VOL. **220** NO. **2** OCTOBER 16, 1981

۸ı 0F

HROMATOGRAPHY

ATIONAL JOURNAL ON CHROMATOGRAPHY, ELECTROPHORESIS AND RELATED METHODS

edited by

Michael Lederer

ELSEVIER SCIENTIFIC PÜBLISHING COMPANY AMSTERDAM

IOURNAL OF CHROMATOGRAPHY

Scope. The Journal of Chromatography publishes papers on all aspects of chromatography, electrophoresis a related methods. Contributions consist mainly of research papers dealing with chromatographic theory, inst mental development and their applications. The section Biomedical Applications, which is under separate edit ship, deals with the following aspects: developments in and applications of chromatographic and electrophoratechniques related to clinical diagnosis (including the publication of normal values); screening and profil procedures with special reference to metabolic disorders; results from basic medical research with dir consequences in clinical practice; combinations of chromatographic and electrophoretic methods with ot physicochemical techniques such as mass spectrometry. In Chromatographic Reviews, reviews on all aspects chromatography, electrophoresis and related methods are published.

Submission of Papers. Papers in English, French and German may be submitted, in three cop Manuscripts should be submitted to: The Editor of Journal of Chromatography, P.O. Box 681, 1000 AR Amst dam, The Netherlands, or to: The Editor of Journal of Chromatography, Biomedical Applications, P.O. Box 6 1000 AR Amsterdam, The Netherlands. Reviews are invited or proposed by letter to the Editors and appear in Chromatographic Reviews or Biomedical Applications. An outline of the proposed review should f be forwarded to the Editors for preliminary discussion prior to preparation. Submission of an article is und stood to imply that the article is original and unpublished and is not being considered for publication elsewhere For copyright regulations, see below.

Subscription Orders. Subscription orders should be sent to: Elsevier Scientific Publishing Company, P Box 211, 1000 AE Amsterdam, The Netherlands. The Journal of Chromatography and the Biomedical Applicati section can be subscribed to separately.

Publication. The Journal of Chromatography (incl. Biomedical Applications, Chromatographic Reviews and Cumula Author and Subject Indexes, Vols. 201–210 and 211–220) has 24 volumes in 1981. The subscription prices 1981 are:

J. Chromatogr. (incl. Chromatogr. Rev. and Cum. Indexes) + Biomed. Appl. (Vols. 203-226):

Dfl. 3240.00 plus Dfl. 432.00 (postage) (total ca. US\$ 1468.75)

J. Chromatogr. (incl. Chromatogr. Rev. and Cum. Indexes) only (Vols. 203-220): Dfl. 2556.00 plus Dfl. 324.00 (postage) (total ca. US\$ 1152.00).

Biomed. Appl. only (Vols. 221-226):

Dfl. 852.00 plus Dfl. 108.00 (postage) (total ca. US\$ 384.00).

Journals are automatically sent by air mail to the U.S.A. and Canada at no extra costs, and to Japan, Austrand New Zealand with a small additional postal charge. Back volumes of the Journal of Chromatogra (Vols. 1 through 202) are available at Dfl. 156.00 (plus postage). Claims for issues not received should be minimated three months of publication of the issue. If not, they cannot be honoured free of charge. For custom in the U.S.A. and Canada wishing additional bibliographic information on this and other Elsevier journ please contact Elsevier/North-Holland Inc., Journal Information Centre, 52 Vanderbilt Avenue, New Yo NY 10164. Tel: (212) 867-9040.

Abstracts/Contents Lists published in Analytical Abstracts, Biochemical Abstracts, Biological Abstracts, Che cal Abstracts, Chemical Titles, Current Contents/Physical, Chemical & Earth Sciences, Current Content Life Sciences, Index Medicus, and Science Citation Index.

See page 3 of cover for Publication Schedule, Information for Authors, and information on the News Sect and Advertisements.

© ELSEVIER SCIENTIFIC PUBLISHING COMPANY — 1981

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmit in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the pr written permission of the publisher, Elsevier Scientific Publishing Company, P.O. Box 330, 1000 AH Amsterda The Netherlands.

Submission of an article for publication implies the transfer of the copyright from the author(s) to the publisl and entails the authors' irrevocable and exclusive authorization of the publisher to collect any sums or considerations for copying or reproduction payable by third parties (as mentioned in article 17 paragraph 2 of a Dutch Copyright Act of 1912 and in the Royal Decree of June 20, 1974 (S. 351) pursuant to article 16 b of a Dutch Copyright Act of 1912) and/or to act in or out of Court in connection therewith.

Special regulations for readers in the U.S.A. This journal has been registered with the Copyright Clearar Center, Inc. Consent is given for copying of articles for personal or internal use, or for the personal use of spec clients. This consent is given on the condition that the copier pays through the Center the per-copy fee stated the code on the first page of each article for copying beyond that permitted by Sections 107 or 108 of the U.Copyright Law. The appropriate fee should be forwarded with a copy of the first page of the article to the Coright Clearance Center, Inc., 21 Congress Street, Salem, MA 01970, U.S.A. If no code appears in an article, author has not given broad consent to copy and permission to copy must be obtained directly from the auth All articles published prior to 1980 may be copied for a percopy fee of US\$ 2.25, also payable through the Center. This consent does not extend to other kinds of copying, such as for general distribution, resale, a vertising and promotion purposes, or for creating new collective works. Special written permission must obtained from the publisher for such copying.

Special regulations for authors in the U.S.A. Upon acceptance of an article by the journal, the author will be asked to transfer copyright of the article to the publisher. This transfer will ensure the widest possil dissemination of information under the U.S. Copyright Law.

(Chromatographic Reviews, Vol. 25, No. 2)

CONTENTS

(Abstracts/Contents Lists published in Analytical Abstracts, Biochemical Abstracts, Biological Abstracts, Chemical Abstracts, Chemical Titles, Current Contents/Physical, Chemical & Earth Sciences, Current Contents/Life Sciences, Index Medicus, and Science Citation Index)

Dynamics of dissemination in the case of affinity chromatography	0.5
by S. G. Kara-Murza (Moscow, U.S.S.R.)	85
The role of chromatography in BASF. Chromatographic techniques employed in BASF for investigatory studies and for problem solving	
by K. S. Brenner and W. Huber (Ludwigshafen/Rhein, G.F.R.)	95
Isoelectric points and molecular weights of proteins. A new table	
by P. G. Righetti and G. Tudor (Milan, Italy) and K. Ek (Bromma, Sweden)	115
Chromatographic Data	
TLC R_F values of potential antituberculous agents: N-aryl-N'-2-(benzothiazolyl) thiosemicarbazides	D1
TLC R_F values of 4-N,N'-dimethylaminoazobenzene-4'-sulphonyl derivatives of amino acids	DI
TLC R_F values of some amino acids and their Cu(II) and Ni(II) complexes	D 2
PC R_F values of some amino acids and their Cu(II) and Ni(II) complexes	D2
CC separation of deoxy sugars	D3
TLC R_F values of deoxy sugars	D3
TLC R_F values of some biologically active benzothiazoles and benzimidazoles	D4
TLC R _F values of homologous N-alkylcyclohexylamines	D5
TLC R _F values of homologous N-alkylacetylcyclohexylamines	D5
TLC R _F values of homologous N-alkylbenzoylcyclohexylamines	D6
TLC R_F values of homologous N-alkyl-3,5-dinitrobenzoylcyclohexylamines	D6

More and more primary literature? Less and less time to read it? take

trends in analytical chemisti

A monthly publication of short, critical reviews and new on trends and developments in analytical chemist

How much better informed vou could be if only you had the time to keep up with the latest developments.

Time we cannot give you, but we can give you concise, critical information on what is going on in the analytical sciences. Every month, as it happens.

It's all in TrAC - Trends in Analytical Chemistry - new for the 1980's from Elsevier and yours now at a low introductory rate.

Introductory Offer SIXTEEN ISSUES FOR THE PRICE OF TWELVE!

Volume 1 - 1981/82 - of Trends in Analytical Chemistry will have sixteen issues: March 1981 and monthly from October 1981 to December 1982. Order the Personal Edition before December 1981 and receive all sixteen issues for US \$42.50 (USA and Canada), £20.00 (UK), 91.50 Dutch guilders (Europe), 95.50 Dutch guilders (elsewhere). Or order the Library Edition for US \$133.25 or 260.00 Dutch guilders throughout the world.

All issues of both editions are sent by air worldwide.

*) The Dutch guilder price is definitive.

Take just a minute to order either edition now - you will enjoy the time it saves you later.

TrAC is your opportunity to learn from researchers in related fields, to first-hand, detailed reports on important developments in methodolc and instrumentation. TrAC brings you current information on trends a techniques from laboratories all over the world.

Lab managers will find in TrAC evaluations of new methods and ter niques which will enable them to make better-informed purchas decisions. As a training aid TrAC is more up-to-date than any textbo

TrAC is written in clear, jargon-free language, avoiding highly specialize terminology and provides you with a working knowledge of relamethodology and techniques.

In every issue you will find:

- short critical reviews written for an interdisciplinary audience
- feature articles
- insights into the function, organization and operation of industria government or research laboratories
- news on topics of general interest
- teaching aids TrAC is more up-to-date than any textbook
- articles on the history of analytical chemistry
- reports on meetings and book reviews

Trends in Analytical Chemistry comes in either the monthly Person Edition or the special Library Edition which includes the monthly issu plus a hardbound volume containing all the review articles published or

the year and indexed for easy retrieval.

Special Introductory Offer for the Personal Edition valid until December 31, 1981

To ELSEVIER Dept. TrAC. AP

P.O. Box 330

52 Vanderbilt Avenue

New York, NY 10017 1000 AH Amsterdam The Netherlands

US residents may call (212) 867-9040 and charge their American Express, Master Charge or Visa/Bankamericard account.

Yes! Please enter my subscription now - Volume 1 - 1981/82

☐ Personal Edition ☐ Library Edition

I enclose my □ personal cheque □ bankcheque

Orders from individual subscribers must be prepaid

☐ Please send me a free sample copy first.

Position:

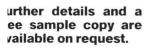
Date:

Name:

Address:

State:

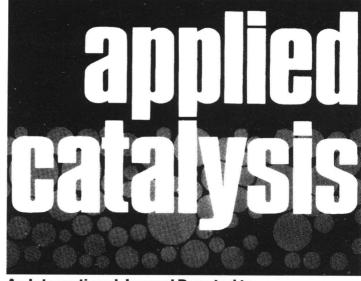
Postal Code


A NEW JOURNAL

ditor-in-chief: . DELMON, *Louvain-la-Neuve*, *elgium*

ditors

.A. CUSUMANO, Santa Clara, CA. GUCZI, Budapest, Hungary L. TRIMM, Kensington, Australia . A. WHAN, Edinburgh, U.K. upported by an international ditorial Board.


ubscription Information: 381 Volume 1 (in 6 issues) 80.50/173.00 Dutch guilders cluding postage

O. Box 211 000 AE Amsterdam ne Netherlands

2 Vanderbilt Ave ew York, N.Y. 10017 .S.A.

An International Journal Devoted to Catalytic Science and its Applications

The scope includes:

- catalytic phenomena occurring in industrial processes or in processes in the stage of industrial development and in conditions similar to those of industrial processes. Both heterogeneous and homogeneous catalysis are included, together with aspects of industrial enzymatic catalysis;
- scientific aspects of preparation, activation, ageing, poisoning, rejuvenation, regeneration and start up transient effects;
- methods of catalyst characterization when they are both scientific and have potential applications in industry;
- aspects of chemical engineering relevant to the science of catalysis;
- new catalytic reactions of practical interest, and new catalytic routes

A News Brief section, provided by correspondents, contains information gathered from patents, technical journals etc., on new catalytic reactions, catalysts and processes, new methods of catalyst preparation, and on new scientific facts related to the application of catalysis.

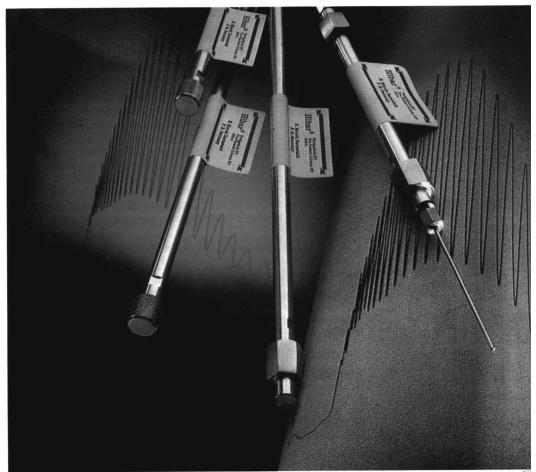
Rapid publication will be a special feature

The Dutch guilder price is definitive. US \$ prices are subject to exchange rate fluctuations.

Reagents MERCK

New for HPLC:

Hibar $^\circ$ pre-packed columns RT and EC / 250-4 and 125-4 mm


With our thoroughly proven packing materials on a LiChrosorb® and LiChrospher® base.

Two construction versions corresponding to the latest state of technology:

- RT With reducers "R" closed on both sides. Individual test chromatograms "T" with computer print-out of the performance data prove the high standard of quality.
- EC Without reducers and test chromatogram. Price advantage in comparison to Hibar® pre-packed columns RT with the same performance. "EC" – economy design.

- Simple construction and therefore easy use yet at the same time the greatest possible operational safety is guaranteed.
- Possibilities for connection to the respective HPLC equipment are universal and free of problems with our Hibar® accessory parts which are available separately.
- The interior diameter selected (4 mm) represents an optimum between detection limit, solvent consumption and analysis time.
- Extremely high separation performance and reproducibility.
- Hibar® pre-packed columns contain our packing materials which are graded according to qualities of selectivity and particle sizes for the purposeful optimisation of the separation result.

Please ask for our special brochure.

E. Merck, Darmstadt Federal Republic of Germany

417 Eü

CHREV. 146

DYNAMICS OF DISSEMINATION IN THE CASE OF AFFINITY CHROMATOGRAPHY

S. G. KARA-MURZA

Institute for the History of Science and Technology, Academy of Sciences of the U.S.S.R., Staropansky per. 1/5, Moscow K-12 (U.S.S.R.)

(Received December 31st, 1980)

CONTENTS

1	Introduction																8
	Method of investigation																
3.	Results and discussion																80
4.	Summary																9.
	eferences																

1. INTRODUCTION

Within the structure of developing scientific knowledge, techniques are the links between the various subject areas and this is clearly shown in the citation networks. Thus if we link subject areas (research specialties) through the co-citations^{1,*}, then we find that biochemistry and biomedicine form a macro-cluster, consisting of individual clusters formed by the 29 most cited methodological articles².

Of all the scientific disciplines biochemistry and molecular biology are the most method-oriented: they show a clear predominance of methodological papers amongst the most cited articles. According to our estimates, made on the basis of the most cited articles in biochemistry, biomedicine and psychology (as indicated in *Current Contents*³) 75% are intrinsically methodological and monopolize 85% of the citations (the total number of 156 articles examined offer 210,759 citations, while the methodological articles (118) have 178,488 citations, *i.e.* on the average 1512 per paper). In the field of biochemistry, one such methodological paper gives 1996 references, while a non-methodological one has 949. (In biochemistry the proportion of references to methodological articles within the "classics" reaches 92% d.) Hence an understanding of the patterns involved in the creation and diffusion of new scientific methods in biochemistry and molecular biology is of great importance for the forecasting of developments and the planning of scientific policies.

Affinity chromatography represents an important methodological innovation in chemistry and biochemistry in the second half of the twentieth century. First

^{*} The most commonly cited papers, when linked through co-citations in other publications, form consistent groups (clusters) of key works, representing the state-of-the-art of the corresponding subject area.

86 S. G. KARA-MURZA

developed at the end of the 1960s, it emerged on the "map" of biomedicine as a scientific speciality in its own right already in 1972. Its links with other areas of knowledge grew rapidly; in 1972 it was linked with the "immunology" cluster by 125 co-citations, in 1973 the linkage increased to 235 co-citations and a new link with the "cyclic AMP" cluster emerged with 192 citations².

There are a number of reasons why the history of the dissemination of affinity chromatography is of special interest for the study of science as a whole. First, as indicated above, the method has been used in many subject areas, it is part of the "methodological skeleton" of modern biochemistry and has quickly become an element of modern paradigm in this area. Secondly, affinity chromatography has a long prehistory—the scientific community had practically awaited the emergence of such a method— a fact that reduced to a minimum any delays in its dissemination, which might otherwise have occurred due to a non-awareness of its existence on the part of the research community. Thirdly, since the utilization of affinity chromatography does not involve the acquisition and mastering of sophisticated and expensive equipment, it represents a graphic example of "soft" technology. This eliminates yet another factor hampering the dissemination of this method. Apart from that, the method exhibits a specific and very interesting peculiarity due to the fact that it was arrived at almost simultaneously by two groups of workers, one in Sweden^{5,6}, the other in the U.S.A.⁷, which makes it an ideal case for comparison of the dynamics of dissemination.

