlH}_{4}$. Hydrolysis with water and $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ gave yellow needles after recrystallization from $95 \%$ ethanol: mp $185-187^{\circ} \mathrm{C}$ (lit..$^{8} \mathrm{mp} 185^{\circ} \mathrm{C}$ ); IR ( OH stretch) $3610 \mathrm{~cm}^{-1}$ (s, sharp); NMR ( $\mathrm{CCl}_{4}$ ) $\delta 147$ (s, tert-butyl), $4.92(\mathrm{~s}, \mathrm{OH}), 7.06$ ( s, ring H's).

Acknowledgment. The support (to H.H.) of the Faculty Research Award Program, The City University of New York, Grants 11419 and 10193, is gratefully acknowledged.

Registry No.-I, 128-39-2; II, 54004-00-1; V, 2455-14-3; VI, 128 -38-1; $\mathrm{LiAlH}_{4}$, 16853-85-3; phenol, 108-95-2; 4-tert-butylcyclohexanone, 98-53-3; cis-4-tert-kutylcyclohexanol, 937-05-3: trans-4-tertbutylcyclohexanol, 21862-j3-5; tetrahydrofuran, 109-99-9.

## References and Notes

(1) H. Haubenstock, J. Org. Chem., 40, 926 (1975).
(2) J. S. Meek and C. Bouboulis, J. Org. Chem., 26, 1302 (1961).
(3) The situation may be different for THF-diethyl ether mixtures (ref 1) possibly due to lower refluxing temperatures. This matter is being reevaluated.
(4) E. L. Eliel and Y. Senda, Tetrahedron, 26, 2411 (1970).
(5) L. F. Fieser and M. Fieser "Reagents for Organic Synthesis"', Wiley, New York, N.Y., 1967, p 584
(6) Ring opening of a cyclic əther radical has been observed: E. S. Huyser, J. Org. Chem. 25, 1820 1960).
(7) T. J. Wallace and R. J. Gritter, J. Org. Chem., 26, 5256 (1961); 27, 3067 (1962)
(8) H. Hoberg and E. Ziegler, Angew. Chem., Int. Ed. Engl., 6, 452 (1967).
(9) We are gratefu to a refere who pointed out the possibility of a tricoordinate aluminum species being ormed from II.
(10) M. S. Kharasch and B. S. Joshi, J. Org. Chem., 22, 1439 (1957).
(11) A. L. Euchachenko, "Staple Radicals", Consultants Bureau, New York, N.Y., 1965, p 89
(12) R. G. R. Bacor and D. J. PAunro, J. Chem. Soc., 1339 (1960).
(13) C. D. Cook, E. S. English, and B. J. Wilson, J. Org. Chem., 23, 755 (1958).
(14) The trisubstitu:ed phenol was used to avoid the side reactions leading to highly colored products V and VI.

## Communications

## Solvent Effects and Secondary Isotope Effects for Probing Diradical Character in the

 Thermal Decarboxylation of $\beta$-Peroxy Lactones ${ }^{1}$Summary: The lack of solvent effects on the activation parameters and product distribution and the lack of secondary deuterium isotope effects at the $\alpha$ carbon and $\beta$-alkyl migrant substantiate that the thermal decarboxylation of $\beta$-peroxy lactones proceeds via a 1,5 -diradical.

Sir: On the basis of product distribution and kinetics ${ }^{2}$ and stereochemical data ${ }^{3}$ we concluded that the mechanism of thermal decarboxylation of $\beta$-peroxy lactones 1 involved simple peroxide bond cleavage leading to the 1,5 -diradical 2 , which subsequently decarboxylated with concurrent $\beta$-alkyl 1,2 -migration to afford rearrangement ketone 3 as the major product (eq 1). Since evidence for 1,5 -diracicals is scarce ${ }^{4}$ and


1a, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{CH}_{3}$
b, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{CD}_{3}$
c, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{CH}_{3} ; \mathrm{R}_{4}=\mathrm{Ph}$
$\mathrm{d}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{3}=\mathrm{CD}_{3} ; \mathrm{R}_{4}=\mathrm{Ph}$
e, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{D} ; \mathrm{R}_{3}=\mathrm{CH}_{3} ; \mathrm{R}_{4}=\mathrm{Ph}$

since the preferred alkyl vs. phenyl 1,2 -shift is unusuaf, ${ }^{2}$ it was of interest to confirm the diradical nature of this decarboxylation by exploring the effect of solvent polarity on the kinetics and product distribution in the $\beta$-peroxy lactone la and the secondary deuterium isotope effect at the migration origin in $\beta$-peroxy lactones $1 \mathbf{l a}$ vs. $1 \mathbf{b}$ and $1 \mathbf{c}$ vs. $1 \mathbf{d}$ and at the migration terminus in le vs. lc.

The activation parameters $\Delta H^{\ddagger}$ and $\Delta S^{\ddagger}$ of $\beta$-peroxy lactone la for the solvents carbon tetrachloride, cyclohexane, benzene, and acetonitrile are summarized in Table I. Only a threefold rate enhancement has been observed between the least and most polar solvents, i.e., $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}$ and $\mathrm{CH}_{3} \mathrm{CN}$. If the diradical-like activated complex A were sensitive to solvent polarity by possessing appreciable dipolar character, we would have to expect rate effects by several magnitudes. ${ }^{5}$ Also the activation parameters are essentially constant within the experimental error, although a $\Delta H^{\ddagger}$ vs. $\Delta S^{\ddagger}$ plot is linear with an isokinetic temperature $T_{i>0}=583 \mathrm{~K}$. Whether the latter is mechanistically significant is debatable, but these solvent effect data reflect diradical character with only small dipolar contributions in polar solvents such as acetonitrile.

The isotope effect data is collected in Table I. In $\beta$-peroxy lactones la vs. $1 \mathbf{b}$ and $1 \mathbf{c}$ vs. $1 \mathbf{d}$ we were interested in probing whether the $\beta$-methyl group (the migrant) was cleaving from the $\beta$ carbon concurrently with peroxide bond fission via the two-bond breaking activated complex B. Clearly, the negli-

A

B

C
gible isotope effect reveals that neither in 1 b nor in 1 d has any significant methyl group scission taken place in the slow step, i.e., during peroxice bond cleavage.

In the case of $\beta$-peroxy lactones $\mathbf{l c}$ vs. le we were interested in assessing the degree of $\alpha$-carbon cleavage via the two-bond breaking activated complex C. Again, the negligible isotope effect signifies that peroxide bend rupture is not assisted by substantial $\alpha$-carbon cleavaje in the $\beta$-peroxy lactones not bearing $\alpha$ substituents. For ex.ample, an appreciable secondary isotope effect $\left(k_{\mathrm{H}} / k_{\mathrm{D}}=1.17\right.$; has been observed in tert-butyl phenylperacetate on deuteration of the benzylic position. ${ }^{6}$ However, in this acyclic case a two-bond cleavage is encouraged, since the incipient benzyl radical is resonance stabilized. ${ }^{7}$ In fact, in oar cyclic case $\alpha$ substitution does lower the activation free energy by $3 \mathrm{kcal} / \mathrm{mol}$, i.e., 1 a ( $\Delta G^{\ddagger}=28 \mathrm{kcal} /$

Table I. Activation Parameters and Secondary Isotope Effects ${ }^{a}$ in the Thermal Decarboxylation of $\beta$-Peroxy Lactones

| $\beta$-Peroxy lactone | Sol- <br> vent | $T, \mathrm{~K}$ | $\underset{\mathrm{s}^{-1 ~} b}{k_{\mathrm{avg}} \times 10^{3},}$ | $\begin{gathered} \Delta H^{\ddagger}, \mathrm{c} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$ | $\begin{gathered} \Delta S^{\ddagger}, c \\ \text { gibbs/mol } \end{gathered}$ | $\begin{gathered} \pm G^{\ddagger} 383 \mathrm{~K},{ }^{d} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$ | $k_{\mathrm{H}} / k_{\mathrm{D}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 a | $\mathrm{CCl}_{4}$ | 383 | $0.6<27 \pm 0.012$ | $28.7 \pm 0.3$ | $1.7 \pm{ }^{\text {c }} .4$ | $28.0 \pm 0.4$ |  |
| 1 a | c- $\mathrm{C}_{6} \mathrm{H}_{12}$ | 383 | $0.518 \pm 0.010$ | $28.6 \pm 0.2$ | $1.4 \pm$ C. 3 | $28.1 \pm 0.5$ |  |
| 1 a | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 383 | $0.916 \pm 0.020$ | $28.3 \pm 0.4$ | $1.0 \pm 1.2$ | $27.9 \pm 0.5$ |  |
| 1 a | $\mathrm{CH}_{3} \mathrm{CN}$ | 383 | $1.47 \pm 0.05$ | $26.7 \pm 0.2$ | $1.8 \pm$ C. 6 | $27.4 \pm 0.6$ |  |
| 1 a | $\mathrm{CCl}_{4}$ | 392 | $1.26 \pm 0.04$ |  |  |  |  |
| 1 b | $\mathrm{CCl}_{4}$ | 392 | $1.26 \pm 0.03$ |  |  |  | $0.99 \pm 0.03$ |
| 1 c | $\mathrm{CCl}_{4}$ | 403 | $5.77 \pm 0.03$ |  |  |  |  |
| 1 d | $\mathrm{CCl}_{4}$ | 403 | $5.70 \pm 0.02$ |  |  |  | $1.01 \pm 0.03$ |
| 1 c | $\mathrm{CCl}_{4}$ | 403 | $5.7^{7} \pm 0.03$ |  |  |  |  |
| le | $\mathrm{CCl}_{4}$ | 403 | $5.85 \pm 0.04$ |  |  |  | $0.99 \pm 0.03$ |
| 1 c | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 398 | $5.92 \pm 0.10^{e}$ |  |  |  | $1.02 \pm 0.02$ |
| 1 d | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 398 | $5.85 \pm 0.15^{e}$ |  |  |  | $1.02 \pm 0.02$ |

${ }^{a}$ All deuterated substrates are at least $95 \%$ labeled, as confirmed by NMR and/or MS analysis. ${ }^{b}$ Measured by disappearance of the $1790-\mathrm{cm}^{-1}$ carbonyl band of 1 in the infrared except for the last two entries. The in tial [1] was $\sim 0.01 \mathrm{M}$. $\subset$ From triplicate runs at 370,383 , and $391 \mathrm{~K} .{ }^{d}$ Calculated from $\lrcorner H^{\ddagger}$ and $د S^{\ddagger}$. e These are methyl vs. phenyl migration ratios determined by quantitative GLC of the respective rearrangement ketone 3 . These ratios bear no units.
$\mathrm{mol})$ vs. lc ( $\left.\Delta G^{\ddagger}=31 \mathrm{kcal} / \mathrm{mol}^{2}\right)$, since a tertiary radical site is generated at the $\alpha$ carbon in the activated complex C. ${ }^{8}$

The $\beta$-peroxy lactones 1c and 1d were also employed to determine the secondary isotope effect during the 1,2 -shift of the $\beta$-methyl migrant, i.e., in the destruction of the $1,5-$ diradical 2 into products. For this purpose, by means of quantitative GLC the migratory aptitudes of methyl ( $k_{\mathrm{Me}}$ ) vs. phenyl ( $k_{\mathrm{Ph}}$ ) as a function of methyl deuteration were measured by determining the amount of $\beta$-methyl vs. $\beta$-phenyl migration product. From $\beta$-peroxy lactones lc and Id the migratory ratios $k_{\mathrm{CH}_{3}} / k_{\mathrm{Ph}}$ and $k_{\mathrm{CD}_{3}} / k_{\mathrm{Ph}}$, respectively, were obtained from which $k_{\mathrm{H}} / k_{\mathrm{D}}$ was calculated. A negligible secondary isotope effect was found. This implies, as expected, that the slow step of the decomposition of $\beta$-peroxy lactones is the peroxide bond cleavage into diradical 2. Subsequently, this diradical 2 decarboxylates with $\beta$-alkyl migration via a fast step with a low activation barrier. In such cases the secondary isotope effect is expected to je very small. ${ }^{9}$ The error in our product data is too large to pick up such small effects.

The product distribution derived from 1 a was found to be insensitive to solvent polarity. Thus, pinacolone was formed essentially quantitatively ( $>99 \%$ yield) and only small amounts $(<0.5 \%)$ of acetone and tetramethyloxirane (stable to the thermolysis conditions) could be detected in the various solvents. Consequently, also the destruction of the diradical 2 into pinacolone exhibits negligible dipolar character.

In conclusion, our present solvent ard isotope effect data substantiate the previously proposed diradical mechanism (eq 1). ${ }^{2.3}$ The intervention of the 1,5 -diradical is established; however, we have no information on its lifetime. Experiments to trap 2 have failed so far, which implies that the 1,5 -diradical must be shorter lived than $10^{-7} \mathrm{~s}$. A carbonyl- ${ }^{18} \mathrm{O}$ labeling experiment is in progress to estimate the lower lifetime limit of this 1,5 -diradical.

Acknowledgments are made to the Donors of the Petroleum Research Fund (Grant 8341-AC-1,4), administered by the American Chemical Society, the National Science Foundation (Grant CHE-72-04956-A03), and the National Institutes of Health (Grants GM-22119-02, GM-00141-02, and RR-8102-03). We thank Western Fher Laboratories, Ponce, Puerto Rico. for a graduate fellowsh p to L.O.R.