2. METHOD OF INVESTIGATION

The evidence which is found in the literature provides an objective insight into the way a given scientific method is utilized. Therefore, we adopted for our investigation the information approach, *i.e.* the study of the dynamics shown by references to publications of the inventors of affinity chromatography. The quantitative data characterizing the utilization of affinity chromatography from 1968 to 1979 were taken from the *Science Citation Index*⁸. We proceeded on the assumption that a worker using affinity chromatography would necessarily cite the authors of this method. This is especially true with new methods which have not yet become routine. The yearly number of citations was taken from the *Citation Index*, the patterns of co-authorship and titles of articles from the *Source Index*, and the countries in which the journals are published from the *Journal List*.

3. RESULTS AND DISCUSSION

In many studies on the dissemination of technological innovations, diffusion is described with the aid of a logistic curve, *i.e.* as a process which is accelerated in its initial stage⁹. Scientific methods such as affinity chromatography represent in their essence an integral technology of research (see ref. 10 for this concept). And indeed the number of citations of the first work on affinity chromatography⁵ has grown exponentially (Fig. 1). This figure alone clearly demonstrates the speed with which affinity chromatography was introduced in the research laboratories.

However, a more comprehensive idea regarding the dynamics of its dissemination is provided by the extent to which all publications by P. Cuatrecasas, an

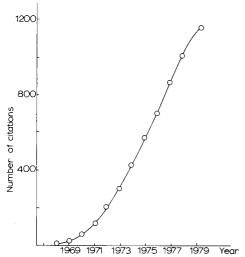


Fig. 1. Cumulative citation curve for Axén et al.'s paper⁵.

author from the American group of inventors of the method, are cited. It is interesting to compare these dynamics with those of the dissemination of paper chromatography during its first years. Fig. 2 shows the rise in the total number of citations of the inventors' papers after the first publication on affinity chromatography (Curve 1) and the rise in the number of papers carrying references to paper chromatography (Curve 2).

Fig. 2 shows that, following the creation of paper chromatography in 1944, the method passed through a four-year induction period before its rapid dissemination began. Until 1947 the number of workers using this method remained almost constant. Conceptually and technologically affinity chromatography is far more intricate

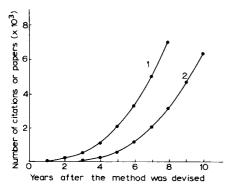


Fig. 2. Dynamics of dissemination of affinity chromatography (since 1968) and paper chromatography (since 1944). 1, Cumulative citation curve for Cuatrecasas *et al.*'s and Axén *et al.*'s papers. 2, Cumulative curve indicating the growth in the volume of publications on paper chromatography, as reflected in the bibliography in ref. 11.

88 S. G. KARA-MURZA

than paper chromatography, but its dissemination was preceded by a far shorter induction period. This goes to show that affinity chromatography was fully in accord with the methodological paradigm that had obtained in biochemistry by the 1960s whereas paper chromatography required a change in conceptual pattern for its mastery.

Innovators in the production field who have mastered an new technology earlier than others receive an additional remuneration. Transposing this to the scientific scene, if one takes the number of citations as a measure of professional remuneration in science, it may be expected that the faster the authors master a new method the more often they will be cited in the literature. To check this hypothesis, we selected at random 20 authors who cited ref. 7 in 1970 (group 1), and 20 authors who cited this work for the first time in 1974 (group 2). Table 1 indicates citation averages relating to the authors of both groups. As is evident from Table 1 "innovators" are cited considerably more often than those workers who mastered affinity chromatography only four years later. Of course, this correlation does not allow cause and effect to be identified, because productivity and innovation tend to complement each other. However, the fact that the correlation does exist at all is eloquent enough. One may also note that already a year after the publication of the papers in which affinity chromatography was utilized (1975) the citation frequency of the work of the second group of scientists increased considerably: from 16.4 to 23.1 citations per year.

TABLE 1
CITATION RATES OF PUBLICATIONS OF SCIENTISTS WHO BEGAN TO APPLY AFFINITY CHROMATOGRAPHY IN 1970 (GROUP 1) AND IN 1974 (GROUP 2)

Group	Average number of citations per author per year							
	1970–1974	1975	1977					
Group I	62.6	67.3	73.0					
Group 2	16.4	23.1	35.0					
Ratio of citation rates of								
group 1 to group 2*	3.8:1	2.9:1	2.1:1					

^{*} If, in an effort to reduce the influence of extreme values, we omit the values for the three most cited and the three least cited authors in each group, the following ratios are obtained: 6.1:1 (1970–1974), 2.8:1 (1975) and 2.2:1 (1977).

Technically the variants of affinity chromatography, as developed in the Swedish and the American laboratories, differed only insignificantly, in contrast to the dynamics of their dissemination, which differed sharply. Already in the first publications the differences in the citation pattern are clear (Fig. 3).

Whilst the annual number of citations of Axén et al.'s⁵ paper increased until 1977, the number of citations of the paper of Cuatrecasas et al.⁷ stabilized already by 1972. However, as was already pointed out above, it would be more rational to

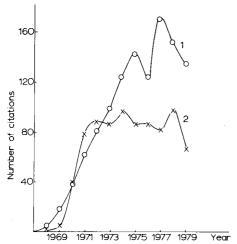


Fig. 3. Breakdown by years of citations of papers by Axén et al.⁵ (curve 1), and Cuatrecasas et al.⁷ (curve 2).

characterize the dissemination of both variants by the citation dynamics of all publications by Cuatrecasas, beginning in 1968, and by that of ref. 5. (For a more detailed validation of this approach see ref. 12.)

It is reasonable to assume that some references to the work of Cuatrecasas should be related to the results of his other research, rather than to affinity chromatography, but the error that this may cause is relatively small. A case in point is the fact that though the citation rate of Cuatrecasas' work published prior to 1968 is rather high (67 citations in 1970), it corresponds to the general laws of obsolescence, to which scientific information of "normal" values is subject (a two-fold reduction in the citation rate occurs every five years). No doubt, since 1968 Cuatrecasas published highly valuable results (due in no small measure to the utilisation of affinity chromatography, or methods allied to it; for example, the method involving the quantitative measuring of the coupling of insulin to its receptor on the surface of the cell¹³), but the mistake arising from the citation figures can surely be offset by the fact that we thus omit a large number of references to work on which his name was not the first on the list of authors*. However, a considerable number of those papers are devoted to applications of affinity chromatography.

Fig. 4 indicates the citation dynamics of the publications by Cuatrecasas and by the Swedish authors⁵. Towards the end of 1979, the number of citations of the American work reached 9000, while that of the Swedish work was only 1100**. How can this enormous difference in the dissemination of such similar variants of a method be accounted for? The difference is all the more surprising in view of the fact that the

^{*} During the 1970-1974 period, Cuatrecasas published 96 articles, but in only 39 of them he was the first named on the list of authors.

^{**} We leave out of account subsequent publications by the Swedish authors, because they, judging by their titles, apply to other topics (immobilized enzymes). However, even if they are taken into account, the parameters of curve 2 in Fig. 4 will not change substantially because Axén *et al.* were referred to 365 times up to and including 1976.

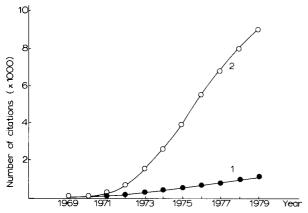


Fig. 4. Cumulative citation curves for papers by Axén et al.⁵ (curve 1), and Cuatrecasas, published beginning from ref. 7 (curve 2).

article by the Swedish authors⁵ appeared one year earlier in a widely read journal, and one of its authors was J. Porath, who had gained a world-wide reputation as the inventor of gel filtration.

The first reason for this lies in the fact that, despite the breadth of scientific contracts and the intensity of communications in modern science, geographical proximity to the place where a new method is developed, still tends to play a significant role.

Table 2 illustrates the citation dynamics of refs. 5 and 7, taken from journals published in various countries. It is evident that the American scientists tend to cite more often the American authors of affinity chromatography, while in the Scandinavian countries the Swedish authors are more often cited (7.7 times more). And furthermore the American "market" for the new research technique is substantially larger.

However, the main differences between the dissemination patterns of the two variants manifested themselves later. We believe that the reason for this lies in the

TABLE 2

BREAKDOWN OF REFERENCES TO THE FIRST PAPERS ON AFFINITY CHROMATOGRAPHY ACCORDING TO NATIONAL JOURNALS

Country of publication	Total number of references for 1969–1974	Ratio of the number of references to ref. 5 to that of ref. 7
U.S.A.	378	0.71
France	17	0.90
Great Britain	91	0.62
G.F.R.	25	1.27
Japan	25	1.50
Scandinavia	45	7.60
Others (taken together)	46	1.50
International journals	163	2.50

personal and active involvement of Cuatrecasas in the introduction of affinity chromatography for a wide range of problems, which cannot be said regarding the Swedish inventors of the method. Cuatrecasas personally helped a large number of workers in various areas of biochemistry and chemistry in overcoming the difficulties (mostly psychological) connected with the mastering of the new method, demonstrated its efficiency and created many "centers of proselytism", which played a large role in promoting a swifter adoption of the innovation. In fact, Cuatrecasas played the role of the innovation "champion" needed in a technology transfer. Indeed, that this function is indispensable has been confirmed in the course of numerous researches into the development of scientific and technological innovations. The difference of approach to the introduction of this method by the two groups of workers is seen already in the fact that the first main article by the Swedish inventors contains about 12.000 typographical symbols, while that of the Americans contains about 22.000.

The latter paper contains a detailed, step-by-step description of all the manipulations performed in applying affinity chromatography, which is of the utmost importance in overcoming the psychological barrier experienced by people mastering a new technology. A brief report has a much poorer didactic effect. However, what is most important, in our view, are the broad scientific contacts maintained by Cuatrecasas.

Evidence as to the breadth of such contacts can be found in the *Science Citation Index*. Fig. 5 shows a "map" of the contacts maintained by the authors of ref. 7. This shows not only the scientists who published certain papers in 1968 in co-authorship with Cuatrecasas, Anfinsen and Wilchek, but also some leading "co-authors of the co-authors".

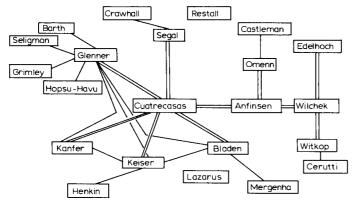


Fig. 5. Scientific contacts of the authors of ref. 7 in 1968. The double line is used to connect immediate co-authors and the single line the co-authors of Cuatrecasas', Anfinsen's and Wilchek's co-authors.

Indicating them on the "map", we proceeded from the assumption that a co-author of the co-author can be found in the group of scientific contacts of a given researcher because an informal contact can easily be established through a common acquaintance. It is evident from Fig. 5 that the group of Cuatrecasas' scientific contacts encompasses eminent scientists, working in many areas of research. This is confirmed by the data in Table 3, in which the lines of activity of these scientists and the number of articles published by them in 1968 are indicated.

TABLE 3

LINES OF ACTIVITY OF RESEARCHERS COMING WITHIN THE "FIELD" OF CUATRECASAS' SCIENTIFIC CONTACTS IN 1968

Name	Number of papers published in 1968	Field of activity
Glenner, G.	21	Histochemistry
Keiser, H. R.	6	Antibiotics
Bladen, H. A.	4	Bioorganic chemistry
Kanfer, J. N.	5	Lipids
Segal, S.	15	Active transport
Crawhall, J.	7	Medicine
Restall, C.	4	Anasthaesiology
Barth, W.	6	Connective tissues
Seligman, A.	16	Histochemistry
Grimley, P.	8	Cytology, virology
Hopsu-Havu, V.	10	Enzymology
Henkin, R.	9	Endocrinology
Lazarus, G.	6	Connective tissues
Mergenha, S.	12	Polysaccharides
		(endotoxins)
Castleman, B.	49	Medicine
Witkop, B.	27	Bioorganic chemistry
Cerutti, P.	6	Bioorganic chemistry
Edelhoch, H.	6	Bioorganic chemistry

It should be noted that the co-authorship "map" contains interesting evidence on the closeness of both variants of the affinity chromatography technique: Wilchek had as his co-author in 1968 an eminent specialist in bioorganic and fine organic chemistry, Witkop, who in 1966 and 1967 was a co-author of the Swedish research group.

The evidence characterizes Cuatrecasas as a scientist maintaining intense communications with a large number of research groups, which can, by itself, contribute to the dissemination of the method. In 1967 he published 13 articles as co-author of 15 other scientists. However, his activities after the year 1968 have assumed the character of a purpose-oriented co-operation with a large number of other scientists, largely for the popularization of affinity chromatography. Cuatrecasas published a large number of papers, while the list of his co-authors increases annually. Thus what we see here is a non-recurring co-operation rather than a broadening of constant contacts. Again, in the list of co-authors we see eminent scientists and heads of research groups.

Table 4 contains evidence as to the number of publications, the number of coauthors and the new co-authors of Cuatrecasas (those which first appeared in 1970 or later). It is noteworthy that, taken year by year, the number of "new co-authors" first showed a maximum and then started to decrease in recent years. This is easily explained; the method can now be considered to have been introduced into all of the main areas of its application: it has been given a large coverage in manuals and is included in the university curriculae. Thus there is no longer a need for the urgency with which the author introduced the technique previously.

TABLE 4				
NUMBERS OF PUBLICATIONS AFFINITY CHROMATOGRAPHY		AND HIS	CO-AUTHORS	AFTER
ATTINITI CHROMATOURAPHY	WAS DEVISED			

Year	Number of publications	Number of co-authors	Number of new co-authors*
1970	10	12	4
1971	21	17	6
1972	15	13	8
1973	28	15	10
1974	22	21	9
1975	23	14	5
1976	16	16	3
Total (1970–76)	135	108	45

^{* &}quot;New" co-authors are those who, in the period from 1968 and until the specified year, did not have any joint publications with Cuatrecasas.

The activities of the Swedish authors have developed differently. Since 1967 their publication activity or their co-operation with other scientists have evinced no changes. During 1968–1976, Axén published 22 papers (many in co-authorship with Porath), while Porath published 50 articles (of which only 16 were devoted to affinity chromatography as such). And those 16 pursued the objective of arriving at a new technique whereby active molecules can be bonded to their matrices, rather than the extension of the technique to new areas of application. This may explain the continuous growth until recently of the number of citations of ref. 5 as this seems the only work that could be cited by scientists working with this variant.

The retrospective comparison of the diffusion dynamics of the two variants of affinity chromatography highlights the regularity of the process of introduction of a technological innovation.

The combination of the two key roles in the person of Cuatrecasas, as creator of the method and as its propagatori, has resulted in a synergic effect that accelerated the introduction of this important scientific technique.

4. SUMMARY

The Science Citation Index was used to study the dynamics of the dissemination of scientific knowledge, using the two main affinity chromatography procedures developed by Axén, Porath and Ernback and Cuatrecasas, Wilchek and Anfinsen. It is suggested that the higher rate of citation of the latter group may be due to a more intensive method of propagation.

REFERENCES

- 1 H. G. Small and B. C. Griffith, Sci. Stud., 4 (1974) 17-40.
- 2 E. Garfield, Citation Indexing —Its Theory and Application in Science, Technology and Humanities, Wiley, New York, 1979, pp. 110–118.
- 3 E. Garfield, Curr. Contents, 9, No. 29 (1977) 5-12.

- 4 E. Garfield, Curr. Contents, 9, No. 25 (1977) 5-12.
- 5 R. Axén, J. Porath and S. Ernback, Nature (London), 214 (1967) 1302.
- 6 J. Porath, R. Axén and S. Ernback, Nature (London), 215 (1967) 1491.
- 7 P. Cuatrecasas, M. Wilchek and C. Anfinsen, Proc. Nat. Acad. Sci. U.S., 61 (1968) 636.
- 8 E. Garfield, Citation Indexing —Its Theory and Application in Science, Technology and Humanities, Wiley, New York, 1979, pp. 18–36.
- 9 E. Mansfield, Industrial Research and Technological Innovation, Norton, New York, 1968.
- 10 S. G. Kara-Murza, Vestn. Akad. Nauk SSSR, No. 1 (1979) 44-52.
- 11 I. M. Hais and K. Macek, Handbuch der Papierchromatographie, Bd. II, Gustav Fischer, Jena, 1960.
- 12 S. G. Kara-Murza, Nauchno-Tekh. Inf., No. 1 (1979) 7-12.
- 13 P. Cuatrecasas, Proc. Nat. Acad. Sci. U.S., 68 (1971) 1264.

CHREV. 147

THE ROLE OF CHROMATOGRAPHY IN BASF

CHROMATOGRAPHIC TECHNIQUES EMPLOYED IN BASF FOR INVESTIGATORY STUDIES AND FOR PROBLEM SOLVING*

K. S. BRENNER

Untersuchungslabor, WHU-E 210, BASF AG, D-6700 Ludwigshafen/Rhein (G.F.R.)

W. HUBER

Ammoniaklaboratorium, WAA-M 320, BASF AG, D-6700 Ludwigshafen/Rhein (G.F.R.) (First received February 25th, 1981; revised manuscript received April 24th, 1981)

CONTENTS

1	Introduction
2.	Statistics relating to BASF AG
3.	Functions and applications of chromatographic techniques in BASF
4.	Review of analytical chromatographic techniques employed in BASF
5.	Problems, requirements, instrumentation (examples)
6.	Summary
Re	ferences

1. INTRODUCTION

Chromatography has been employed in the analytical laboratories of BASF for many years. For instance, between 1936 and 1939 Dr. B. Weiss separated wax components on alumina and silica, and by using various solvents he was able to achieve a group separation into alkanes, monocarboxylic acids and dicarboxylic acids and a partial separation into hydroxy and keto acids. It is interesting that these early unpublished studies involved a whole series of innovations that had not been described previously in the literature. These novel features were as follows: a steel column was used, the work was carried out under pressure, the column was heated at 70°C and colourless substances were investigated (Fig. 1). It should be remembered that at that time chromatography usually involved the investigation of coloured products.

In 1952 paper chromatography was introduced, and was used for the separation and semi-quantitative determination of dinitrophenylhydrazones of carbonyl compounds and also of alcohol dinitrobenzoate derivatives. Although these methods are still of importance today, high-performance liquid chromatography (HPLC) is now usually employed.

^{*} Presented at the 14th International Symposium on Advances in Chromatography, Lausanne, September 24–28, 1979. The majority of the papers presented at this Symposium have been published in J. Chromatogr., Vol. 186 (1979). A similar paper on Ciba-Geigy presented at this symposium was published in J. Chromatogr., 184 (1980) 207.

The first gas chromatograph was one which we built ourselves in 1955 and which incorporated a thermal conductivity cell. With the aid of this apparatus Dr. H. Kienitz carried out the first ethylene analyses. The first commercial instrument was purchased in 1956 and to our knowledge was the first gas chromatograph which was delivered to the G.F.R.

Further developments proceeded with, at times, dramatic speed, in particular as regards HPLC.

2. STATISTICS RELATING TO BASF AG

Some important statistics relating to BASF AG are presented in Table 1, which also includes some comparative data for the BASF Group. One figure which should be emphasized is the number of different products marketed by BASF, namely 6000. The number of individual chemical precursors and intermediates also produced by BASF has not been recorded. In addition it should be underlined that the 1600 buildings include an unspecified number of experimental and production plants as well as numerous research and analytical laboratories.

TABLE 1
STATISTICS FOR BASF AG AND BASF GROUP FOR 1978

	BASF AG	BASF Group
Employees	ca. 52,000	ca. 115,000
Total share capital	ca. 9000 · 106 DM	ca. 16,000 · 106 DM
Cash flow	ca. 10,000 · 106 DM	ca. 21,500 · 10 ⁶ DM
Total area of works		6.3 km ² (2.4 sq. miles)
No. of buildings	ca. 1600	•
Total number of		
products marketed	ca. 6000	
Production volume	ca. $5.7 \cdot 10^6$ tonnes	

In this major chemical complex, which covers approximately 6.3 km² (2.4 square miles), fundamental analytical studies are carried out in two analytical centres. This arrangement has proved to be optimal in view of the size of the works. The Agricultural Division has its own analytical centre at Limburgerhof, outside Ludwigshafen.

Fig. 2 is an aerial view of BASF, which clearly shows the two laboratories that comprise the Analytical Centre in the northern part of the works and the Analytical Centre in the southern part.

Later data are intended to give an impression of the number of chromatographic instruments employed in BASF. In some instances, however, it was only possible to obtain statistical data tracing back developments over a relatively short period of time. The available data that cover the longest period are those referring to the increase in the number of gas chromatographs in the Central Analytical Laboratory (WHU) situated in the southern part of BASF.

These statistical data, covering a period of 20 years, are presented in Fig. 3 and

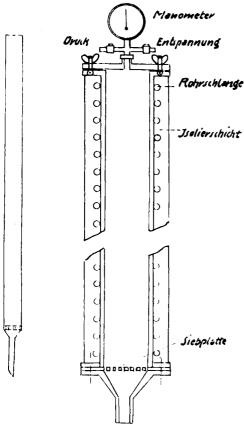


Fig. 1. Example of early chromatographic experiments at BASF AG (I.G. Farbenindustrie A.G., Ludwigshafen a. Rh.) in the period 1936–1939: low-pressure liquid chromatography at elevated temperature. Original drawing by Dr. B. Weiss ("Entspannung" = pressure release valve; "Druck" = pressure; "Rohrschlange" = coiled tube for the heating of the liquid; "Isolierschicht" = insulation layer; "Siebplatte" = sieve support).

are corrected values including active instruments only. This figure also illustrates developments in the number of samples received for analysis. In addition, the point at which the link-up with our IBM 1800 computer unit took place is indicated. The line that has been drawn gives an indication of the increase in the number of instruments and corresponds to a rate of increase of approximately 2.5 chromatographs per year.

The curve showing the number of samples received for analysis over the last 20 years is a reflection not only of the various developments that have taken place in the field of chromatography, but also of various other factors, such as the spread of gas chromatography (GC) within BASF and the automation of GC analysis. Particularly since 1970 the use of GC techniques has spread rapidly through the many research laboratories at BASF and as a result the number of samples received by the Central Analytical Laboratory has decreased. Nevertheless, the cost units charged continued to rise, because in many instances analysis of the sample required considerably more complex chromatographic techniques, such as the use of several different columns

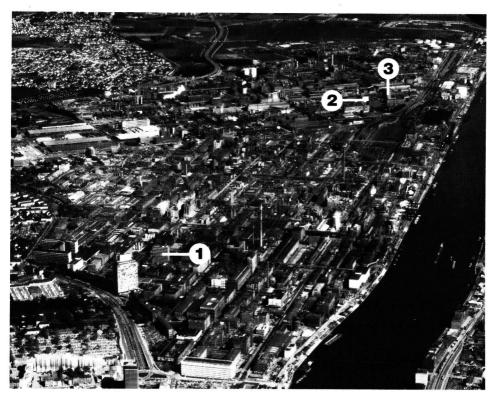


Fig. 2. Aerial view of BASF. 1 = Central Analytical Laboratory South (Untersuchungslaboratorium, WHU, E 210); 2 = Central Analytical Laboratory North, Physico-Chemical Department (Analytisches Labor, WAA, M 325); 3 = Central Analytical Laboratory North, Chemical Department (Analytisches Labor, WAA, M 320). The analytical centre of the Agricultural Division is situated at Limburgerhof Versuchsstation, outside Ludwigshafen.

and specific detectors. Following the introduction of computer evaluation and the automation of various operations there was a sharp increase in the number of samples, as it was then possible to carry out routine series of analyses. It has been our experience in the Central Analytical Laboratory, however, that the time that elapses between the introduction of a particular technical innovation and its universal application has grown steadily shorter. In this instance it was a matter of only 2–3 years before automation and the use of automatic evaluation devices became widespread throughout the works. Despite fluctuations in the number of samples received, the actual number of cost units charged for GC analysis has risen steadily, except for one or two discontinuities in the curve (Fig. 3). To complete the picture, Fig. 4 shows the increase in the number of automated injection systems for GC employed in the Analytical Centre WHU South.

Parallel to the developments that have taken place in the Analytical Centre in the southern part of the works there has been a considerable increase in the number of gas chromatographs employed in the Analytical Centre North (Oppau), as shown in Fig. 5. As precise figures are available only from about 1968 onwards, the data for earlier years have had to be estimated. The line indicating the growth rate cor-

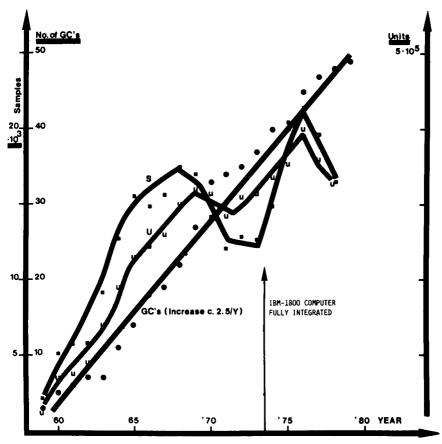


Fig. 3. Increase in the number of gas chromatographs between 1959 and 1979 in the BASF Analytical Centre, WHU South. Number of samples analysed (S) and cost units charged (U) are also compared.

responds to an increase of approximately seven gas chromatographs per year. The reason for this is that in addition to a special GC laboratory there is also a large gas-analysis laboratory.

If instead of merely considering the growth rates of the two central analytical laboratories, one looks at the overall increase in the number of gas chromatographs installed throughout BASF AG, then a statistically much more balanced picture is obtained (Fig. 6). In this case the rate of increase in the total number of instruments is approximately 30 per year, and is thus considerably greater than the growth rate in the central analytical laboratories. Approximately three quarters of the instruments are employed not in the central analytical laboratories, but instead are distributed in a decentralized fashion amongst roughly a dozen analytical subcentres and a great variety of production points. There are altogether approximately 92 laboratories in which GC studies are carried out. Electronic integrators of various degrees of sophistication are available for approximately 400 gas chromatographs (channels). Seven medium-sized computers are in operation in the two analytical centres and three subcentres (Table 2).

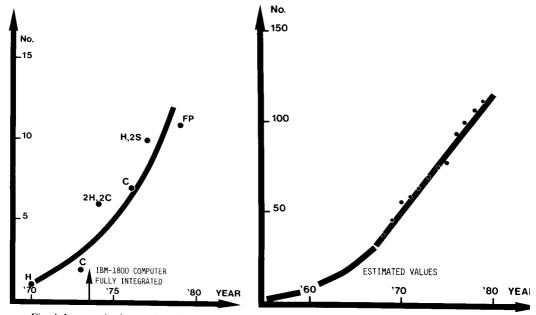


Fig. 4. Increase in the number of automated injection systems for GC between 1970 and 1979. Data from BASF Analytical Centre WHU South. Types of injection systems: H = headspace device; C = capsule device; C =

Fig. 5. Total number of gas chromatographs installed between 1955 and 1973 in BASF Analytical Centre, WAA North. Increase: ca. 7 gas chromatographs per year.

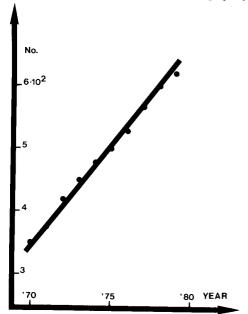


Fig. 6. Total number of gas chromatographs installed between 1970 and 1979 in BASF AG. Increase: *ca.* 30 gas chromatographs per year. No. of automated injection systems in BASF in 1979: 66 GC injectors, 10 headspace devices.

TABLE 2
TOTAL NUMBER OF INSTALLED GC AND HPLC INSTRUMENTS AND COSTS OF TLC IN BASE AG AND THE ANALYTICAL CENTRE WHU SOUTH

Type of process	Instruments	No. of instruments
GC	GC instruments	Total 620
	Automated injection	
	+ headspace systems	66 + 10
	Integrators (channels)	260 (400)
	Computers	7
HPLC,	HPLC instruments	20-30*
WHU/WAA Lab. only	Integrators, multi-channel	2*
Gel permeation chromatography	Instruments	15–20
Process GC	Instruments installed	ca. 80
TLC	TLC scanners	5
	TLC costs (1978),	
	including plates +	40,000 DM
	(reagents and instrumental	(20,000–
	aids)**	40,000 DM)

^{*} The total value for BASF is estimated at about 2-3 times this value.

At present, approximately 65 automated injection systems of various types, together with about ten headspace injection devices, are employed for GC. It is estimated that between five and ten automatic injectors for liquid chromatography are now in use.

Process GC, which should be regarded as a technical variant of GC, is employed in approximately ten installations for monitoring air quality and in about 70 units for process monitoring and regulation.

Fig. 7 shows the growth in the number of high-performance liquid chromatographic (HPLC) installations in the Analytical Centre South and the total number of samples analysed. The latter data are also broken down into the percentage of samples analysed by means of low-pressure liquid chromatography and the percentage using HPLC. The figures naturally cover only a relatively brief period, but nevertheless the curves demonstrate the rapidly increasing importance of this technique. Also in this instance the number of samples received is not a true reflection of the extent to which HPLC is employed.

These data may lead to the remarkable conclusion that, at least as far as chromatography is concerned, the bulk of the analytical work is not in fact performed in the analytical laboratories but is, instead, carried out in the various plants and subcentres. This naturally prompts the question as to what role the central analytical laboratories play in the firm. Of the roughly 700 staff employed in the two central analytical laboratories, approximately 15–20% are involved in chromatographic work. From this figure and from the volume of GC data, it is possible to estimate that

^{**} No other figures available for the estimation of the use of TLC at BASF AG.

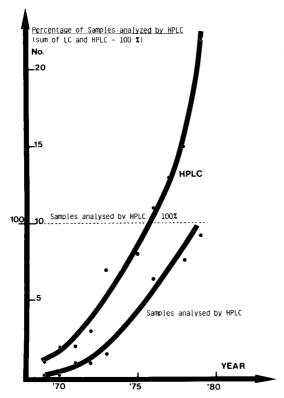


Fig. 7. Total of HPLC installations in BASF Analytical Centre WHU South.

altogether about 1000–1500 persons are partly or wholly engaged in carrying out chromatographic studies.

What the ideal number of professional analysts should be in comparison with the number of plant analysts is a particularly difficult question, to which there is no generally applicable answer. When, however, the works exceeds a certain size then a compromise develops automatically as a function of the two basic preconditions for optimal analysis, namely maximal understanding of the problem and maximal understanding of the method on the one hand, and the need to obtain rapid results on the other. One of these compromises at BASF has been the development of analytical subcentres, which function as an intermediate link between the central analytical laboratories and the analytical laboratories in the plants. At the moment there are approximately twelve such subcentres in BASF. These subcentres carry out both inplant analyses and process control as well as analyses for production-oriented research and technical applications research.

3. FUNCTIONS AND APPLICATIONS OF CHROMATOGRAPHIC TECHNIQUES IN BASF

Naturally, for most of the problems encountered in research and development, every possible promising chromatographic technique is employed, irrespective of

whether the method will be used later for control and production purposes. A particularly important field for chromatography is in the department of technical applications, as it is here that a new product is subjected for the first time to a whole combination of investigations. These studies are carried out to resolve questions regarding production, quality control, product applicability for the customer, official approval for the product, environmental factors, etc. Examples of such tests include the analysis of monomers, studies on the migration of monomers and chemical auxiliaries from plastic utensils into foods cosmetics and drugs and consumer protection by means of predictive measurements.

Just how important these investigations are, and just how much effort these chromatographic studies involve, may be illustrated by mentioning a few examples of world-wide significance, such as the analysis of vinyl chloride in PVC and of acrylonitrile in polyacrylonitrile plastics, or the development, testing and approval of plant protection agents such as Bentazon or phenoxyalkanoic acids. Fig. 8 shows as an example acrylonitrile analysis in sunflower oil after a migration test.

In this connection, one must also mention the very active part BASF has played in the work of the Analytical Commission of the German Federal Health Authority over the last 22 years. This Commission has worked out guidelines for the analysis of everyday articles, particularly those made of plastic.

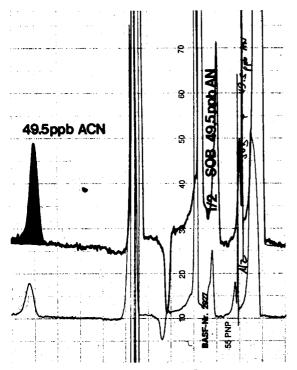


Fig. 8. Determination of *ca.* 50 ppb (10°) of acrylonitrile (ACN, AN) in sunflower oil (Sonnenblumenöl, SOB) after a migration test. Selective measurements were made using a nitrogen-selective TID in combination with the GC headspace technique.

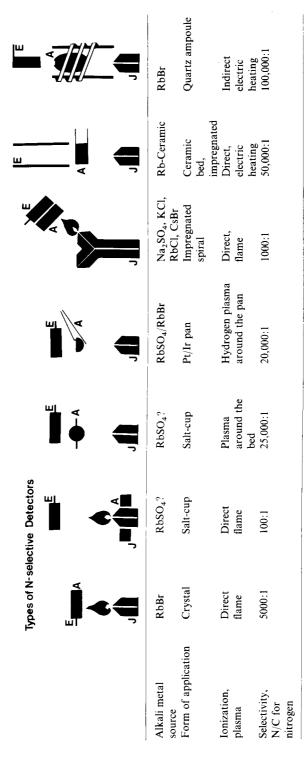


Fig. 9. Types of nitrogen-selective detectors. A = Alkali metal source; J = jet; E = electrode. The table shows the corresponding form of alkali metal application and, if known, the composition of the alkali metal source.

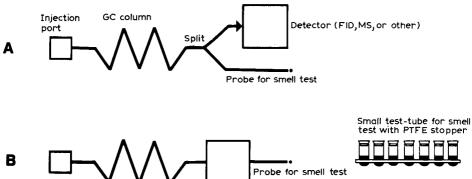
4. REVIEW OF ANALYTICAL CHROMATOGRAPHIC TECHNIQUES EMPLOYED IN BASF

Table 3 shows the GC-detector combinations which are most frequently employed. These combinations involve one- and multi-dimensional detectors. It goes without saying that GC-mass spectrometry (MS) coupling and its different variations play a very important role, both in research and also to some extent for monitoring concentrations of substances down to trace levels.