## References and Notes

(1) Paper No. 62 in the Cyclic Peroxide series.
(2) W. Adam and Y. M. Cheng. J. Am. Chem. Soc., 91, 2109 (1969).
(3) (a) W. Adam, Y. M. Cheng. C. W. Wilkerson and W. A. Zaidi, J. Am. Chem. Sos., 91, 2111 (1969); (b) W. Adam and C. Wilkerson, Chem Commun., 1569 (1971): (c) W. Adam and J. Baeza. J. Chem. Soc.. Chem Commun., 103 (1972).
(4) W. Adam and J. Arce, J. Am. Chem. Soc., 97, 926 (1975).
(5) R. Huisgen. Acc. Chem. Res., 10, 117. 199 (1977).
(6) T. W. Koenig and W. D. Brewer, Tetrahedron Lett., 2772 (1965).
(7) P. D. Bartlett and R. R. Hiatt, J. Am. Chem Scc.. 80, 1398 (1958)
(8) C. I. Rojas, M. S. Thesis, University of Puerto Rico (1972). A oetailed discussion of the $\alpha$ effect on the migratory aptitudes and activation parameters is reserved for a full paper.
(9) V. P. Vitullo and E. A. Logue, J. Am. Chem. Soc., 98, 5906 (1976)
(10) NIH Career Development Awardee (1975-1980).
(11) M. S. Thesis. University of Puerto Rico (1975).
(12) Graduate Participant in the Support for Uriversity Biomedical Education (SUBE) program, sponsored by NIH.

$$
\begin{array}{r}
\text { Waldemar Adam, }{ }^{* 10} \text { Omar Cueto, Luis N. Guedes }{ }^{11} \text { Luis O. Rodriguez }{ }^{12}
\end{array}
$$

Department of Chemistry, Uriversity of Puerto Rico Rio Piedras, Puerto Rico 00931

## Superoxide in Organic Synthesis: A New Mild Method for the Oxidation of Amines to Carbonyls via $\boldsymbol{N}$-Chloramines

Summary: Conversion of amines to their chloramines followed by reaction with potassium superoxide is a mild method of oxidizing amines to carbonyl compounds.

Sir: $N$-Chloramines have been used as effective intermediates for converting amine; to their carbonyl derivatives in a number of synthetic sc nemes. ${ }^{1,2} \mathrm{We}$ wish to report here a new. mild method employiny potassium superoxide and the results of our study on seven r presentative amines, inc_uding several unsymmetrical secondary amines.

We have converted a series of amines to their corresponding $N$-chloramines in etter solution utilizing the method of Bachmann ${ }^{2}$ and with sut prior isolation reacted the chloramines with potassium superoxide (see Scheme I). In a typical experiment $N$-methylbutylamine ( 1 g ) ( $20 \mathrm{~m} . \mathrm{mol}$ ) in ether $(50 \mathrm{~mL})$ was converted to its chloramine. Additional ether ( 50 mL ) was then added and the solution washed with water ( 1 $\times 50 \mathrm{~mL}), 1.5 \mathrm{M}$ sulfu ric acid ( $1 \times 50 \mathrm{~mL}$ ), ard again with water $(2 \times 50 \mathrm{~mL})$. It was then dried for at least 1 h over a mixture of magnesiun sulfate, potassium ca-bonate, and molecular sieves. ${ }^{3}$ After filtration the ether solution was slurried at room temperature with potassium superoxide ( 2.2 equiv) in the presence of 18 -crown- 6 polyether ( 80 mg ). When the yellow superoxide color had completely faded ( $4-6 \mathrm{~h}$ ). the mixture was filtered and the filtrate was poured into 2.4 dinitrophenylhydrazire reagent. ${ }^{4}$ The ether was evaporated on a rotary evaporato- and the crude 2,4-dinitrophenylhydrazone ( 2,4 -DNP) of $n$-butyraldehyde was isolated ( $82 \%$ yield). Analysis of the p:oduct by TLC (silica, ether/petroleum ether, 20:80) showed only a minor trace of a material with an $R_{f}$ similar to that of f(rmaldehyde 2,4 -DNP. ${ }^{5}$ After recrystallization the melting point and mixed melting point confirmed the product to $\mathrm{b} \geqslant n$-butyraldehyde 2,4 -DNP. See Table I for other examples.
The aldimines derived from diisobutylamire, di-n-pentylamine, and di-2-methylbutylamine have been isolated and their structures confirmed by IR ( $\mathrm{C}=\mathrm{N}$ stretch. $1670 \mathrm{~cm}^{-1}$ ) and NMR ( $\delta 7.6,1 \mathrm{H}$, aldiminic). In the case of diisobutylamine pure $N$-chloramine was isolated and fourd to react in anhydrous ether to give imine ${ }^{6}$ in $88 \%$ yield by analytical VPC, showing the reaction of $\mathrm{KO}_{2}$ with N -chloramines is a clean, high-yield reaction.

An interesting result of our studies is our observation that elimination from unsy nmetrical chloramines shows a preference for the more highly alkylated double bord, especially in the case of seconda $y$ methylamines. Thus $N$-chloro- $N$ methylbutylamine gives an overwhelming predominance of butylidenemethylamine on reaction with $\mathrm{KC}_{1}$., Although imines have been shown to form from $N$-choramines, very little work has been cone with chloramines of secondary amines and we are unaware of any studies on product yields from unsymmetrical annines. We believe the high regioselectivity we have observed the mild conditions required, and the easy workup may have valuable synthetic applications in the removal of $\mathrm{NCH}_{3}$ units from secondary methylamines.

Although the yield of carbonyl product from $n$-hexylamine was only moderate, no attempt was made to maximize the yield. Reaction of $N$-c.lorohexylamine with $\mathrm{K} \mathrm{O}_{2}$ was more vigorous than with the secondary $N$-chloramines. Lowering the temperature of the reaction might enhance the yield.

Scheme I


Table I. $\mathrm{KO}_{\mathbf{2}}$ Reaction with $\mathbf{N}$-Chloramines

|  | Amine (1) |  | Product (3) |
| :--- | :---: | :--- | :--- |,$\%$ y yield

${ }^{a}$ VPC yield of aldimine; see ref $6 .{ }^{b}$ Isolated as 2,4-dinitrophenylhydrazone; see ref 7 .

In an attempt to elucidate the mechanism we considered the possibility of a base-catalyzed reaction similar to Bachmann's. ${ }^{2}$ However, $\mathrm{KO}_{2}$ is no more basic than potassium acttate ${ }^{8}$ and potassium acetate gave no imine when reacted under conditions used with $\mathrm{KO}_{2}$. Using $\mathrm{Na}_{2} \mathrm{O}_{2}$ under these conditions, peroxide ion, a suspected product ${ }^{9}$ of the reaction of $\mathrm{KO}_{2}$ with $N$-chloramines, also gave no imine. When KOH was reacted with $N$-chloro- $N$-methylbutylamine, less than a $26 \%$ yield of imine was formed in the same time $\mathrm{KO}_{2}$ gave an $82 \%$ yield. The KOH reaction was also considerably d:rtier, giving several as yet unidentified products. We are therefore examining the reaction in detail for other possible intermediates.

Acknowledgment is made to the Donors of The Petroleum Research Fund, administered by the American Chemical Society, and the Old Dominion University Research Foundation for the support of this research.