TABLE 3
GAS CHROMATOGRAPHY-DETECTOR COMBINATIONS USED AT BASF AG

GC-MS	GC-IR and TEA	Selective detectors	GC-TLC and smell analysis
Electron impact and chemical ionization techniques, magnetic and quadrupole instruments, high-resolution instruments	IR: Fourier transform instrument TEA: thermal-energy analyser for nitrosamine analysis	N- and P-selective detectors (TIDs) (different types), ECDs, flame photometric detectors, microwave plasma detectors, detectors for halogens and sulfur	GC-TLC combination mainly for aromatic compounds and amines; smell analysis with special smell test-tubes

Recently we have started to employ GC-infrared (IR) coupling. The Fourier transform instrument is capable of yielding complete IR spectra even when only small amounts of substance are available. Readily interpretable IR spectra can be obtained for GC peaks with a mass flow of 200 ng/sec. In addition, it is possible to exploit the high degree of separation which can now be achieved at very low sample concentrations.


BASF has traditionally produced a very wide range of nitrogen compounds, and hence nitrogen-selective detectors are of particular interest. Virtually every type of nitrogen-selective detector has been tested in our laboratories (Fig. 9).

The need for an element-specific detector, capable of responding simultaneously and specifically to different elements, has, in the meantime, been fulfilled by the microwave plasma detector. The sole disadvantage of this detector is that, depending on the element concerned, the sensitivity is 10–1000 times lower than that of a flame-ionization detector (FID).

We have continued to employ GC-thin-layer chromatography (TLC) coupling on a small scale, in particular since it has proved possible to develop this technique, which has long been known, into a GC-"smell" analysis. By means of this method it was possible to solve a series of complex smell problems, with the assistance of the human nose, but under much better defined conditions. This technique is shown in Figs. 10 and 11.

HPLC has reached a very high level of sophistication and is widely employed. Although it is perhaps almost trivial to enumerate the serious shortcomings associated with the method, nevertheless some of them should be mentioned.

The most serious problem is still the search for a detector with characteristics that can compare, even to a first approximation, with those of the FID. The chances of developing such a detector, however, appear to be slim when one considers the difference between the mobile phase in HPLC and GC.

Detector that leaves compounds unchanged [e.g.,thermal conductivity detector (TCD) or electron-capture detector (ECD)

Fig. 10. Different types of experimental design for smell analysis. In order to avoid interferences due to laboratory air (smell), heat from instruments, extraneous odours, etc., the individual odour fractions (peaks) are adsorbed in small sample tubes containing an adsorbent such as silica gel. It is only in this way that the smell of the individual fractions can be assessed in a neutral atmosphere. Some of the fractions are eluted at intervals of only a few seconds (e.g., with capillary columns). In this case the functional capacity of the human nose is often overstressed after a few peaks. When assessing the odour, the adsorbed substances must first be desorbed by the addition of a few drops of water. In some instances the sample must be warmed³. Mode A: device with split and very sensitive detector; the main stream is flowing directly to the smell probe. Mode B: the total amount of sample is passing through a non-destructive detector to the probe.

A problem of almost equal gravity is the qualitative identification of the separated substance. HPLC-MS coupling, even if one day it should become a routine method, will surely never achieve the same significance as GC-MS coupling, for many reasons.

In comparison with these classical shortcomings of HPLC, experimental difficulties such as the moderate lifetime of the columns used for the widely used reversed-phase chromatography are almost insignificant. If a more exact control of the flow-rate could be achieved, this would lead to a highly desirable improvement in the precision of the method.

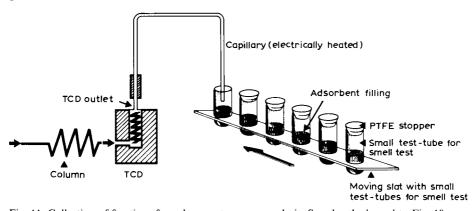


Fig. 11. Collection of fractions for subsequent sensory analysis. See also the legend to Fig. 10.

TLC is, of course, extensively employed and is unrivalled as both a qualitative and a semi-quantitative method. Nevertheless, when employed as a quantitative procedure, TLC possesses obvious disadvantages, such as only moderate accuracy, a small dynamic range, a complicated calibration procedure and a large human factor. In certain analyses these shortcomings can, in fact, be tolerated and quantitative determinations are still frequently carried out. Compared with the relative simplicity of the separation procedure it seems that the scanner operates in a very complicated fashion. The ultimate solution could be a "computerized image analyser" in which the whole adjustment and calibration process is performed by the computer. On the other hand, however, the combination of an extremely simple method of separation with an extremely complex evaluation procedure is highly undesirable.

Even though it is not immediately evident, considering the total number of GC instruments in operation, both mechanization and automation* are extensively applied not only for sample injection but also for result evaluation purposes. This has been particularly the case in the central analytical laboratories and analytical subcentres. The different types of instruments are shown schematically in Fig. 12.

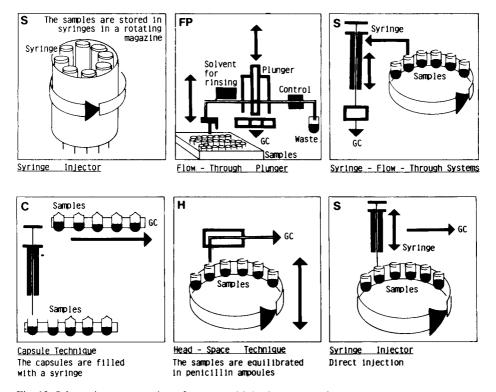


Fig. 12. Schematic representation of automated injection systems for GC. The optimal injection system must be selected with respect to the sample matrix (e.g., viscosity, physical state) and the volatility of the compounds.

^{*} Mechanization: substitution of manual work by a machine or apparatus. Automation: substitution of manual (mechanical) work, human influence and control by a device or apparatus with feed-back of results capable to make decisions (Fennel⁴ and others⁵⁻⁷).

The computer link-up (e.g., in WHU) enabled automatic injectors to be employed for the first time on a large scale. Following this development, the use of these devices in production and control laboratories spread very rapidly. The introduction of automated chromatographs in the central analytical laboratories brought with it the following benefits:

In special routine analyses it was possible to carry out many more determinations at a lower cost, owing to continuous day and night operation. For instance, the introduction of the first automated capsule system meant that the cost of some routine series could be cut by 60%. During the period from Friday evening to Monday morning it was possible for one unsupervised instrument to perform between 100 and 200 analyses automatically and to provide fully evaluated sets of results. Of course, it goes without saying that for work of this kind it is essential to have a flexibly programmable computer, which prints out a complete analytical report as well as a list of control functions for the evaluation algorithms.

A further advantage is the fact that when such automatic analysers are employed, better reproducibility and hence in some instances also higher accuracy can be achieved, if it is possible to reduce the measuring error by means of appropriate calibration and test runs.

Two examples are given in Tables 4, 5 and 6, for the analysis of Bentazon and vitamin E acetate, and a gas chromatogram is shown in Fig. 13.

TABLE 4
CALIBRATION FACTORS FOR BENTAZON AS METHYL DERIVATIVE

CALIBRATION FACTORS FOR BENTAZON AS METHYL DERIVATIVE

Time (min)	Calibration No.	Nominal value for Bentazon (%)	Effective value found for Bentazon (%)
0	1	99.4	100.2
99	2	99.4	100.0
205	3	99.4	99.7
417	4	99.4	100.7
524	5	99.4	99.5
630	6	99.4	98.0
737	7	99.4	97.3
843	8	99.4	99.8
950	9	99.4	98.3

Fluctuations during a continuous cycle of measurements of the same sample (automated injection, computer evaluation). The cycle was: cal. 1, sample 1A, sample 1B, cal. 2, sample 2A, etc. A constant calibration factor (f = 1.73) was used to show the oscillations of the analytical results during repeated analysis of one sample during an uninterrupted cycle of measurement.

The search for the best combination of separation parameters could be considerably accelerated and also reduced in cost by employing an "automatic method optimizer". Such a device would pre-programme temperatures, temperature programmes, gas pressures and flow-rates as well as eluent flow-rates and gradients for a large number of analytical runs. First steps have already been taken in this direction,

TABLE 5

CALIBRATION FACTORS FOR BENTAZON (AS METHYL DERIVATIVE) WITH OCTADECANE AS INTERNAL STANDARD¹

Measurements on different days, during which the column was held at a working temperature of 205°C. Day-to-day oscillations of the calibration factor; these oscillations can be eliminated by differential calibration and analytical cycles with the following order of measurement: standard mixture 1 (f_1) , sample A1, sample A2, standard mixture 2 (f_2) , sample B1, sample B2, etc. The mean of results A1 and A2 is corrected by the mean of factors 1 and 2 (measured with standard mixtures 1 and 2).

Date	Time	Calibratio	Samples		
	(h)	f_1	f_2	Ī	measured
7.3.78	f_1 : 18.40 f_2 : 20.16	1.742	1.731	1.74	2
	f_3 : 21.56	f ₃ 1.726		1.73	2
9.3.78	f_1 : 11.48 f_2 : 13.30	1.750	1.706	1.73	2
10.3.78	f_1 : 11.28 f_2 : 13.10	1.740	1.674	1.71	2
11.3.78	f_1 : 10.58 f_2 : 12.37	1.734	1.726	1.73	2

TABLE 6

CALIBRATION FACTORS (f) FOR THE DETERMINATION OF VITAMIN E ACETATE WITH SQUALANE AS INTERNAL STANDARD

The table shows the extreme discrepancies that can occur if the analytical result is obtained with automated injection plus computer evaluation on the one hand, and manual injection and planimetry on the other. These differences in reproducibility occur especially during analysis with an internal standard (see corresponding chromatogram in Fig. 13).

 $f = \frac{F_{\rm St} M_{\rm V}}{F_{\rm V} M_{\rm St}}$, where $F_{\rm St} = {\rm peak}$ area of standard peak (squalane), $F_{\rm V} = {\rm peak}$ area of vitamin E acetate, $M_{\rm St} = {\rm mass}$ of standard, $M_{\rm V} = {\rm mass}$ of vitamin E acetate.

Manual injection, evaluation of peaks by	Automated injection. evaluation of peaks by
planimetry	computer
1.143	1.114
1.163	1.121
1.171	1.106
1.259	1.095
1.062	1.125
1.271	1.119
1.186	1.117
	1.119
Mean: 1.179	1.115
S*: 0.071	0.010
$S_{\rm rel} **: 6.0\%$	0.87%

^{*} Standard deviation.

^{**} Coefficient of variation (%).

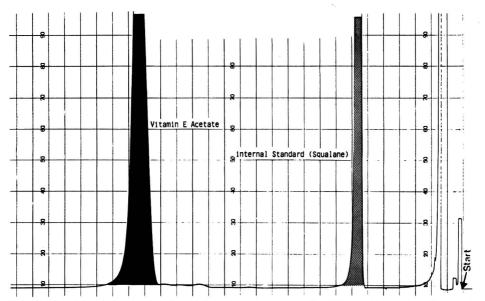


Fig. 13. Gas chromatogram of a vitamin E acetate test sample. Conditions: glass column (2 m \times 4 mm I.D.) coated with 5% SE-30; temperature, 252°C (isothermal).

even though the instruments are not completely satisfactory and to date only limited experience has been gained in their use.

A particular publication² illustrates very clearly the fact that all the problems and questions associated with GC, such as automation, calibration, choice of test substances, switching technique, column preparation and separation theory, are also arising in HPLC, albeit much more rapidly.

Of the many special chromatographic techniques which are known some are employed extensively in BASF, whilst others are themselves the objects of further research (Table 7).

Pyrolysis gas chromatography is employed in all its forms, using packed and capillary columns as well as in combination with every conceivable microchemical reaction.

In recent years, the headspace technique has gained considerably importance,

TABLE 7
SPECIAL CHROMATOGRAPHIC TECHNIQUES USED AT BASF AG.

- 1. Pyrolysis gas chromatography*
- Reversion gas chromatography⁸
- 3. Headspace technique*
- 4. Hyperfluid chromatography
- Column-switching according to Deans*
- 6. Preparative HPLC
- 7. Gel-permeation chromatography*

^{*} Widely used.

particularly with automated instruments. Whilst the first automated headspace instrument was employed at BASF as early as 1970, this technique has only achieved worldwide popularity in the last few years. This has been the result of migration experiments carried out in connection with trace- and ultra-trace determinations of monomers such as vinyl chloride and acrylonitrile in plastic goods and in other products into which monomers may migrate.

Although GC techniques have reached a highly advanced level, there are nevertheless areas where interesting technical developments are still taking place, for instance the column-switching technique of Deans. Despite several years of research and development in this field, only recently have relatively simple routine instruments that do not require complicated procedures for the adjustment and optimization of the switching time become commercially available. The Deans column-switching technique is now beginning to be employed for laboratory purposes at BASF. On the other hand, in our central analytical laboratories this method is at present the principal competitor to the capillary technique.

Preparative HPLC has recently attracted growing interest. The application of Fourier transform technique in infrared and nuclear magnetic resonance spectroscopy often enables very impressive spectra to be obtained using only microgram amounts of sample, and therefore minor components of complex mixtures can also be identified. One of the liquid-phase chromatographic techniques employed extensively is gel-permeation chromatography. This method is not restricted to the characterization of molecular weight distributions, but in addition the aim is always to achieve a qualitative identification of separated components using a specific detector such as a laser detector.

As modern analysis is expensive, it seems justifiable to ask how the maximum of information can be obtained at minimal cost. The main problem here is surely one of achieving the closest possible cooperation between the analyst and the chemist who synthesizes the sample. In this way it would also be possible to reduce the risk of producing exactly reproducible, but incorrect, analytical results.

5. PROBLEMS, REQUIREMENTS, INSTRUMENTATION (EXAMPLES)

First, some questions can be posed. Is the high cost of chromatography the result of the high cost of the instruments? Is the large amount of work which chromatography entails due to the tendency of the instruments to develop faults and require repairs, or is it a consequence of the instruments being inadequately adapted to the analytical problems encountered? Why do workers in the field of chromatography have to waste so much of their time on problems involving purely technical details, upon which the success or failure of a method often depends?

For a start, one often has the feeling that the actual chromatographic parts of the instrument, namely the separation columns with their inlets and outlets, are not considered the key section of the whole apparatus. All sorts of publications and discussions had dealt for a long time with topics such as dead space and peak broadening, techniques for their measurement and calculation, and the effects of contaminated connection capillaries. It never ceases to amaze one that successful principles of instrument construction are discarded after only one or two production series, and are only readopted after prolonged discussions or as a consequence of

economic failures in certain laboratories or companies. Completely different schools of thought exist even with regard to fundamental questions of standardization, such as modular construction, modular dimensions and amount of space required for modules. It is practically impossible to install an FID amplifier from company X in an instrument from company Y without the assistance of an electronics expert. With standardization of electronic-electrical connections it would merely be necessary to insert a normed module. It seems to be a law of nature that FIDs in instruments from different manufacturers are not interchangeable! Even detectors from relatively similar models made by the same firm are usually not interchangeable. There is a similar lack of standardization of the connections for glass columns. Only a small number of companies have at least standardized the distance between the two connections so that glass columns may be interchanged. With hundreds or even thousands of glass columns in a large analytical laboratory and with up to ten different types of gas chromatographs, it requires considerable effort to maintain flexibility. The large analytical laboratories are therefore particularly anxious to see standardization of constructional elements and connection sizes in the above-mentioned areas.

In HPLC the relative ease of combination of the various instrumental units has led to competition between the manufacturers, and this has certainly been the decisive factor contributing to the exceptionally rapid development of HPLC instruments.

In view of the extremely positive developments that have occurred in liquid and thin-layer chromatography, we should also like to see clear and precise specification (standardization) of the stationary phases used in GC. Unfortunately, research in this area has been largely neglected. In connection with these remarks, a further problem, which still remains completely unsolved, should be mentioned, namely the standardization of glass capillary columns.

As increasing costs render mechanization and automation^{4–7} of chromatographic processes essential, further development work in this direction must be carried out, particularly in GC and HPLC.

We still experience considerable difficulties with automatic injectors, especially with matrix and viscosity problems, and cross-contamination continues to cause many problems. Unfortunately some autosamplers cannot tolerate even limited variations in the viscosity of the samples. In certain instances instruments cannot be employed as a consequence of cross-contamination at the trace level. There is still no problem-free, routine injection device available for quantitative capillary GC.

It is well known, of course, that the computer is only as good as the program supplied by the analyst, and that computers often produce rubbish, albeit very reproducibly. The instruments should not degenerate to "black boxes" and the analyst must retain a complete understanding of their mode of operation. We shall not discuss here the subject of the "apparent achievements" of the microprocessor, which sometimes seem to lead to easier operation, but often are only a hindrance when one is working.

6. SUMMARY

The statistical data presented and the widespread use of all the major available chromatographic techniques underline that chromatography is a very powerful analytical tool at BASF. In order to develop effective analytical methods economically

and to avoid developments in the wrong direction, it is necessary in the future to have more direct cooperation between analysts, instrument manufacturers and chemists working on synthesis.

REFERENCES

- 1 K. S. Brenner, CIPAC Symposium, Versailles, 1978.
- 2 Chromatographia, 12 (1979) 335-399.
- 3 K. S. Brenner, unpublished results.
- 4 T. R. F. W. Fennel, Microchem. J., 10 (1966) 103; see also T. R. F. W. Fennel, Z. Anal. Chem., 234 (1968) 42.
- 5 Begriffe und Definitionen zur Automation in und mit der analytischen Chemie; Autorenkollektiv, Z. Anal. Chem., 237 (1968) 81.
- 6 Systemtheorie in der Analytik; Autorenkollektiv, Z. Anal. Chem., 256 (1971) 257.
- 7 E. Fahr, Chem. Labor. Betr., 28 (1977) 403.
- 8 R. Kaiser, Chromatographia, 1 (1968) 199.

Chromatographic Reviews

Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHREV. 149

ISOELECTRIC POINTS AND MOLECULAR WEIGHTS OF PROTEINS

A NEW TABLE

PIER GIORGIO RIGHETTI* and GABRIELA TUDOR

Department of Biochemistry, University of Milan, Via Celoria 2, Milan 20133 (Italy) and

KRISTINA EK

Chemical Department, LKB Produkter AB, Box 305, 16126 Bromma (Sweden) (Received May 25th, 1981)

CONTENTS

1.	Compilation of the table																115
2.	Acknowledgements																174
3.	Summary																174
Re	ferences																175

1. COMPILATION OF THE TABLE

After the great interest in our first table on isoelectric points (pI) and molecular weights (MW) of proteins⁹⁴⁶ (more than 2000 reprint requests were received), we have undertaken the task of updating this collection (Table 1).

The present table starts from where we finished the previous collection 946, and covers a 4-year period, from 1976 to 1979. We were aided in this extensive survey by a literature reference list, *Acta Ampholinae*, published by LKB Produkter (Bromma, Sweden). In that list, we started from No. 1800 and screened all the articles up to No. 4000 (end of 1979). We have thus gone through about 2200 publications and selected 945 articles containing the information we were looking for. It might be of interest to the reader to know some statistics on this article. Even though our list of references quotes 120 different journals, 60% of the total citations are contained in a small core of only five journals. The most often cited is *J. Biol. Chem.*, which produced 20% of the total entries, closely followed by *Biochim. Biophys. Acta* (16%), then *Eur. J. Biochem.* (10%) and finally *Biochemistry* (8%). The Japanese journal *J. Biochem.* scores a good 5%. Considering that mostly Japanese scientists publish in *J. Biochem.*, this is not a small achievement for a regional journal.

These data fully support what E. Garfield (the Editor of *Current Contents*) has been propounding for many years, that there is only a small core of scientific journals that carry most (and the most qualified) of the scientific information⁹⁴⁷. We should also like to add some more comments, stemming from the knowledge we have accumulated during this extensive screening. From a point of view of "readability", nothing beats an abstract in *J. Biol. Chem.* It seems as if the authors who publish in this journal have been specially trained to squeeze all the relevant information into their abstracts. *J. Biol. Chem.*, *Biochim. Biophys. Acta* and *Eur. J. Biochem.* also share

TABLE I p1 AND MW VALUES OF PROTEINS

a pI value is followed by the symbol +, it represents a major isozyme band. When individual pI values are not reported, but a pI range is given in parentheses, it pI = isoelectric point; MW = molecular weight; IEF = isoelectric focusing; n.g. = not given; r.t. = room temperature; s.p.c. = single peptide chain. When means either that there were too many isoproteins separated (usually > 10) or that it was difficult to establish the actual pI values from the original graphs reported in the articles. In these instances, we have at least tried to report the pI(s) of the major band(s).

Protein	Source	Organ and/or	MW	Subunit	it	ld	No. of	Temper-
	 	subcenular location		No.	MW		enzymes	(C)
N-Acetylaspartate amidohydrolase ¹	Rat	Brain				5.1	-	r.t.
Accycnomic receptor protein (AChR) ²	Torpedo marmorata	Electric organ membrane fragments			40,000 50,000	~ 5.4	П	n.g.
Acetylcholine receptor ³	Mammalian Doct	Skeletal muscle		_	000,09	5.3		n.g.
Functional receptors. Extrajunctional receptor	Nat	Diaphragm muscle Denervated dia-				5.09 5.32		n. n. 93. 93.
Acetylcholinesterase (AChE)5.6	Human	phragm muscle Erythrocyte			80,000	4.55, 4.68 ⁺ , 4.81 ⁺ ,	5	n.g.
Acetylcholinesterase ⁷	Cobra	Venom	144,000	7	~ 69,000	4.98, 5.18 6.25–6.4	> 10	n.g.
Acetylcholinesterase ⁸	(<i>Naja naja atra)</i> Cobra	Venom						
Acetylcholinesterase ^{8,9}	(Naja naja oxiana) Cobra	Venom	67,000		s.p.c.	5.2–6.2	14-16	n.g.
	(Naja melanoleuca) (Bungarus fasciatus		126.0008	2	63.000	4.2–5.2 4.3–5.3	7 10	n.g.
Acetylcholinesterase (11S) ¹⁰	Electrophorus electricus	Electric eel tissue	~280,000	4	70,000	5.5-6.0	5 major, 3 minor	n.g.
Acetyl-CoA acetyltransferase								
$(1, A, B)^{11}$	Bovine	Liver mitochondria	152,000	4	$\sim 38,000$	-	m,	4
Acetyl-CoA: choline O-acetyl- transferase ^{12,13}	Squid	Head ganglia	93,00013		37,000 56,000	(5.0–6.2) 5.2 ⁺ , 5.7 ⁺ , 6.2 ⁺	9	n.g.
α-N-Acetylgalactosaminidase ¹⁴	Limpet (Patella vulgata)		200,000	4	50,000	5.5	-	n.g.

α -N-Acetylglucosaminidase	Bovine	Spleen	127,000(I)	I	4.8 for both	ı	n.g.
α -N-Acetylglucosaminidase ^{16,17}	Human	Urine	307,000 ¹⁶		(3.3–6.0), 4.8 + 1.7	4 major	n.g.
β -N-Acetylglucosaminidase (A and B) ^{18.19}	Bull	Sperm	190,000 ¹⁸ 200,000(A)	53,000	7.96 ¹⁸ 5.31(A)	2 minor 1 1	n.g.
			190,000(B)	53,000	6.78(B)	-	
β -N-Acetylglucosaminidase ²⁰	Human	Serum, liver		13,000	0./o(b) 4.5		n.g.
N-Acetyl-\beta-D-hexosaminidase^21	Human	Leucocytes,			5.2+, 7.2	7 "	, 4
		fibroblasts			5.0 ⁺ , 7.2	5 2	•
N-Acetyl- β -D-hexosaminidase (A, B) ²²	Human	Liver			4.9–5.5 (A) 7.0–7.3 (B)	4	0
N-Acetyl- β -D-hexosaminidase (A, B) ²³	Human	Colonic carcinoma			5.2 (A) 7.7 (B)	7	n.g.
N-Acetyl- β -D-hexosaminidase ²⁴	Human	Fibroblast cultures Sandhoff disease:			5.0, 7.8	2	
		Infantile			4.4+	7	
		Juvenile			5.0+	7	n.g.
N-Acetyl-β-D-hexosaminidase	Human	Brain (variant AB			5.0 ⁺ (A))
(A, B) ²⁵		of infantile G _{M2}			7.2 (B)	7	n.g.
N-Acetyl-\bb-D-hexosaminidase^26	Human	Pregnancy serum			5.0+, 5.4, 5.7, 6.1+,		
		and Tay-Sachs disease			6.3, 6.7, 7.0	7	n.g.
N-Acetyl- β -D-hexosaminidase, P^{27}	Human	Pregnancy serum	150,000		6.3+, 6.7+	2	n.g.
N-Acetyl- β -D-hexosaminidase, S-like (1), A-like (2) ²⁸	Human	Urine, deficiency disease			4.1 (1) 4.7 (2)	7	n.g.
N-Acetyl-β-D-hexosaminidase (A, B) ²⁹	Human	Placenta			5.4 (A) 7.9 (B)	-	n.g.
N-Acetyl-β-D-hexosaminidase	Bacillus	Spores	40,000		9.7	-	n.g.
(Surface-bound) N-Acetyl-8-D-bexosaminidase	cereus 1 Trigonalla	Soods	84 000(T) 3	28 000	(1) 62.9		
(I, II, III, IV) ³¹	foenum graecum			24,000 30,500	6.30 (II) 4.90 (III)	-	4
		Administration of the second s	150,000(IV) 6	30,000	4.65 (IV)		

TABLE I (continued)

Protein	Source	Organ and/or	MW	Subunit		Id	No. of	Temper-
		subcellular Iocation		No.	MW		iso- enzymes	ature (°C)
Acid deoxyribonuclease ³²	Human	Gastric mucosa,	38,000			6.86, 7.02+	2	n.g.
Acid DNase inhibitor ³³	Chicken	Brain				4.2	_	n.g
Acid phosphatase ³⁴	Human	Erythrocyte				5.45, 5.66, 6.43,	5	15
Acid phosphatase ²¹	Human	Fibroblasts,				6.57, 7.11 4.8 ⁺ , 6.3 ⁺ , 7.5,		
		leucocytes,				5.1+, 6.0+, 7.5,	3	n.g.
Acid phosphatase (type A, B	Human	amniotic fluid Red blood cell				$3.5, 5.1, 6.0^{+}$ 5.36, 5.77, 6.47,		
and C)35						6.66, 7.16, 7.31,	7	
						7.58 (A)		
						5.54, 5.87, 6.20, 6.50 (B)	4	n.g.
						5.37, 5.79, 6.36,	4	
Acid phosphatase ^{36–39}	Human	Prostate gland	104,000	7	52,000	$(4.1-5.5) 4.9^+$	∞ ^	n.g.
Acid phosphatase ⁴⁰	Rat	Liver lysosomes				4.47 ⁺ , 5.62, 6.02, 6.78, 7.12, 7.83 ⁺	9	4
Acid phosphatase ⁴¹	Tasmanian	Plasma				5.5-6.5	4 major	
	devil						4 minor	
		Liver				5.2–7.9	5 major	
		Intestine				5.2–7.9	7 major	n.g.
							6 minor	ı
		Kidney				4.9–5.9	7 major 2 minor	
Acid phosphatase isozymes	Rice	Cell wall	94,000			8 (1'), 7.5 (2'),		
$(1', 2', 3'a, 3'b, 4'a, 4'b)^{42}$			96,000 (1′) 100,000 (2′)			7.2 (3' a), 7.1 (3' b) 6.8 (4' a), 6.7 (4' b)	9	n.g.
			65,000 (3' a) 155,000 (4' a) 96,000 (4' b)					
Acid phosphomonoesterase ⁴³	Human	Seminal plasma	/- · / ^ ^ / · · / ·			4.6–5.25	16-20	n.g.

9.0	b :	n.g.	n.g.	n.g.	n.g.		4	n.g.		n.g.	r.t.	n.g.	n.g.											
2	_	-	 -	-	_		-	7		4	_	7	-	ж	4	3	æ	2		-	-	-	-	4
$3.15(A_{1a}), 3.50(A_{1b})$	$3.9(A_2)$	3.81	5.1 (ACON _s) 6.9 (ACON)	$5.63(\beta), 5.65(\gamma)$	$5.47(\alpha), 5.53(\gamma), 5.50(\beta)$		0.9	4.8 ⁺ , 4.7 (rat)		4.15, 4.50, 5.05, 5.65	4.9	5.8, 6.0	5.9	6.3, 8.6, 10.5	6.4, 7.2, 8.6, 9.5	5.9, 7.2, 8.2	4.7, 5.8, 8.8	4.8, 9.2	9.5	6.5	4.9	5.8	8.5	5.3, 6.8, 7.4, 8.2
							s.p.c.			110,000	55,000	$\sim 60,000$												
										7	2	4												
63,000 (A ₁)	32,000 (A ₂)	ì			$\sim 45,500^{50}$		19,000	> 100,000	(A) 72,000 (B) 35,000 (C)	$\sim 215,000$	110,000	237,500				31 000	000,1C ~					$\sim 31,000$		
			Kidney, liver,	Platelets	Skeletal muscle and heart muscle (α)	Non-muscle tissue (β, γ)	Liver mitochondria	Colon tumours		Kidney	Seeds	Liver	Parotid	Muscle	Heart	Kidney	Liver	Bladder	Erythrocytes J	Heart and liver	Kidney	Intestine	Heart	Liver
Aspergillus orvzae	`	Penicillium duponti	Human	Human	Mammals, bird, fish,	slime mould	Rat	Human	Rat	Rabbit	Lupinus lutens	Calf	Mouse	Human						Dog			Cow	
Acid protease (A ₁ , A ₂) ⁴³		Acid protease ⁴⁴	Aconitase (mitochondrial; ACON _M	Actin $(\beta \text{ and } \gamma)^{46}$	Actin $(\alpha, \beta, \gamma)^{47-50}$		Acyl-CoA hydrolase ⁵¹	Adenosine deaminase ⁵²	(Adase A, B, C)	Adenosine deaminase ⁵³	Adenosylhomocysteinase ⁵⁴	Adenosylhomocysteinase ⁵⁵	Adenylate cyclase ⁵⁶	Adenylate kinase ⁵⁷										

TABLE I (continued)

Protein	Source	Organ and/or	MW	Subunit	, t	Id	No. of	Temper-
		subcellular location		No.	MW		tso- enzymes	ature (°C)
Adenylate kinase ⁵⁸	Rat	Muscle, brain, heart, lungs, uterus, cytoplasm				7.4		
		Livet, Kiuney, mitochondria Hanatomas foatal				8.2		
Adenylosuccinate synthetase ⁵⁹	Leishmania	rreparonias, roctar tissues, cytoplasm Promastigotes	> 250,000			9.3 8.7	-	
Agarose-degrading enzymes (I, IIb) ⁶⁰	uonovani Pseudomonas- like bacteria		210,000 (I)	7				
			63,000 (IIb)			5.1(IIb)	1	r.t.
Agglutinin ⁶¹	Limulus Polyphemus	Haemolymph	22,000			4.83	-	4
Agglutinin wheat germ (WGA I, IIa, III), III) ⁶²	Plant	Wheat germ	36,000	7	18,000	8.7(I, IIa, III) 7.7(IIb)	-	n,g
Agglutinin wheat germ	Plant	Wheat germ	36,000	7	18,000	4.0	_	. i. 9:
D-Alanyi-meso-A ₂ pm endopeptidase ⁶⁴ Streptomyces Albumin ⁶⁵ Human Albumin ⁶⁶ Human	Streptomyces Human Human	Plasma Bisalbuminaemia				7.9 4.8 ⁺ , 5.6 ⁺ 5.65, 5.84	1 2 major 2	- 4 n
Albumin:67	Wheat	serum)
Mb 0.19 Specific albumin Alcohol dehydrogenase (ADH) ⁶⁸	Human	Liver				7.3 4.7 9.0, 9.8, 9.9,	L 4	n.g. 4
Alcohol dehydrogenase ⁶⁹	Rhodopseudomonas		~120,000	2	63,000	10.15 9.3	_	n.g.
Alcohol dehydrogenase ⁷⁰	acidophila Wheat					6.18, 6.28, 6.38, 6.58, 6.73, 6.80	9	n. g.
Aldehyde dehydrogenase ⁷¹	Bovine	Liver	220,000	4	55,000	5.4	-	n.g.