## References and Notes

:1) G. Ehrhart, H. Ruschig, and W. Aumüller, Angew. Chem., 52, 363 (1939); H. Ruschig, W. Fritsch, J. Schmidt-Thome, and W. Haede, Chem. Eer., 88, 883 (1955); J. Schmidt-Thomé, ibid., 88, 895 (1955); -. Labler and F. Sorm, Collect. Czech. Chem. Commun., 24, 2975 (1959); E. J. Corey, N. H. Anderson. R. M. Carison, J. Paust, E. Vedejs, I. Vlattas, and R. E. K. Winter, J. Am. Chem. Soc., 90, 3245 (1968); E. J. Corey, I. Vlattas, N. H. Anderson, and K. Harding, ibid., 90, 3247 (1968).
(2) W. E. Bachmann, M. P. Cava, and A. S. Drieding, J. Am. Chem. Soc., 76, 5554 (1954).
(3) Thorough drying of the ether solution is required because $\mathrm{KO}_{2}$ deconposes in the presence of water.
(4) L. F. Fieser and M. Fieser, "Reagents for Organic Syr thesis", Vol. 1, Wiley, New York, N.Y., 1967, p 330.
(5) We estimate that the crude product is $>95 \%$ pure.
(6) Satisfactory elemental analysis (within $0.3 \%$ ) was obtained on this compound. The yield of $\mathbf{3 a}$ is based on amount of N -chloramine used.
(7) The structures of compounds $\mathbf{3 b - 1}$ were confirmed by comparison of the melting points and mixed melting points of their 2,4-dinitrophenylhydrazones with those of authentic compounds. Yields are basec on amount of starting amine used.
(8) The $\mathrm{p} K_{\mathrm{a}}$ 's of the conjugate acids of superoxide and acetate are the same (4.8): see D. Behar, G. Czapski, J. Rabani, L. M. Dorfman, and H. A. Schwarz, J. Phys. Chem., 74, 3209 (1970).
(9) The white solid material at the end of the reaction appears to be a $50: 50$ mixture of KCl and KOCH . Acidification gave within $10 \%$ the theoretical amount of oxygen to be expected from decompcsit on of KOOH.

Frank E. Scully, Jr.,* Richard C. Davis

Department of Chemical Sciences Old Dominion Unizersity
Norfolk, Virginia 23508

Received December 12, 1977

## Mercury in Organic Chemistry. 15. ${ }^{1}$ A Novel Stereospecific Synthesis of 1,3-Dienes via "Head-to-Tail" Dimerization of Alkynes

Summary: Terminal and internal alkynes can be dimerized in a "head-to-tail" fashion to provide excellent yields of unsymmetrical 1,3 -dienes by preparing the corresponding vinylmercurial and treating it with palladium chloride and triethylamine in benzene at room temperature.

Sir: 1,3-Dienes have proven very valuable as intermediates in organic synthesis. Recently a number of interesting new organometallic methods have been reported for the stereospecific dimerization of terminal alkynes to 1,4-disubstituted 1,3-dienes. ${ }^{2-9}$ For example, utilizing intermediate vinylboranes one can now prepare in a highly stereospecific manner cis,cis, ${ }^{4}$ cis,trans, ${ }^{5-7}$ or trans, trans ${ }^{8,9}$ 1,4-disubstituted 1,3 dienes at will. We wish to report a novel new method employing vinylmercurials which produces unsymmetrical 1,3-dienes via "head-to-tail" dimerization of terminal and internal alkynes (eq 1).


A while ago we reported a procedure for the symmetrical dimerization of vir.ylmercurials derived from both internal and terminal alkynes (eq 2). ${ }^{10}$ Although the original procedure

required stoichiometric amounts of lithium chloride and palladium chloride in hexamethylphosphoramide (HMPA) at $0^{\circ} \mathrm{C}$ in order to obtain high yields, we have more recently found that all of the disadvantages of that procedure can be overcome by using only catalytic amounts of $\left[\mathrm{ClRh}(\mathrm{CO})_{2}\right]_{2}$ to effect the dimerization. ${ }^{11}$ Upon closer examination of the palladium reactions we have observed that "head-to-tail" dimerization can occur in these same reactions simply by varying the reaction conditions. In fact, by omitting lithium chloride and empioying less polar solvents, we are able to obtain the unsymmetrical 1,3-dienes in excellent yield. Best results are obtained by using $\cdot .5$ equiv of $\mathrm{PdCl}_{2}$ and employing benzene as the solvent. It was also observed that HCl is generated during the course of these reactions and the addition of triethylamine improves the yields dramatically (eq 3).


The following procedure for the synthesis of trans-1,3-di-n-butyl- 1,3 -butadiene is representative. trans-1-Hexenylmercuric chloride ( 10 mmol ) and palladium chloride ( 5

Table I. Synthesis of "Head-to-Tail" Dienes
(2)
${ }^{a}$ GLC yield using an internal standard; [isolated yield]; (yield of symmetrical 1,3 -diene impurity). ${ }^{b}$ No triethylamine used.
mmoli were placed in a round-bottcm flask under nitrogen and 100 mL of benzene was added by syringe while cooling in an ice bath. Triethylamine ( 10 mmol i was quickly added and the ice bath removed. The reaction was then stirred for 12 h at room temperature. Charcoal and 5 mL of saturated ammonium chloride solution were added and stirred for 15 min . The mixture was filtered and the organic layer was separated, washed with dilute acid and base, and dried. Evaporation of benzene and column chromatography (pentane) on neutral aluminum oxide provided the 1,3 -diene in $93 \%$ yield ( $98 \%$ pure by GLC analysis): bp $73-74{ }^{\circ} \mathrm{C}(7 \mathrm{~mm})$; MS m/e $166.1721 \pm$ 0.8 (calcd for $\mathrm{C}_{10} \mathrm{H}_{22}, 166.1722$ ); IR (max) $\left(\mathrm{CCl}_{4}\right) 3090$ $\left(=\mathrm{CH}_{2}\right), 3030$ (trans $-\mathrm{CH}=\mathrm{CH}$ ), 1650 (diene), 1610 (diene), 965 (trans $-\mathrm{CH}=\mathrm{CH}$ ), $885\left(=\mathrm{CH}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta$ $0.92\left(\mathrm{t} .6 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ 's), $1.4\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ 's), $2.1(\mathrm{~m}, 4 \mathrm{H}$, allyl), 4.78 (br s, $2 \mathrm{H},=\mathrm{CH}_{2}$ ), $5.3-6.1(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}-$ ). The yields and isomeric purities of other 1,3 -dienes are summarized in Table I. Yields determined by GLC analysis (DC-550 or SE-30 columns) were run on one-tenth the above scale using a hydrocarbon internal standard.

Only in the synthesis of trans-1,3-di-tert-butyl-1,3-butadiene was it found advantageous to omit the triethylamine. In this case the infrared spectral data is very similar to that above and the NMR spectral data clearly exhibits a trans coupling constant of $J=16 \mathrm{~Hz}$. Spectral data and analyses for all other compounds are consistent with the assigned structures.

Since the reaction would achieve even greater synthetic utility were it to be effected using only catalytic amounts of palladium chloride, we have examired this possibility. Although the reaction is catalytic as run above, the catalyst turnover is generally quite low. However, addition of 2 equiv of anhydrous cupric chloride gives excellent yields using the exact procedure described above and only $10 \%$ palladium chloride (eq 4,5 ).

We have also studied the analogous stoichiometric reactions of vinylalanes, -boranes, and -silanes, but only very low yields of unsymmetrical 1,3 -dienes were obtained and these were contaminated by substantial amounts of the symmetrical 1,3-dienes.

The overall synthetic transformation is remarkable. The

"head-to-tail" 1,3-dienes are obtained in excellent yields with only small am.ounts of the "head-to-head" and none of the "tail-to-tail" products. This is even true in the case of the vinylmercurial derivec from 4,4-dimethyl-2-pentyne, where neither electronic nor steric effects would seem to favor formation of the "head-to-tail" diene and yet it is obtained in high purity ard good yield (eq 6).


Although no totally satisfactory mechanism has yet been formulated, the reactions appear to involve palladium hydride rearrangement of an intermediate organopal.adium compound (eq 7). The acid generated during the reaction quite

possibly arises from decomposition of an intermediate vinylpalladium species (eq 8,9 ). However, questions remain


$$
\begin{equation*}
\mathrm{HPdCl} \longrightarrow \mathrm{HCl}+\mathrm{Pd} \tag{9}
\end{equation*}
$$

as to the role of mercury in these reactions, the driving force for rearrangement, the reason for failure to observe statistical mixtures of all three possible 1,3-dienes, and just what species is involved in the coupling reaction.

During the course of cur investigation an apparently related process for the "head-to-tail" dimerization of terminal alkynes was reported. ${ }^{12}$ Although the combination triisobutylalane and bis( $N$-methylsalicylaldimme)nickel(II) directly dimerizes terminal alkynes, the yields are generally low and numerous side products are obserرJed. It seems likely that this reaction involves nickel hydride promoted coupling in a manner analogous to our palladium reactions.

In conclusion, both terminal and internal alkynes can be dimerized in a "head-to-tail" fashion by preparing the corresponding vinjlmercurial ${ }^{13,14}$ and treating it with palladium chloride and triethylarine in benzene at room temperature. This reaction can also be effected using only catalvtic amounts of palladium chloride if anhydrous cupric chloride is employed as a reoxidant. Excellent yields of 1,3 -dienes are obtained using either procedure. The mechanism of this remarkable transformation. howev $\in$ r, remains obscure.

Acknowledgments. We gratefully acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society, the Research Corporation. and particularly E. I. DuPont $\mathrm{D}_{\mathrm{E}}$ Nemours and Company for generous financial support, and Matthey Bishop, Inc., and Engelhard Industries for large loans of palladium chloride.

## References and Notes

(1) Part 14: R. C. Larock and M. A. Mitchell. J. Am. Chem. Soc., 100, 180 (1978).
(2) M. Yoshifuji, M. J. Loots, and J. Schwartz, Tetrahedron Lett., 1303 (1977).
(3) G. Zweifel and R. L. Miller, J. Am. Chem. Soc., 92, 6678 (1970).
(4) G. Zweifel and N. L. Polston, J. Am. Chem. Soc., 92, 4068 (1970).
(5) G. Zweifel, N. L. Polston, and C. C. Whitney. J. Am. Chem. Soc., 90, 6243 (1968).
(6) H. C. Brown and N. Ravindran, J. Org. Chem., 38, 1617 (1973).
(7) E. Negishi, G. Lew, and T. Yoshida, J. Chem. Soc., Chem. Commun.. 874 (1973).
(8) E. Negishi and T. Yoshida. J. Chem. Soc., Chem. Commur., 606 (1973).
(9) Y. Yamamoto, H. Yatagai, and I. Moritani, J. Am. Chem. Soc., 97, 5606 (1975).
(10) R. C. Larock, J. Org. Chem., 41, 2241 (1976).
(11) R. C. Larock and J. C. Bernhardt, J. Org. Chem., 42, 1680 (1977).
(12) A. M. Caporusso, G. Giacomelli, and L. Lardicci, J. Org. Chem., 42, 914 (1977).
(13) R. C. Larock and H. C. Brown. J. Organomet. Chem., 36, 1 (1972).
(14) R. C. Larock, S. K. Gupta, and H. C. Brown. J. Am. Chem. Soc., 94, 4371 (1972).
115) DuPont Young Faculty Scholar, 1975-1976.
16) A. P. Sloan Foundation Fellow. 1977-1979.

Richard C. Larock,* ${ }^{15,16}$ Bernhard Riefling
Department of Chemistry, Iowa State University Ames, Iowa 50011
Receicec' October 4. 1977

## B-Alkyl-9-borabicyclo[3.3.1]nonanes as Mild, Chemoselective Reducing Agents for Aldehydes

Summary: B-Siamyl-9-BBN will reduce a variety of functionalized aldehydes to the corresponding alcohols even in the presence of unhindered ketones.

Sir: Certain $B$-alkyl-9-borabicyclo[3.3.1]nonanes (9-BBN) have been shown to be effective reducing agents for benzaldehyde. The efficiency of these compounds as reducing agents is largely dependent on the structure of the alkyl group on $9-\mathrm{BBN} .{ }^{1}$ We wish to report that $B$-(3-methyl-2-butyl)-9borabicyclo[3.3.1]nonane ( $B$-siamyl-9-BBN) ${ }^{2}$ is an effective reagent for the reduction of a wide variety of aldehydes under mild conditions. ${ }^{3}$ The formation of an inte-mediate alkoxyborane is accompanied by the liberation of 2-methyl-2-butene (eq 1). ${ }^{4}$ The boron species is conveniently removed by pre-

cipitation as the ethanolamine complex, leaving the alcohol in solution. Several representative examples of successful

conversions of aldehydes are presented in Table I, which illustrates a number of attractive features of the reagent system.

Table I. Reduction of Aldehydes to Alcohols with B-Siamul-9-BBN

| Prcduct ${ }^{\text {a }}$ | \% yield ${ }^{\text {b }}$ |
| :---: | :---: |
| $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH}$ | 103 (54) |
| $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}$ | 101 (49) |
| $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{2} \mathrm{OH}^{\text {c }}$ | 100 (76) |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}^{d}$ | 82 (62) |
| $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$ | 97 (90) |
| $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}$ | 92 (80) |
| $p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}$ | 97 (65) |
| $p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}$ | (92) |
| $p-\mathrm{O}_{3} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}$ | (76) |

${ }^{a}$ All compounds $\epsilon$ xhibited satisfactory spectra in accord with the assigned structure. ${ }^{b}$ Determined by GLC using calibrated internal standard, numbers in parentheses indicate isolated yields. ${ }^{\text {c }}$ A mixture of $61 \%$ geranial and $39 \%$ neral; the same ratio of geraniol and nerol was obtained. ${ }^{d}$ trans-Cinnamaldehyde; the product had spectral properties identical with those of transcinnamyl alcohol.