(Continued on p. 122)

TABLE I (continued)

Protein			/ / / / / / / / / / / / / / / / / / / /					
	Source	Organ ana _l or subcellular	M W	Subunit	1.	Id	No. of iso-	Temper- ature
		location		No.	MW		enzymes	(°C)
Alkaline phosphatase ^{86–88}	Human	Liver	136,000 ^{86–88}	4	34,000	4.286		
;		Intestinal ⁸⁷				4.5	_	r.t. ⁸⁷
Alkaline phosphatase (I variant) ⁸⁹	Human	Placenta	120,000	2	000'09	3.4, 4.3, 4.6 ⁺ , 5.4, 6.0 ⁺	9	n.g.
Alkaline phosphatase HeLa 65% Alkaline phosphatase KB cell91	Human Human	HeLa cells Nasopharyngeal	120,000			4.3	-	n.g.
		tumour	136,000		64,000	4.3	_	n.g.
Alkaline phosphatase ⁹² Alkaline ribonuclease ⁹³	Thermus aquaticus Bullfrog					8.4	-	n.g.
	(Rana catesbeiana)	Hepatic cytosol	12,000		s.p.c.	9.4	-	n.g.
Allergen: Asc-1, A[1] ⁹⁴	Ascaris suum	Perienteric fluid	14,000A[1] 18,000Asc-1			+9	3	n.g.
Allergen Ra 595	Ragweed	Pollen	5,000			9.5	_	n.g.
Alloantigens HLA-linked B	Human		64,000		29,000	6.1	,	
Allonbycocvanin II (A II) and its	Dina graces clac		103 600	_	34,000	5.2	7	n.g.
α -and β -subunits ⁹⁷	Diuc-green aiga		102,500 (A II)		16,000	$4.64(\alpha), 4.65(A II)$,	
			(m tr)		31,000	(d)70:+	n	ii ii
Alveolysin ⁹⁸	Bacillus alvei		000.09		<u>a</u>	5.1, 7.0	2	n.g.
2-Aminoadipate aminotransferase99		Kidney	85,000	2	$\sim 45,000$	6.56		9 4
Aminoazo dye-binding protein A ¹⁰⁰	Rat	Liver	14,000			5.0, 5.9, 7.6	3	n.g.
4-Aminobutyrate transaminase (I, II) ¹⁰¹	Pig	Liver	110,000	7	55,000	6.10, 6.30(I), 5.90, 6.34(II)	4) 5
ô-Aminolaevulinic acid synthetase ¹⁰²	Rat	Liver mitochondria	120,000	7	58,000	4.5		i ii ii
ð-Aminolaevulinate dehydrase ¹⁰³	Human	Erythrocytes	252,000	∞	31,000	4.9	_	, 4
5-Aminolaevulinate synthetase ¹⁰⁴	Rhodopseudomonas		65,000		s.p.c.	5.2, 5.35, 5.45, 5.55	4	n.g.
Aminopeptidase ¹⁰⁵	spheroides Physarum polycephalum					(5-6.5), 5.6+	4	n.g.
	Want day Cond							

Aminopeptidase B-like enzyme ¹⁰⁶ 5-AMP aminohydrolase ¹⁰⁷ 2-Amylases (1A, 1B, 2A, 2B) ¹⁰⁸	Rat Human Human	Leukocytes Erythrocyte Submandibular saliva	285,000 ~ 220,000	4 0 0	70,000 57,000 (1A, 1B) 54,000	5.0 5.9 (1A, 2A) 6.4 (1B, 2B)	4	й й й й
2-Amylase ^{109–113}	Human	Serum Urine Saliva	125,000 ¹¹⁰		(2A, 2B) 61,000 (A) 64,000	5.88, 64 ⁺ , 6.88 5.93, 6.48 ⁺ , 6.98 5.9, 6.4 ⁺ (A)	m m 2	
z-Amylase ¹¹⁴	Rabbit	Pancreas Pancreas	60,000 ¹¹⁰ 56,500		(B)	5.9°, 6.4(B)*** 6.0°, 6.5°, 6.88* 6.8°, 8.5	0 8 0	20 ¹¹² n.g.
Angiotensinogen ^{11.5} Angiotensinogen ^{116,117}	Kat Human	Plasma Plasma	66,000 ¹¹⁷		56,400	4.85 4.3, 4.5, 4.6 ⁺ , 4.7 ⁺ , 4.8 ⁺ 4.9 ⁺ 5.0 ⁺	1 7	n.g.
Angiotensinogen ¹¹⁷ (II)	Hog Rabbit	Plasma	48,000			4.09, 5.05 ⁺ , 5.2 ⁺ , 5.35 ⁺ , 5.35 ⁺ , 5.0, 5.1 ⁺ , 5.35 ⁺ , 5.0, 5.1 ⁺ , 5.35 ⁺ , 5.5 ⁺	- 4 4	i t
Antigen alkali-soluble, water-soluble (B-ASWS) ¹¹⁸ I-Antigen 51 A ¹¹⁹	Blastomyces dermatitidis Paramecium tetraurelia E-coli	Cells walls	300,000			4.01 ⁺ , 4.69 ⁺ 4.1 ⁺ , 4.3 ⁺ , 4.4	3 2	gi gi g
Antigen R 77 Antigen carcinoembryonic (CEA) ¹²¹ Antigen, histocompatibility-2 (H-2) ¹²²	Human Mouse	Colon carcinomas Liver			40,000	7.2 (2.5-4.5) 3.45 ⁺ 4.9 ⁺	^	ன்ன் வ் எப்பட்
Antigen hepatitis B core and surface (HB _c Ag, HB _s Ag) ^{123.124}	Human	Sera				4.4(HB _c Ag) ¹²³ 3.7 ⁺ ,4.0 ⁺ ,4.4 ⁺ ,4.9, 5.1,5.3(HB _c Ag) ¹²⁴	0 -	п я
Antigens HLA-A9 and HLA-B12 ¹²⁵ Antigen Rh (D) ¹²⁶	Human Human	Urine Erythrocyte membrane	32,000 10,000– 20,000	ii e		5.1(HLA-A9), 4.7(HLA-B12) 2.8, 3.8, 5.2, 7.3+	- 4	் வ்வ்

TABLE I (continued)

Protein	Source	lor	MW	Subunit	1	Id	No. of	Temper-
		subcellular location		No.	MW		enzymes	ature (°C)
Antigen-tumour127	Human	Epidermoid	25,000-			8.36–8.40		n.g.
F antigen ¹²⁸	Human	carcinomas Liver	20,000 40,000-			7 7	-	c
Antithrombin III ¹²⁹	Guinea pig	Plasma	00,00			6.6 5.15		n.g.
Antithrombin III ¹³⁰	Human	Plasma	58,000	2	29,000	4.9, 5.1 ⁺ , 5.3	3	, 4
Antithrombin III ¹³⁰	Bovine	Plasma	26,000	2	28,000	4.5, 4.6 ⁺ , 4.7 ⁺ , 4.8 ⁺ , 4.9 ⁺ , 5.0	9	4
α -1 Antitrypsin ¹³¹	Dog	Plasma	58,000			4.40, 4.52	7	4
α -1 Antitrypsin (F, M, S, Z) ¹³²	Human	Plasma				4.54(F), 4.59(M), 4.66(S), 4.74(Z)	-	n.g.
Apolipoprotein ¹³³ :	Rat	Serum apoHDL, apoVLDL						
Cil					7 000	760		
- V					7,000	70.0	•	
A-1 ARP and A-IV					35,000	5.55, 5,65, 5.75, 5.82	4	
					(ARP) 46,000	5.31, 5.36, 5.39, 5.41	4	
					(A-IV)			r.t. 133
A-II	·		8000			4.83	_	
C-II			8000			4.74	_	
C-III (0, 1, 2, 3, 4)			10,000			4.57, 4.61, 4.67	3	
			(CHIII0)				,	
			11,000 (CIII3)			4.43, 4.50	7	
Apolipoprotein ¹³⁵ :	Vervet	Plasma						
A-I DI-1 DI-2 DII-1 DIII	ароНDL		27,800 13,900 9900 11,500 8000			5.9-6.3 6.94 5.17 6.44 5.20		त इं.

Apolipoproteins, AI, A2	Human	Plasma	10,000			6.0(A1)		
(inreonine-pool)		apo-HDL	40,000 (AII)	2	20,000	6.5(AII) ⁺		
Apolipoprotein A-IV ¹³⁷	Human	Mesenteric lymph chylomicrons	46,000			5.15	-	n.g.
Apoliproteins C-I. C-II. C-III. CIV, CV, E ^{138–140}	Human	Plasma apo-VLDL				CI: 6,5 CII: 4.78		
						CIII: 4.54, 4.72, 4.93 CIV ¹³⁸ : 4.61 CV ¹³⁹ : 4.44 E: 5.7, 5.8, 5.9, 6.0,	5 3	n.g.
Apolipoprotein D peak II	Human	Plasma apoVLDL			33,000	9.5	-	n.g.
Apolipoprotein F ¹⁴²	Human	Plasma HDL	26,000- 32,000			3.7	-	n.g.
α-L-Arabinofuranosidase ¹⁴³	Scopolia japonica	Calluses		,		5.7, 6.0, 8.0+	ε,	n.g.
AraC protein ¹⁴⁴ Arvlamidase ^{145,146}	E. coli Human	Cancerous lung ¹⁴⁵	56,000 240,000 ¹⁴⁶	2	28,000	7.1 4 .2		n.g.
		Ascites				3.7, 3.9+, 4.2+	3	4146
Arylsulphatase A (AS-A) ¹⁴⁷	Human	Urine (u) Liver (l)				4.7, 4.8, 4.9 (u) 4.4, 4.5, 4.6 ⁺ , 4.7 ⁺ , 4.8 ⁺ 4.9 (l)	ب ع	5
Arylsulphatase B (AS-B) ¹⁴⁸	Human	Placenta (p) Brain (b)				8.2 (p) 6.8, 7.0, 7.2 (b)	. – w	i
Arylsulphatases A and B	Human	Leucocytes				5.2 (AS-A) 8.2, 9.4 (AS-B)	7	, c <u>i</u>
Arylsulphatases A and B	Rat	Basophil leukaemia	116,000			4.2 (AS-A)	-)
(AS-A, AS-B) ¹⁵⁰		tumour	(AS-A) 50,000 (AS-B)			6.4 (AS-B)	_	n.g.
Aspartate aminotransferase ^{151–153} ; Pyridoxal homomer (1) Apo/pyridoxal hybrid (2)	Pig	Heart	82,000	2	41,000	5.68(1) 5.79(2) 5.92(3)	-	
Apo homomer (3) Aspartate aminotransferase ¹⁵⁴	Sheep	Liver	87,000			9.14	_	r.t. ¹⁵³ n.g.
	4						1	,

(Continued on p. 126)

TABLE I (continued)

es) li5,000 lic l15,000 lic	Protein	Source	Organ and/or subcellular	MW	Subunit	nit	Id	No. of	Temper-
Bovine Brain 105,000 4.8,6.3 2 Mouse Myeloma 6.5 1 Rabbit Sarcoplasmic 115,000 5.0,5.1,5.2 ⁺ 5 Sackbot Sarcoplasmic 115,000 5.0,5.1,5.2 ⁺ 5 Sackbot Saccensiste 6.0 ⁺ ,6.5,6.8,7.1 ⁺ 4 Bacillus 6.0 ⁺ ,6.5,6.8,7.1 ⁺ 4 Bacillus 8. subtilis 143,000 6.0 ⁺ ,6.5,6.8,7.1 ⁺ 4 Bacillus 8. subtilis 143,000 5.1 4 Rat Liver 160,000 6.2(10),7.5(1) 2 Pseudomous Augustile Erythrocytes 6.3,000 7.9 1 Human Erythrocytes 6.6 29,000 5.1 1 Mouse Brain 700,000 5.2 29,000 5.1 Pseudomonas Sp. Mk I 8.3,7,4 7 7 1 Pseudomonas Brain 700,000 5.1 3 1 Pseudomonas			location		No.	MW		enzymes	ature (°C)
Mouse (microconnex) (microconnex) 6.5 1 Rabbit Sarcoplasmic reticulum 115,000 5.0,5.1,5.2 † 5 Saccharomyces reticulum 7000 9.05 1 Bacillus 6.0 + 6.5, 6.8, 7.1 † 4 1 Building 1000 3.98 + 4.98, 5.45 3 Building Rat (licheritorium) 3.98 + 4.98, 5.45 3 Halobacterium (allohomas) 145,000 5.1 4 Rat (allohomas) 145,000 5.1 1 Rat (allohomas) 145,000 5.1 1 Rat (bick) 74,300 4 18,575 4.6 1 Human Erythrocytes 63,000 2 29,000 5.1 1 Human Erythrocytes 63,000 2 29,000 5.1 1 Pseudomonas Brain 700,000 5.1 1 1 Pseudomonas Pseudomonas 99,000 1 33,000 5.1 1 Pseudom	a ²⁺ -ATPase and Mg ²⁺ -ATPase ¹⁵⁵	Bovine	Brain	105,000			4.8, 6.3	2	n.g.
Rabbit Sarcoplasmic reticulum 115,000 5.4,5.5 5 Saccharomyces reticulum 7000 5.4,5.5 1 Bacillus Bacillus Aberillus 6.0°, 6.5, 6.8, 7.1° 4 Bacillus Bacillus 3.98°, 4.98, 5.45 3 B. subrilis 3.98°, 4.98, 5.45 3 B. subrilis 3.98°, 4.98, 5.45 3 Rat Balobacterium 145,000 6.2(II), 7.5(I) 2 Pseudomonas 145,000 6.2(III), 7.5(I) 2 Rat Liver 145,000 4 18,575 4.6 1 Human Erythrocytes 63,000 2 29,000 5.1 1 Mouse Brain 700,000 2 29,000 5.6 1 Mouse Brain 700,000 1 39,000 5.1 1 Pseudomonas Pseudomonas 99,000 1 37,000 5.1 1 Pseudomonas Pseudomonas 99,000 1 37,47 3 2 <td>ATPase (single-stranded DNA-dependent)¹⁵⁶</td> <td>Mouse</td> <td>(microsomes) Myeloma</td> <td></td> <td></td> <td></td> <td>6.5</td> <td>_</td> <td>n.g.</td>	ATPase (single-stranded DNA-dependent) ¹⁵⁶	Mouse	(microsomes) Myeloma				6.5	_	n.g.
Saccharonyces reticulum 7000 5.4, 5.5 1 Bacillus licheniformis Bacillus licheniformis Brain mained monoaus Skin 27,000 6.0°, 6.5, 6.8, 7.1° 4 Bacillus licheniformis Brain mained monoaus Skin 27,000 6.2(II), 7.5(I) 2 Pseudomonas Liver 145,000 6.2(II), 7.5(I) 2 Chicken Egg (yolk) 74,300 4 18,575 4.6 1 Human Erythrocytes 63,000 2 29,000 5.1 1 Human Erythrocytes 63,000 2 29,000 5.1 1 Mouse Pseudomonas 90,000 1 39,000 5.6 1 Pseudomonas Pseudomonas 50,000 1 37,000 5.1 1 Pseudomonas Pseudomonas 50,000 1 37,000 5.1 1 Rat Liver Liver 4,2*,4,7 2 2 2 Rat Liver 2,2,7,6 3 3	Sa ²⁺ -ATPase ¹⁵⁷	Rabbit	Sarcoplasmic	115,000			5.0, 5.1, 5.2+	s	n.g.
cerevisiae Bacillus 6.0 ⁺ , 6.5, 6.8, 7.1 ⁺ 4 Bacillus 6.0 ⁺ , 6.5, 6.8, 7.1 ⁺ 4 B. subnitis 3.98 ⁺ , 4.98, 5.45 3 Halobacterium Alabobacterium 3.98 ⁺ , 4.98, 5.45 3 Rat 27,000 5.1 1 Pseudomonas 4.6 28,000 7.9 1 Chicken Egg (yolk) 74,300 4 18,575 4.6 1 Chicken Erythrocytes 63,000 2 29,000 5.1 1 Human Erythrocytes 63,000 2 29,000 5.1 1 Mouse Procophila Heads 5.6 4.6, 4.9, 5.0 ⁺ 3 Mouse Pseudomonas 59,000 1 39,000 5.1 1 Pseudomonas Pseudomonas 59,000 5.1 1 Pseudomonas 59,000 5.1 1 Rat Liver 4.2 ⁺ , 4.7 2.2 2.4 2.4 Rat	TPase inhibitor $(F_1)^{158}$	Saccharomyces	reticulum	7000			5.4, 5.5 9.05	1	п. 9.
Skin Skin	8acitracin A ¹⁵⁹	cerevisiae Bacillus lichaniformic					6.0+, 6.5, 6.8, 7.1+	4	, 80
Rat Skin 27,000 6.2(II), 7.5(I) 2 Pseudomonas aeruginosa A-16 Liver 145,000 6 28,000 7.9 1 Rat Liver 160,000 6 28,000 7.9 1 Chicken Egg (yolk) 74,300 4 18,575 4.6 1 Human Erythrocytes 63,000 2 29,000 5.1 1 Human Erythrocytes 6.6 4.6,4.9,5.0+ 3 3 Mouse Brain 700,000 1 39,000 5.1 1 Pseudomonas Pseudomonas 90,000 1 37,000 5.1 1 Pseudomonas Pseudomonas 50,000 5.1 1 2 Rat Liver 4.2+,4.7 2 2 2 2 Rat Liver 4.2+,4.7 2 2 2 2 2 Experience 3.2 + 4.7 3.2 + 4.7 3.2 + 4.7 3.2 + 4.7 <t< td=""><td>acteriorhodopsin¹⁶⁰</td><td>B. subtilis Halobacterium</td><td></td><td></td><td></td><td></td><td>3.98+, 4.98, 5.45</td><td>ж</td><td>n.g.</td></t<>	acteriorhodopsin ¹⁶⁰	B. subtilis Halobacterium					3.98+, 4.98, 5.45	ж	n.g.
Pseudomonas dernginosa A-16 Liver 160,000 6 28,000 7.9 1 Rat Liver 160,000 6 28,000 7.9 1 Chicken Egg (yolk) 74,300 4 18,575 4.6 1 Human Erythrocytes 63,000 2 29,000 5.1 1 Human Erythrocytes Amelanogaster Amelanogaster Amelanogaster 4.6, 4.9, 5.0† 3 Rouse Pseudomonas 90,000 1 33,000 5.6 1 Pseudomonas Pseudomonas 59,000 1 37,000 5.1 1 Rat Liver Liver 4.2*,4.7 2 Rat Liver 4.2*,4.7 2	-N-Benzoylarginine-2-naphthyl-amide hydrolase (I and II) ¹⁶¹	Rat	Skin	27,000			6.2(II), 7.5(I)	71	n. g
Rat Liver 160,000 6 28,000 7.9 1 Chicken Egg (yolk) 74,300 4 18,575 4.6 1 Human Erythrocytes 63,000 2 29,000 5.1 1 Human Erythrocytes 4.6, 4.9, 5.0 ⁺ 3 Drosophila Heads 6.6 1 Mouse Pseudomogaster 6.6 3.6 Mouse Pseudomonas 90,000 1 39,000 sp. AK I 1 37,000 5.1 1 Pseudomonas Pseudomonas 59,000 5.1 1 Rat Liver 4.2 ⁺ , 4.7 2 Rat Liver 4.2 ⁺ , 4.7 2 Rat Liver 2.3 < 7.7 < 7.7 2	etaine aldehyde dehydrogenase ¹⁶²	Pseudomonas		145,000			5.1	-	n.g.
Chicken Egg (yolk) 74,300 4 18,575 4.6 1 Human Erythrocytes 63,000 2 29,000 5.1 1 Human Erythrocytes 4.6, 4.9, 5.0 ⁺ 3 Drosophila Heads 6.6 1 3 Mouse Preudomogaster 5.6 1 1 Pseudomonas 90,000 1 39,000 5.1 1 sp. AK I Pseudomonas 59,000 5.1 1 Pseudomonas S9,000 5.1 1 Rat Liver 4.2 *, 4.7 2 Rat Liver 4.2 *, 4.7 2	ilirubin glucuronoside glucuro- nosyltransferase ¹⁶³	aeruginosa A-16 Rat	Liver	160,000	9	28,000	7.9	-	i. ģ
Human Erythrocytes 4.6, 4.9, 5.0 ⁺ 3 Drosophila Heads 6.6 1 melanogaster 6.6 1 1 Mouse Seudomonas 5.6 1 1 Pseudomonas 90,000 1 39,000 5.1 1 Pseudomonas Pseudomonas 59,000 5.1 1 1 Rat Liver 4.2 * 4.7 2 Rat Liver 2.2 * 5.7 * 6.7 2	iottin-binding protein ¹⁶⁴ 3-Bisphosphoglycerate phos- phatase and bisphosphoglycero- mutase (neak III) ¹⁶⁵	Chicken Human	Egg (yolk) Erythrocytes	74,300 63,000	4 7	18,575	4.6 5.1		n.g. 25
Mouse Brain 700,000 5.6 1 Pseudomonas 90,000 1 39,000 1 sp. AK I 1 37,000 5.1 1 Pseudomonas 59,000 5.1 1 1 Podycolor Sat 4.2*, 4.7 2 Rat Liver 4.2*, 4.7 2 Rat Liver 2.3 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 <	3-Bisphosphoglycerate synthase ¹⁶⁶ Bungarotoxin-binding protein ¹⁶⁷	Human Drosophila	Erythrocytes Heads				4.6, 4.9, 5.0 ⁺ 6.6	3	20 n.g.
sp. AK 1 1 37,000 5.1 1 Pseudomonas 59,000 5.1 1 polycolor 5.1 1 Rat 4.2 ⁺ , 4.7 2 Rat Liver 2	-Bungarotoxin-binding protein 168 -Butyrobetaine hydroxylase 169	metanogaster Mouse Pseudomonas	Brain	700,000	_	39,000	5.6	_	n.g.
Polytodor Rat	utyrylcholine-hydrolysine enzyme ¹⁷⁰			59,000	-	37,000	5.1 5.1		n.g.
	admium-binding protein ¹⁷¹ admium-binding protein ¹⁷²	Polycolor Rat Rat	Liver Liver				4.2+, 4.7	2 .	n.g.