First, trialkylboranes are exceedingly tolerant of many functional groups. ${ }^{5}$ For exanple, $B$-siamyl-9-BBN reduces $\alpha, \beta$-unsaturated aldehydes to allylic alcohols with neither detectable conjugate reduction nor 1,4 addition of the alkylborane in the absense of oxygen. ${ }^{\epsilon}$ Branched or highly hindered aliphatic aldehydes are reduced almost as rapidly as straight-chain aldehydes; hexanal is reduced only slightly faster than pivala-dehyde. The rate of reduction of parasubstituted benza-dehydes is increased by electron-withdrawing groups and decreased by electron-donating groups. Benzaldehyde is reduced about ten times faster than $p$-dimethylaminobenzaldehyde.

Perhaps the most remarkable feature of the $B$-alkyl-9-BBN compounds is their ability to selectively reduce aldehydes in the presence of ketones. While a number of reagents ${ }^{7}$ have been devised which show similar discrimination, only diisopropyl carbinol on alumina is reported to be sufficiently selective to reduce an aldehyde in preference to an unhindered cyclohexanone. ${ }^{7 g}$ We have fourd that substantial reduction of a wide variety of ketones is attained only after many days at reflux with $B$-siamyl-9-BBN. ${ }^{8}$ Cyclohexanone itself is reduced only to the extent of $2-3 \%$ under conditions for aldehyde reduction. Indeed, a competition between benzaldehyde and acetophenone for a single equivalent of $B$-siamyl-9-BBN resulted in a $>95 \%$ reduction of the aldehyde in 2 h with no detectable reduction of the ketone. ${ }^{9}$

Two substrates, $p$-dimethylaminobenzaldehyde and $p$ nitrobenzaldehyde, proved troublesome since the intermediate alkoxyboranє could not be subjected to the usual workup conditions without incurring decomposition. Modified procedures for these allowed isolation of the alcohols with no further complications.

A general procedure for aldehyde reduction is as follows. A dry, $200-\mathrm{mL}$ flask with a s de arm covered by a rubber septum, containing a magnetic stirring bar, and surmounted by a reflux condensor connec-ed to a mercury bubbler, was flushed with nitrogen. To the flask was added 62 mL of a 0.5 M solution of $9-$ BBN in THF ( 31 mmol ), followed by 3.4 mL of distilled 2 -methyl-2-butene ( 32 mmol ). The mixture was stirred at reflux for 2 h . Then 30 mmol of freshly distilled aldehyde was injected into the flask. ${ }^{10,11}$ Solid aldehydes were first dissolved in a small volume of THF and the solution was introduced into the reaction vessel via syringe. At the end of 2 h of reflux the solution was cooled to room temperature. Then $\sim 0.2 \mathrm{~mL}$ of acetaldehyde was injected into the flask to destroy excess organoborane and the solution was stirred for 15 min . The solvent and voiatile components were removed
by water aspirator while stirring vigorously in a $40^{\circ} \mathrm{C}$ water bath. The oily residue was dissolved in 30 mL of anhydrous diethyl ether and the solution was cooled in an ice bath. Then 1.85 mL of ethanolamine ( 31 mmol ) was injected with rapid stirring. The precipitate was filterec on a fritted-glass funnel and washed with 5 mL of ether. The filtrate was washed with 60 mL of a saturated sodium chloride solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under vacuum to yield the crude product. The alcohol may be isolated by distillation at reduced pressure or by chromatography and is gene=ally pure by NMR and GLC.

The capacity of $B$-alkyl- $9-\mathrm{BBN}$ compounds as chemoselective as well as enantioselective ${ }^{12}$ reducing agents for aldehydes has been demonstrated. ${ }^{13}$ The reagent is exceptionally mild since the reaction proceeds under essentially neutral conditions. The Meerwein-Pondorf-Verley type of mechanism proposed for this reduction ${ }^{1}$ suggests that this reagent should possess unique properties. We are continuing to investigate both the mechanism and scope of these reactions.

Acknowledgment. We gratefully acknowledge support of this work by the Research Corporation.

## References and Notes

(1) M. M. Midland, A. Tramontano, and S. A. Zderic, J. Organomet. Chem., 134, C17 (1977).
(2) H. C. Brown, E. F. Knights, and C. G. Scouten, J. Am. Chem. Soc., 96, 7765 (1974). 9-BBN is commercially available from the Aldrich Chemical Co.
(3) The reaction may be performed at room temperature. As standard conditions we have used 2 h in refluxing THF.
(4) Reduction via olefin elimination in the cyclooctyl ring has not been observed.
(5) H. C. Brown, G. W. Kramer, A. B. Levy, an J M. M. Midland, ' ${ }^{(O r g a n i c ~ S y n-~}$ theses via Boranes", Wiley-Interscience, New York, N.Y., 1975.
(6) H. C. Brown and G. W. Kabalka, J. Am. Cnem. Soc., 92, 714 (1970).
(7) (a) H. C. Brown, "Boranes in Organic Chemistr'", Cornell University Press, Ithaca. N.Y., 1972, p 215; (b) R. O. Hutchins and D. Kandasamy, J. Am. Chem. Soc., 95, 6131 (1973); (c) G. W. Gribble and D. C. Ferguson, J. Chem. Soc., Chem. Commun., 535 (1975; (d) C. S. Sell, Aust. J. Chem., 28, 1383 (1975); (e) Y. Yamamoto, H. Toi, A. Sonoda, and S-I. Murahashi, J. Am. Chem. Soc.. 98, 1965 (1976); (f) H. C. Brown, S. Krishnamurthy, and N. M. Yoon, J. Org. Chem., 41, 1778 (1976); (g) G. H. Posner, A. W. Runquist, and M. J. Chapdelaine, J. Org. Chem., 42, 1202 (1977); see Table III of this reference for a comparison of aldehyde reducing agents.
(8) Ketones may be reduced in a reasonable time if the concentration of the organoborane is increased.
(9) All ketones tested were reduced at least 100-200 times slower than the aldehydes. B-Siamyl-9-BBN is slightly more reactive toward acetophenone than toward cyclohexanone.
(10) When $p$-nitrobenzaldehyde was reduced, the reaction was conducted at room temperature for 3 h . After destroying excess organoborane with acetaldehyde, the solvent was removed under vacuum at room temperature. The residue was dissolved in 200 mL of ether and 1.85 mL of ethanolamine was added. The solution was filtered and the ether was concentrated under vacuum to about 3 mL (a drop or two of methanol will redissolve any precipitate). The product was eluted with ether frcm a silica gel column then concentrated by rotary evaporator and distilled by Kugelrohr at 0.01 mmHg , $110^{\circ} \mathrm{C}$. The alcohol was obtained as light yellow crystals in $76 \%$ yield, $\mathrm{mp} 67-69^{\circ} \mathrm{C}$.
(11) p-Dimethylaminobenzaldehyde was refluxed for 8 h . The solution was cooled to room temperature and treated with 2 mL of water, stirred for 15 min , then extracted with $2 \times 30 \mathrm{~mL}$ of acidified water (concentrated HCl added dropwise until the solution had a $\mathrm{pH} \mathrm{o}^{2} 1$ ). The aqueous extracts were combined. made basic to pH paper (with 3 N sodium hydroxide solution). and extracted with $2 \times 20 \mathrm{~mL}$ of ether (saturing the water with potassium carbonate after the first extraction). The combined extracts were dried over magnesium sulfate, filtered, and concentrated under vacuum to yield the product (pure by NMR).
(12) M. M. Midland, A. Tramontano, and S. A. ZJeris, J. Am. Chem. Soc., 99, 5211 (1977).
(13) Note Added in Proof. It has been reported that 9-BBN-pyridine will selectively reduce aldehydes [H. C. Brown and S. U. Kulkarni, J. Org. Chem., 42, 4169 (1977)].

## M. Mark Midland,* Alfonso Tramontano

Department of Chemistry, University of California Riverside, California 92521

Recsived October 26, 1977

## Diels-Alder Reaction of Thiophene with Maleic Anhydride at Very High Pressure ${ }^{1,2}$

Summary: The Diels-Alder reaction of thiophere with maleic anhydride proceeds urder very high pressure conditions, affording the exo adduct.

Sir: There has been current interest in the Diels-Alder reaction of thiophenes. Because of the high aromaticity, it is a well-known fact that thiophene itself is inert to maleic anhydride. ${ }^{3}$ The only recorded thiophene derivatives which are able to react with maleic arhydride in a Diels-Alder manner are thiophene 1,1-dioxide ${ }^{4}$ and 2,5-dimethoxythiophene. ${ }^{5} \mathrm{Re}$ cently it has been repcrted that some simple thiophene derivatives can combine with extremely reactive dienophiles such as dicyanoacetylene and dimethyl acetylenedicarboxylate. ${ }^{6-10}$
In this communicat on we wish to report the successful Diels-Alder reaction $o^{-}$thiophene with maleic anhydride at very high pressure (eq 1). In this way the 7 -thiabicyclo[2.2.1]-hept-2-ene skeleton 3 is simply accessible. ${ }^{11}$


Thiophene failed to react with maleic anhydride in methylene chloride at 15 kbar and room temperature for 3 days. The reaction without solvent or with a Lewis acid catalyst (e.g., $\mathrm{MgCl}_{2}$ ) was also fruitless. ${ }^{12}$ These facts show a striking absence of diene character in thiophene, and contrast remarkably with the case of furan. ${ }^{2}$ However, when we examined the reaction at higher temperatures at 15 kbar for 3 h in methylene chloride, $w \in$ found that the reaction does occur (Table I). Inspection of the Table I reveals that the most favorable result is obtained at $100^{\circ} \mathrm{C}$. Thus, from the reaction mixture a highly crystalline compound $3, \mathrm{mp} 15 \mathrm{C} .5-161.5^{\circ} \mathrm{C}$, of molecular formula $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{MS}, \mathrm{M}^{+}\right.$182) was obtained in yields of $37-47 \%$ afte- recrystallization from ether or chloroform. On the stereochemistry of the adduct 3, it is suggested that 3 has exo configuration from spectral data and chemical evidence as follows. In the ${ }^{1} \mathrm{H}$ NMR spectra, the $\mathrm{C}_{2}$ and $\mathrm{C}_{3}$ protons appear at $\delta 3.63$ as a doublet signal ( $J=1 \mathrm{~Hz}$ ). When the dihedral argle between protons at $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ and also at $\mathrm{C}_{3}$ and $\mathrm{C}_{4}$ is taken into account, this fact indicates that 3 has exo configuration. ${ }^{13}$ In agreement, the half methyl ester derived from 3 did not undergo iodolactonization ( $\mathrm{I}_{2}-\mathrm{KI}$ ). ${ }^{14}$
Subsequently, the effect of solvent in the formation of the adduct 3 was investigated (Table II). The low yield in benzene is presumably due to the freezing of reaction medium at very high pressure. ${ }^{15}$

The following procecure for the Diels-Alder reaction of thiophene with maleic anhydride is representative. ${ }^{16} \mathrm{~A}$ methylene chloride solution ( 1 mL ) of thiophene ( 3 mmol ) and

Table I. Temperature Dependence of the Yield ${ }^{a}$ in the Adduct 3 between Tiiophene and Maleic Anhydride

| Room temp | No reaction | $100^{\circ} \mathrm{C}$ | $37-47 \%$ |
| :--- | :--- | :--- | :--- |
| $40^{\circ} \mathrm{C}$ | No reaction | $120^{\circ} \mathrm{C}$ | $18 \%$ |
| $80^{\circ} \mathrm{C}$ | $8 \%$ | $150^{\circ} \mathrm{C}$ | Decomp |

${ }^{a}$ The yield based on the isolated material.

Table II. Solvent Dependence of the Yield in the Adduct 3 between Thiophene and Maleic Anhydride ( $100^{\circ} \mathrm{C}$ )

| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{CHCl}_{2} \mathcal{2} \mathrm{HCl}_{2}$ | $\mathrm{C}_{6} \mathrm{H}_{6}$ | AcOEt |
| :---: | :---: | :---: | :---: |
| $37-47 \%$ | $47 \%$ | $6-7 \%$ | $15-19 \%$ |

maleic anhydride ( 3 mmol ) was injected into the Teflcn reaction vessel of $\sim 0.85 \mathrm{~mL}$ capacity. The reaction vessel was heated to $100^{\circ} \mathrm{C}$ at 15 kbar for 3 h . After cooling of the reaction mixture to room temperature and pressure release, the solvent was evaporated and the product was recrysta-lized from ether or chloroform to give pure 3 in yields of $37-47 \%$ : mass spectrum ( 20 eV ) m/e (rel intensity) $132\left(36, \mathrm{M}^{+}, 110\right.$ (27), 84 (44), 78 (100), 66 (25), 45 (12); IR (Nujol) 1850, 1795, $1085,943,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 3.53(\mathrm{~d}$, $J=1 \mathrm{~Hz}), 4.59(\mathrm{~m}), 6.61(\mathrm{dd}, J=2,3 \mathrm{~Hz})$.

All attempted reactions between thiophene and other dienophiles such as dimethyl maleate, dimethyl fumarate, methyl acrylate, acrylonitrile, and acrolein under same conditions ( $100^{\circ} \mathrm{C}, 15 \mathrm{kbar}, 3 \mathrm{~h}, 3 \mathrm{M}$ in methylene chloride’, were fruitless, and no signs of adduct formation were observed. ${ }^{17}$

Acknowledgment. We thank Professor K. Matsuoka and Associate Professors N. Yamasaki and M. Ochi (Kochi University) for their helpful discussions and continuous encouragement through this study.