Calcium-binding protein ¹⁷³	Chick	Chorioallantoic	100,000	4	25,000	8.06	1	n.g.
Calcium-binding protein ¹⁷⁴	Soy Leaf Wheat					5.1 ⁺ , 5.2 ⁺ , 5.8 ⁺ 3.7 ⁺ , 3.9, 5.2 6.5, 6.6 ⁺ , 7.7, 8.0 ⁺	w w 4	n S
Calcium-modulated protein	Chicken embryo	Fibroblasts				3.8, 4.1 +	7	n.g.
(camboduln) ⁷ Carbonic anhydrase III ¹⁷⁶	Rabbit	Skeletal muscle	58,000	7	29,000	8.41 (monomer), 9.34 (dimer)	_	п. я
Carbonic anhydrase: C ₁ , C ₂ , C ₃	Equine	Erythrocyte				$8.52(C_3)$, $9.0(C_2)$, $9.63(C_1)$	· Ko	, eg
Carbonic anhydrase ¹⁷⁸	Rat	Kidney	25,700			7.2, 6.9	7	
		Erythrocyte RBC-C Erythrocyte	26,000			7.2, 6.9	CI.	n.g.
		RBC-B	24,000			7.2+, 7.0	ы	
Carbonic anhydrase'''	Maie rai	Liver	79,000			3.91, 0.26 , 0.00 . 7.25	4	n.g.
Carboxylesterase ¹⁸⁰	Human	Brain	340,000			3.9+, 4.0, 4.1, 4.2	,	٠ ,
Carbovy actorical 81	Нітап	Pancreas	54 000			4.5, 4.7	- 0	25 n.g.
Carboxylesterase ¹⁸²	Rat	Serum	84,000			4.4	_	n.g.
Carboxypeptidase N ¹⁸³	Human	Serum				3.8+, 4.3+	7	r.t.
Carboxypeptidase ¹⁸⁴	Streptomyces griseus K-1		34,000			5.2	-	20
Cardiotoxin (Mojave toxin) ¹⁸⁵	Crotalus scutulatus	Venom	22,000	7	12,000	4.7	-	n.g.
Carnitine acetyltransferase ¹⁸⁶	Ox	Heart				5.2, 8.1	CI :	
		Liver				4.9, 7.6	\sim 1	
	Sheep Pigeon	Liver Breast muscle:				5.0, 7.9	C I	n.g.
)	Crude				5.0, 8.1 8.0	7 -	
Carnosinase ¹⁸⁷	Нов	Kidnev	84,000			5.8	_	n.g.
Catalase 188	Neurospora crassa	·	320,000	4	80,000	5.0	-	n.g.
Catalase ¹⁸⁹	Human	Granulocyte from myeloid leukaemia	263,000	4	65,500	6.7	-	n.g.
							-	1001

TABLE I (continued)

Protein	Source	Organ and/or	MW	Subunit	1.	Id	No. of	Temper-
		subcellular location		No.	МИ		iso- enzymes	ature (°C)
Catalase ¹⁹⁰	Mouse	Liver				6.25, 6.35 ⁺ , 6.40 ⁺ 6.50 ⁺ , 6.65, 6.80,		
Catalase ¹⁹¹ Catechol O-methyltransferase: ¹⁹²	Rat Rat	Liver Liver				6.49, 6.64, 6.74	א ע	n.g. 0
COMT I		5	24,000			6.4 8	c	5
Cathepsin B ¹⁹³	Squid (Dorytheuthis	Liver	13,600			6.8	. –	n.g.
Cathepsin B1 (F-4.5) ¹⁹⁴ Cathepsin B1 ¹⁹⁵	bleekri) Squid	Liver Liver	50,000	6	25,000	4.5 5.7		n.8.
Cathensin B1 ¹⁹⁶	(Ommatostrephes sloani pacificus) Human	Foetal membranes				51+ 54 55	, "	i
Cathepsin B ¹⁹⁷	Human	of placenta Placenta	24,500			5.4	· -	.i.
Cathepsin collagenolytic ¹⁹⁷ Cathepsin B forms I, II, III ¹⁹⁸	Human Pig	Placenta Liver	34,600 29,000 (I, II)		25,000	5.1 5.2(I), 5.4(II)	1	n.g.
Cathonein B199	ć	 -	29,000 (III)		s.p.c.	5.8(III)		n.g.
Cathepsin D I and D II ²⁰⁰	rai Rai	Spleen	44,000		s.p.c.	4.2, 5.0', 5.1, 5.3 4.2, 4.9, 6.1, 6.5 (DI)	44 (ci cio
Cathepsin L ²⁰¹ Cellobiose oxidase ²⁰²	Rat Sporotrichum	Liver lysosomes			23,500	4.6, 5.6, 5.8(DII) 5.8–6.1	ი 4	n n 19. 19.
Cellobiose: quinone oxido-	pulverulentum Sporotrichum		93,000			4.5	_	20
reductase ²⁰³ Cellulase ²⁰⁴ :	pulverulentum		58,000			4.0, 5.7, 6.4	3	4
Endoglucanase (1)	Chaetomium		41,000(1)			~4.55	1	n.g.

5	
36	
"	
~	
2	
2	
~	
0	
-	
\boldsymbol{z}	
نو	
~	
ä	
-	
7	
0	
,~	
\sim	
_	

tein 210 tein 210 ge factor 212 ge factor 212 se 217 tein 219 j.219	Exoglucanase(2) Cellulase: β -glucosidase (GB-2 component) ²⁰⁵	Pyricularia		67,000(2) 240,000	61	120,000	~4.55 4.05		n.g.
Coat Serum 60,000 4.85 1 1 1 1 1 1 1 1 1	llulase: C ₁ component ²⁰⁶	or) zue Fusarium solani					4.75 ⁺ , 4.82. 4.90 ⁺ , 4.95	4	n.g.
Sectivating factor Serium Serium 47,000 5.3 1 1 1 1 1 1 1 1 1	utinase ²⁰⁷	Goat	Serum	000'09			4.85	-	4
Sacrativating factor Satisfactor Sacrativating factor Sacrativativating factor Sa	litinase	Calf	Serum	47,000			5.3	_	n.g.
inding protein ²¹⁰ Rati Rati Adipose tissue Recrase ²¹¹ Rabbit Plasma Adipose tissue Reclaid Attrobacter Reclaid Re	ntin synthetase-activating factor inhibitor ²⁰⁹	Saccharomyces cerevisiae		8,500			7.1	-	n.g.
sternse ²¹¹ Rat Adipose tissue Sac ¹¹³ Rat Albire Arthrobacter globiformis e (ChE) ²¹⁴ Earthworm (Eisenia foetida) Frog Mouse Mouse Amoebocyte lysate factor (CVF) ²²⁰ Cobra Cuitobacter (Naja naja) Ash (Naja naja) Ratin Adipose tissue Sacondo Sacon	olesterol-binding protein ²¹⁰	Rat	Liver, cytosol			26,500	5.75, 5.80	C	Д. Э.
Signature Plasma Signature Plasma Signature	olesterol esterase ²¹¹	Rat	Adipose tissue				5.1 ⁺ , 4.7	7	n g
e (ChE) ²¹⁴ Earthworm 108,000 5.p.c. 4.5 1 1 1 1 1 1 1 1 1	iolesterol ester exchange factor ²¹² ioline oxidase ²¹³	Rabbit Arthrobacter	Plasma				5.2	-	n.g.
Frog Brain (b) 394,000(b ₁) 5.3 ⁺ 8 5.9,000(b ₂) 5.9,000(b ₂	tolinesterase (ChE) ²¹⁴	globiformis Earthworm		83,000		s.p.c.	4.5	-	5
e ²¹⁵ Frog Brain (b) 394,000(b ₁) 5.9,6.0,6.1 (b) 3 8 8 8 8,000(b ₂) 550,000(b ₃) 6.0,6.1 (r) 220,000(r ₁) 6.0,6.1 (r) 220,000(r ₁) 6.0,6.1 (r) 2 n 470,000(r ₂) 7.4(A/Sn I) 2 n 470,000(r ₂) 7.4(A/Sn II) 2 n 4.5(NZB II) 2 n 6.5(NZB II) 2 n 7.5(NZB		(Eisenia foetida)		108,000			$(4.9-5.5) 5.1^+, 5.2^+,$,	
Frog Brain (b) 394,000(b ₂) 5.9,6.0,6.1 (b) 3 S60,000(b ₂) 550,000(b ₂) Retina (r) 292,000(r ₁) 6.0,6.1 (r) 2 S70,000(r ₂) 7.4(A/Sn I) 2 A/Sn) -like esterase ²¹⁷ Beef Lung >104,000 >2 ~52,000 6.20,6.35,6.42,6.54 4 Japanese Amoebocyte lysate 15,300 s.p.c. 10.0 Retina (r) 292,000(r ₁) 6.0,6.1 (r) 2 A/Sn) -like esterase ²¹⁷ Beef Lung >104,000 >2 ~52,000 6.20,6.33,6.42,6.54 4 Japanese Amoebocyte lysate 15,300 s.p.c. 10.0 Retina (R-protein) ²¹⁹ Pig Itaal and pyloric 120,000 4.1 Imacosa factor (CVF) ²²⁰ Cobra Venom 56,000 8.2,9.4 2 E. coli O III: 69,000 9.50 11	\$12						5.3+	∞	0.5 - 1.0
Retina (r) 292,000(r ₁) 6.0, 6.1 (r) 292,000(r ₂) $470,000(r_2)$ $470,000(r_$	olinesterase***	Frog	Brain (b)	394,000(b ₁) 550,000(b ₂) 550,000(b ₃)			5.9, 6.0, 6.1 (b)	က	
Strains NZB and Strains NZB and Strains NZB and A/Sn) A/Sn A			Retina (r)	$292,000(r_1)$			6.0, 6.1 (r)	2	n.g.
(Strains NZB and A/Sn) (Strains NZB and A/Sn) 4.9(A/Sn II) 2 A/Sn) (SinZB I) 2 3-like esterase ²¹⁷ Beef Lung >104,000 >2 25,000 6.20, 6.33, 6.42, 6.54 4 1 Apanese Amoebocyte lysate 15,300 s.p.c. 10.0 1 (R-protein) ²¹⁹ Pig Ileal and pyloric 120,000 4.1 1 factor (CVF) ²²⁰ Cobra Venom 5.0,52,53,5.5,6.4* 5 (Naja naja) Citrobacter 56,000 8.2,9.4 5 222 E. coli O 111: 69,000 9.50 1	ymotrypsin ²¹⁶	Mouse	Pancreas	(7-)			7.4(A/Sn 1)		
A/Sn) A/Sn) A/Sn) beef Lung -1like esterase ²¹⁷ Beef Amoebocyte lysate (R-protein) ²¹⁹ factor (CVF) ²²⁰ Cobra (Naja naja) Citrobacter E. coli O 111: Beef Lung >104,000 >2 ~52,000 6.20, 6.34, 6.54 4 4 4.1 mucosa 5.0, 5.2, 5.3, 5.5, 6.4 ⁺ 56,000 8.2, 9.4 2 4.1 7.0,500 8.2, 9.4 2 8.2, 9.4 2 8.2, 9.4 2 8.3, 9.4 2 8.4, 9.4 2 8.5, 9.4 2 8.5, 9.4 2 8.5, 9.4 2 8.5, 9.4 2 8.5, 9.4 2 8.5, 9.4 2 8.5, 9.4 2 8.5, 9.4 2 8.5, 9.4 2 8.5, 9.4 2 8.5, 9.4 8.5, 9.4 8.5, 9.4 8.5, 9.4		(strains NZB and					4.9(A/Sn II)	7	
Beef Lung > 104,000 > 2		A/Sn)					6.5(NZB I)	ć	n.g.
(R-protein) ²¹⁹ Pig Moebocyte lysate 15,300 s.p.c. 10.0 horseshoe crab horseshoe	ymotrypsin-like esterase ²¹⁷	Beef	Juno.	104 000	7	000 65.5	4.3(NZB II) 6.30 6.33 6.42 6.54	7 5	ţ
(R-protein) ²¹⁹ Pig lleal and pyloric 120,000 4.1 1 1 1 1 mucosa factor (CVF) ²²⁰ Cobra Venom 5.0, 5.2, 5.3, 5.5, 6.4 5 5 (1/Naja naja) 56,000 8.2, 9.4 2 2 E. coli O 111: 69,000 9.50 1 1	agulogen ²¹⁸	Japanese	Amoebocyte lysate	15,300	1	s.p.c.	10.0	·	i ii io io
factor (CVF) ²²⁰ Cobra Venom 5.0, 5.2, 5.3, 5.5, 6.4 ⁺ 5 (Naja naja) 56,000 8.2, 9.4 2 E. coli O 111: 69,000 9.50 11	balophilin (R-protein) ²¹⁹	norsesnoe crao Pig	Heal and pyloric	120,000			4.1	-	r.t.
(Naja naja) 56,000 8.2, 9.4 2 2 2 2 E. coli O 111: 69,000 9.50 1	bra venom factor (CVF) ²²⁰	Cobra	mucosa Venom				5.0, 5.2, 5.3, 5.5, 6.4+	S	n.g.
222 E. coli O 111: 69,000 9.50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	licin F4 ²²¹	(Naja naja) Citroboster		000 33				,)
5.500 111. 02,000 5.50 B4.H2	licin O 111 ²²²	E coli O 111		26,000 69,000			8.2, 9.4	v -	n.g.
		E. con O 111. B4:H2		000,600			9.30	-	c 7

TABLE I (continued)