## References and Notes

(1) High Pressure Organic Chemistry. 2. For part 1, see H. Nishizawa, K. Hojo, K. Matsuoka, N. Yamasaki, H. Kotsuki, and M. Ochi, Res. Lab. Hydrotherm. Chem. Rep. (Kochi Univ.), 2, 13 (1977).
(2) For a related work in this area, see W. G. Dauben and H. O. Krabbenhoft, J. Am. Chem. Soc., 98, 1992 (1976).
(3) R. M. Acheson, "An Introduction to the Chemistry of Heterocyclic Compounds'". 3rd ed, Wiley, New York, N.Y., 1976, p 157.
(4) H. Wollweber, "Diels-Alder-Reaktion'", Georg Thieme Verlag, Stuttgart, 1972, p 72.
(5) J. M. Baker, P. R. Huddleston, and S. W. Shutler, J. Chem. Soc., Perkin Trans. 1, 2483 (1975).
(6) R. Helder and H. Wunberg. Tetrahecron Lett., 605 (1972).
(7) H. J. Kuhn and K. Gollnick, Tetrahedron Lett., 1909 (1972).
(8) H. J. Kuhn and K. Gollnick, Chem. Ber., 106, 674 (1973).
(9) D. N. Reinhoudt, W. P. Trompenaars, and J. Geevers, Tetrahedron Lett., 4777 (1976).
(10) K. Kobayashi and K. Mutai, Chem. Lett., 1149 (1977).
(11) For another approacn, see R. K. Murray, Jr., J. S. Polley, S. S. Abdel-Meguid. and V. W. Day. J. Org. Chem., 42, 2127 (1977).
(12) We thank Mr. K. Hcjo for his experiment of this part.
(13) F. A. L. Anet, Tetrahedron Lett., 1219 (1962).
(14) T. A. Eggelte, H. de Koning, and H. O. Huisman, Tetrahedron, 29, 2491 (1973).
(15) A freezing point of Jenzene is $\sim 100^{\circ} \mathrm{C}$ at $\mathbf{4} \mathrm{kbar}$ according to the Simon equation; cf. S. E. Babb, Jr., Rev. Mod. Phys., 35, 400 (1963).
(16) For a description of our high-pressure equipment, see ref 1.
(17) Under these conditions dimethyl maleate isomerized completely to dimethyl fumarate. In the case of acrylonitrile and acrolein, considerable polymerization was observэd.

Hiyoshizo Kotsuki,* Sachio Kitagawa Hitoshi Nishizawa<br>Faculty of Science, Kochi University Asakura, Kochi 780, Japan

Takashi Tokoroyama
Faculty of Science, Osaka City University Sumiyoshi-ku, Osaka 558, Japan Received November 30, 1977


Recognized by many organic chemists as the leading American journal in the field, this biweekly publication brings subscribers over 1,000 articles, notes and communications each year-over 4,000 pages inclucing original contributions on fundamental researches in all branches of the theory and practice of organic chemistry. Improved procedures, accounts of ncvel observations or com-
 pounds of special interest are also roted. Complete and mail the coupon NOW to join the thousands of organic chemists who find this journal vital in keeping current in the field.

## Phase Transfer Catalysis In Organic Synthesis

Aldrich and Springer-Verlag are pleased to announce the new monograph. "Phase Transfer Catalysis in Organic Synthesis," written by Professors William P. Weber (University of Southern California) and George W. Gokel (The Pennsylvania State University). This timely and comprehensive treatise places emphasis on the practical aspects of phasetransfer catalysis for accomplishing a wide variety of synthetic transformations.

We present below a few of the exciting applications of this technique as cited in "Phase Transfer Catalysis in Organic Synthesis."

$\mathrm{PhCH}_{2} \mathrm{OH} \xrightarrow[\mathrm{CH}_{2} \mathrm{C}_{2}]{\mathrm{O} . \mathrm{OCl}} \quad$ PhCHO $\quad(76 \%)^{7}$

$(81 \%)^{8}$

## Reference:

I) M. Makosia and M. Wawryniewict. Tetrahedrun Iell., 4659 (1909)
2) W P. Weher and G. W (inkel ihid. IG.37 (1972)

1) J.W Zubrick. BI. Dunhar, and HI). Durst, ihid. 71 (1975): for a recent resicu un crown ether chemistry, see (i W Ginkel ind H D) Durst. Aldrichirmica 4:10.9. 3(1976) 4) ('I I iotta and H P Harris. J 4 m Chem Soce. 96. 2250 (1974)
S) 11 oru. el al.. Sing hesss. 867 (1974)
(A) M Makexia and A Joncivk. Org Sin. SS. 91 (1976)
2) (i.A I.ee and H H Freedman. Teirahedron IPII. 1(A4) (197A)


A few of Aldrict's phase-transfer catalysts are listed below. See Aldrichimica Acta. 9, 45 (1976) for a complete listing.
85.657-6 Adogen 464* [methyltrialk yl( $\mathrm{C}_{\mathrm{k}}-\mathrm{C}_{10}$ ) ammonium chloride].. g $\$ 14.00$ 14655-2 Benzyltriethylammonium chloride.................. 25g $\$ 8.60$ $100 \mathrm{~g} \$ 24.35$ 85, 582-0 (etyltrimethylammonium bromide*............ $100 \mathrm{~g} \$ 8.10$
 100 g S 32.35 18.665-1 18-C rown-6.............. 5g S7.00; 25g S28.00; 1kg \$560.00 15.839-9 Dibenzo-18-crown-6 ................... 2.5g S5.50; 10g \$11.00 50g S37.00; 1 kg S 370.00 1.. 840-2 Dicyclohexano-18-crown-6, 99 \% ................... 2.5g \$6.50 10 g S22.50; 100 g \$175.00; $1 \mathrm{~kg} \mathbf{\$ 9 9 5 . 0 0}$
 -1 ie of this product as a phase tranner catalus in deverited in 18 Palent 794 ? 4 ? arigned un (onlinental ().l Compan!

# (Reactivity and Structure Concepts in Organic Chemistry, Volume 4) 

1977. xv, 280p. cloth $\$ 29.80$ ISBN 0-387-08377-4 Price subject to change without notice.

## Craftsmen in Chemistry

Corporate Offices
Aldrich Chemical Co., Inc.
940 W. Saint Paul Ave.
Milwaukee. Wisconsin 53233
U. S. A.

## Great Britain

Aldrich Chemical Co., Lid. The Old Brickyard, New Road Gillingham, Dorset SP8 4JL England

Belgium/
Continental Europe:
Aldrich-Europe B-2340 Beerse Belgium

West Germany/ Continental Europe EGA-Chemie KG 7924 Steinheim am Albuch West Germany


[^0]:    ${ }^{a}$ See eq 2 for reaction. ${ }^{b}$ Values for the rate constants were extrapolated from the data presented in Table III. ${ }^{c}$ Correlation coefficient for least-squares plots of the Arrhenius equation.

[^1]:    ${ }^{a}$ See ref 11 a for details on how these compounds were studied by ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ The $\alpha$ position refers to either the carbon attached to nitrogen or its hydrogen(s). ${ }^{c}$ These newly synthesized ${ }^{12}$ isomeric aziridines gave satisfactory microanalysis. ${ }^{d}$ Cis values in parentheses.

[^2]:    * Address correspondence to this author at the Department of Chemistry, Stanford University, Stanford, California 94305.

[^3]:    * Address correspondence to this author at the Department of Chemistry, Stanford University, Stanford, California 94305.