Protein	Source	Organ and/or	MW	Subunit	it	Id	No. of	Temper-
		subcellular location		No.	МИ		enzymes	ature (°C)
Collagenase precursor ²²³	Human	Skin fibroblast	20,000		s.p.c.	6.7	·	n.g.
Colony stimulating factors (CSF)227 Colony stimulating factors (CSF)225	Mouse	L cells Cultured penareatic	70,000 \$0,000	7	35,000	$4.0^{+}, 4.2^{+}, 4.8, 5.1$	4	j. 6
(10) (10)	ranian	carcinoma cells	20,000			0:/-		i. ô.
Complement, Clr subcomponent ²²⁶	Human	Serum	110,000		68,000	4.9	_	0
Conalbumin ²²⁷	Chicken	Egg		-	41,000			
Native						$6.0, 6.3, 6.6^{+}$	3	n.g.
y-Irradiated	,					7.1 + , 7.4 + , 7.8	m ·	
β -Conglycinin, $\alpha, \alpha', \beta^{2.28}$	Soybean		57,000			$4.90(\alpha)$		6
			(α,α')			$5.18(\alpha')$	_ ,	50
230	4		$42,000(\beta)$			$5.66 - 6.00(\beta)$	4 (
Corncosteroid-binding protein**	Kat	Brain				4.3, 5.8, 6.75	m (n.g.
	;	Pituitary cytosol				4.2 ⁺ , 6.5 ⁺ , 8.2	6	
C-reactive protein $(CRP)^{230}$	Mouse	Liver, serum					N	n.g.
Creatine kinase ²³¹	Rabbit	Skeletal muscle				$6.1, 6.3^{+}, 6.4^{+}, 6.5^{+}$	4	n.g.
Creatine kinase (CK): MM	Human	Serum				$6.24(MM_1)$,	m	n.g.
1sozymes ^{2,3,2}						$6.45(MM_2)$,		
Curreties at sect of the control of	;					6.86(MM ₃)		
Creatine phosphokinase (CFA)	нитап	Heart Skeletal muscle				6.9(CPK-2) 7.2(CPK-1)	c	4 ×
Creatinine amidohydrolase	Pseudomonas		175,000	œ	22,000	4.7	-	n.g.
(creatininase) ²³⁴	putida, strain							•
λ-Crystallin ^{235–237}	C-83 Avian rentilian	anc	200 000	-	20.000	7 7		
of John Marie	Avian, repunan	LCIIS	700,002	t	000,00)-/		
	embryonic mallard	Lens	200,000	4	50,000	(5.0-5.8)	5 major 9 minor	
	Embryonic chick	Lens	200,000	4	50,000	5.1-5.4	7	r.t. ²³⁷
Cyclic AMP-adenosine binding protein ²³⁸	Mouse	Liver	180,000	4	45,000	5.7	1	n.g.
Cyclic nucleotide phosphodi- esterase ²³⁹	Rat	Brain				5.2, 6.5	7	n.g.

Cyclic AMP phosphodiesterase 1 and 2240	Dictyostelium purpureum		60,000(1) 50,000(2a) 48,000(2b)		z.	8.5(1) 7,5(2a, 2b)		n.g.
Cyclic AMP phosphodiesterase ²⁴¹	Dictyostelium discoideum					4.6, 6.5, 8.3	3	n.g.
Cyclic AMP phosphodiesterase F1, F2-I, F2-II forms ²⁴²	Rat	Pancreatic cytosol	500,000(F1) 70,000 (F2-I, F2-II)			3.9(F2-II)	_	п.g.
Cyclic nucleotide phosphodi- esterases ^{243,244}	Rat	Cerebellum ²⁴³				4.4, 4.8 ⁺ , 5.0 ⁺ , 6.1 ⁺ ,	9	
	Rat	Cerebrum ²⁴⁴				5.1, 5.6 ⁺ , 6.1 ⁺ , 6.6 ⁺ , 8.0, 9.0	9	n.g.
Cyclic nucleotide phosphodi-	Rat	Neostriatum				4.30 ⁺ , 4.45 ⁺ , 4.70, 4.85 ⁺ , 5.50	٠,	8
2010100		Cerebellum				4.1, 4.35+, 4.5+, 4.7,	9	io :
Cyclic nucleotide phosphodi- esterase activator ²⁴⁶	Bovine	Brain	15,000	s.p	s.p.c.	4.3	_	n.g.
Cyclooxygenase, prostaglandin- forming ²⁴⁷ Cystathionine 8-synthase:	Sheep	Vesicular glands				6.3 ⁺ , 6.5, 6.7	3	n.g.
Normal (1) Deficient homocystinuria (2)248	Human	Skin fibroblasts	123,000	1 5	53,000	5.7 (1)		6
Cystic fibrosis protein: CF ACTOR ^{249–255}	Human	Sera from cystic fibrosis	3,500- 10,000	•		8.46		4 ^{249,250} 5 ²⁵⁴
Cytochrome b ₅ -like haemoprotein ²⁵⁶	Rat	Liver-mitochon- drial outer membranes	000,09	4	16,000	3.6	_	2
Cytochrome b_{556}^{257}	E. coli K 12		900	-	17,500	8.5		n.g.
Cytochrome c ²⁵⁹	1 etranymena pyriformis Dyctyostelium		006,11	à	s.p.c	6.3 10.2		п. 9.
Cytochrome c peroxidase ²⁶⁰	aiscoideum Pseudomonas denitrificans		63,000			5.6	_	n.g.

(Continued on p. 132)

TABLE I (continued)

Protein	Source	Organ and/or	MW	Subunit	it	Id	No. of	Temper-
		subcellular location		No.	MW		iso- enzymes	ature (°C)
Cytochrome ²⁶¹ :								
C550(a)	Pseudomonas					5.6(d), 5.7(c),		12(b)
2 - : F: O (9)	aeruginosa and					6.5(a), 7.3(b)	-	14(a,c)
C _{555(c)} Azurin (d)	fluorescens							18(d)
Cytochrome f ²⁶²	Sinapis arvensis L.	Leaves	27,000		s.p.c.	5.50	1	n.g.
Cytochrome P-450 ²⁶³	Bacillus megaterium ATCC 13368				52,000	4.9	-	n.g.
Cytochrome <i>P</i> -450: I, 11 ^{264–266}	Bovine	Adrenocortical	$850,000^{266}$	16	53,000	4.0(I), 7.0(II) ^{264,265}	7	n.g.
SATE FACE PROPERTY OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE		mitochondria				(-)	ſ	b
Cytochrome P-450 ²⁶⁷	Rat	Liver, microsomal				4.8+, 5.4+, 5.6+	8	4
Cytochrome oxidase ²⁶⁸	Pseudomonas		120,000	7	000,09	6.9	-	n.g.
Cytosol receptors for testosterone ²⁶⁹	Rat	Kidney, submaxilari				4.6, 5.1(1)	2	
		gland(1), prostate(2)				5.8(2)	-	n.g.
Cytosol thyronine-binding protein ²⁷⁰	Dog	Kidney, cytosol	70,000			3.0+, 3.8+, 4.4	1	
	8					4.7, 5.3, 5.7	9	n.g.
Dehydrogenase (apo-NADH) $^{2/4}$	Peptostreptococ-		75,000		41,000	4.9, 5.4	71	n.g.
	cus eisaenii			-	33,000			
3'-Deocymononucleotide-producing nuclease ²⁷²	Verongia aeronhoha		62,000			6.1	-	n.g.
Desulphoviridin ²⁷³	Desulfovihrio					44+ 455	C	9
	vulgaris						l.	:
Detoxifying enzymes ²⁷⁴ :	E. coli							
Mercuric reductase			180,000	n	60,000	5.3	-	
Organomercurial hydrolase			43,000			5.5	-	r.t.
Diglyceride kinase ²⁷⁵	E. coli	Membrane	15,400		s.p.c.	4.0	-	n e
Dihydrofolate reductase ²⁷⁶	Beef	Liver	22,500		s.p.c.	5.70, 6.80+	2	Д Э.
Dihydrofolate reductase ²⁷⁷	Chicken	Liver	22,474		S.D.C.	63 68 74 84+	4	9 6
Dihydrofolate reductase (1-2) ²⁷⁸	E. coli B (RT-500)		18.500			4.6(1), 4.7(2)	. 2	n.g.
Dibydropteridine reductase ²⁷⁹	Rat	Liver	51,000	7	25,000	6.35	-	o oi
Dihydropteridine reductase ²⁷⁹	Sheep	Liver	52,000	2	25,000	5.4	-	n.g.
Diisopropyl fluorophosphatase	2					5.3+, 5.7, 6.1+, 7.8	4	9.5
(DEPace) 280	E. coli							

Dipeptidyl carboxypeptidase ²⁸¹ o-Diphenol-oxygen-oxidoreductase ²⁸² DNase ²⁸³ DNase ²⁸⁴	Human Agaricus bisporus Aspergillus oryzae Chlamydomonas	Seminal plasma Fruiting bodies	330,000 118,700 48,000 35,000		s.p.c. s.p.c.	4.6, 5.0 5.12, 5.41, 6.25 9.2 9.5		வ் வ் வ் வ்
DNase B ²⁸⁶	Calf Streptococci Group A	Thymus	53,000	4	13,000	10.3 ± 0.2 $4.4, 5.8, 7.9^+, 9.0^+$	- 40	n.g. 4
DNAase ²⁸⁷ DNAase ²⁸⁸	Group C Human Human	Urine Pancreatic	38,000			4.4, 5.8 3.9 4.58, 4.68, 4.79 *,	7 - 9	n.g. 23
DNA-binding protein (DNA-110	Rat	Brain, cytosol	000'89			5.9	-	n.g.
DNA-binding proteins (1 and 2) 290	Human	Serum			126,000	7.01(1)	_	
					86,000	5.97, 6.03, 6.09(2)	3	r.t.
DNA ligase ²⁹¹	E. coli B/6, T-4-amber-N82 mutant		000,09		ĵ.	0.0	_	n.g.
DNA polymerase ²⁹²	Calf	Thymus (cyto)	160,000		90,000	5.3+, 5.8, 6.3+	3	n.g.
	Yeast Mouse Wheat	Myeloma Embryos	> 100,000			5.1 5.8 5.2(B), 7.0(A.C)	6	या पा अं अं अं
DNA polymerase- α^{296}	Human	KB cells	140,000		76,000	5.1	-	n. 9.
DNA polymerase- β^{297}	Rat	Cortex neuronal nuclei	51,000			8.3	-	n.g.
DNA polymerase- β^{298}	Human	Novikoff hepatoma cells				7.5(7.35-S form) 8.5(4.15-S form)	2	n.g.
DNA polymerase-7, ²⁹⁹ DNA polymerase inhibitor ³⁰⁰	Rat Physarum polycephalum	Brain nuclei Slime mould	180,000 16,000			5.4 10.1		n 19 19 19
Elastase ³⁰¹	Human	Granulocyte lysosomal				8.2, 9.0	7	n.g.

TABLE I (continued)

scites cells ury ury (co	Protein	Source	Organ and/or	MW	Subunit	it	ld	No. of	Temper-
Porcine Pancreas Hen Oviduct Pig Liver Mouse Krebs II-ascites tumour cells Wheat germ Diplococcus pneumoniae Rhizoctonia fragariae Bovine Adrenal cortex Cytosol Turbatrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus aureus Mice Submaxillary glands Mice Submaxillary glands Leech (Dina dusia)			location		No.	MW		iso- enzymes	arure (°C)
Hen Oviduct Pig Liver Mouse Krebs II-ascites tumour cells Wheat germ Diplococcus pneumoniae Rhizoctonia fragariae Bovine Adrenal cortex Cytosol Turbatrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus aureus Mice Submaxillary glands Mice glands Leech (Dina dusia)	ase II ³⁰²	Porcine	Pancreas	26,500			8.5	_	n.g.
Pig Liver Mouse Krebs II-ascites tumour cells Wheat germ Diplococcus pneumoniae Rhizoctonia fragariae Bovine Adrenal cortex Cytosol Turbatrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus aureus Mice glands Mice glands Leech (Dina dusia)	gation factor 2 (EF-2) 303	Hen	Oviduct	93,000		s.p.c.	6.75	_	 9.
Mouse Krebs II-ascites Wheat germ Diplococcus Diplococcus Pneumoniae Rhizoctonia fragariae Bovine Adrenal cortex Cytosol Turbatrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus glands Mice glands Mice glands Coma dusia)	gation factor $1-\beta\gamma^{304}$	Pig	Liver	90,000	<u></u> .	30,000	$5.0(EF-1-\beta)$,) 5
Mouse Krebs II-ascites Wheat germ Diplococcus Diplococcus Rhizoctonia fragariae Bovine Adrenal cortex Cytosol Turbatrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus glands Mice Submaxillary glands Leech (Dina dusia)	$(F-1-\beta\gamma)$;			_	55,000	$7.0(\text{EF-}1\gamma)$	4	H.5.
Wheat germ Diplococcus Diplococcus Pneumoniae Rhizoctonia fragariae Bovine Adrenal cortex Cytosol Turbatrix aceti Rabbit Liver Yeast Staphylococcus aureus Staphylococcus aureus Staphylococcus glands Mice Submaxillary glands Coi	gation factor eEF-Ts ³⁰³	Mouse	Krebs II-ascites	52,000	7	26,000	4.7	-	n.g.
Diplococcus pneumoniae Rhizoctonia fragariae Bovine Cytosol Turbatrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus glands Mice Submaxillary glands Leech (Dina dusia)	chitinase ³⁰⁶	Wheat germ	tumour cens	30,000		s.p.c.	7.5–9.2		n.g.
pneumoniae Rhizoctonia fragariae Bovine cytosol Turbarrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus aureus Mice glands Mice Submaxillary glands Leech (Dina dusia)	-α-N-acetyl-D-Galactos-	Diplococcus		160,000		Ļ	8.5		r.t.
Rhizoctonia fragariae Bovine Cytosol Turbarrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus glands Mice Submaxillary glands Leech (Dina dusia)	iinidase ³⁰⁷	pneumoniae							
Fregariae Bovine Adrenal cortex Cytosol Turbarrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus guneus Mice glands Mice glands Mice glands Leech (Dina dusia)	polygalacturonase ³⁰⁸	Rhizoctonia		36,000		s.p.c.	6.76, 7.08	2	n.g.
Bovine Adrenal cortex cytosol Turbatrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus aureus Mice Submaxillary glands Mice Submaxillary Coordina dusia)	900	fragariae							
Turbatrix aceti Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus aureus Mice glands Mice glands Mice glands Leech (Dina dusia)	ribonuclease	Bovine	Adrenal cortex				8.3	_	n.g.
Rabbit Muscle Liver Yeast Staphylococcus aureus Staphylococcus aureus Mice glands Mice glands Coma dusia) Coma dusia	₄ se ³¹⁰	Turbatrix aceti	2) (2)				5.6	_	4
Yeast Staphylococcus aureus Staphylococcus aureus Mice glands Mice glands Mice glands Comaxillary glands Comaxillary glands Com	3Se ³¹¹	Raphit	Muscle	85,000	Ć	42 500	77 84 88+	۰ ،	. 5
Yeast Staphylococcus aureus Staphylococcus aureus Mice glands Mice Submaxillary glands Aice glands Co glands Co	ļ		Liver	20,50	1	2000,72	63 67+		i i i
Staphylococcus aureus Staphylococcus aureus Mice Submaxillary glands Mice Submaxillary glands Co	ase A ³¹²	Yeast					6.1 + 6.3, 7.0	ıπ	22-25
aureus Staphylococcus aureus Mice Submaxillary glands Mice Submaxillary glands (co	otoxin A ³¹³	Staphylococcus					6.5, 7.0, 8.0	·m	n.g.
Staphylococcus aureus Mice Submaxillary glands Mice Submaxillary glands (co		aureus							is i
Aureus Submaxillary Mice Submaxillary Glands (Co	otoxin A ³¹⁴	Staphylococcus					6.8, 7.2, 7.6, 8.1 *	5	25
glands Mice Submaxillary glands (co	rmal growth factor (EGF)-	aureus Mice	Submaxillary	29,300			8.6 ⁺ 5.6	1	n.g.
Leech (Dina dusia)	iding protein ³¹³	Mice	glands	74,000	,	2007	93.4	-	,
Leech (Dina dusia)			glands	(complex)	1 VI	29,300		-	:i Si
			•	•		(binding			
(Dina dusia)	trocruorin ³¹⁷	Leech			_	protein) 13,000	5.87		n.g.
		(Dina dusia)				21,000			.
						25,000			
					1	31,000			

c		
2		
2		
Ċ		
	2	
	٠	

Erythrocruorin ³¹⁸	Leech (Haemopis grandis)				13,500 21,000 23,000 27,000	0.9	-	ત છે.
Esterase (I and II) ³¹⁹	Rat	Liver	70,000(I) 160,000(II)			5.82(I), 6.32(II)	-	0
Esterase, non-specific (NSE) ³²⁰	Fasciola hepatica		•			5.10 ⁺ , 5.15 ⁺ , 5.25 ⁺ , 5.40, 5.55, 5.65, 5.75	7	20
Esterase B ₄ ³²¹	Human	Liver	20,000	S	s.p.c.	8.7	-	∞
Esterase ²⁸⁶	Streptococci (group C)					5.8	-	4
Estrogen binding protein ³²¹	Calf	Uterus	115,000			4.9	_	4
Estrogen receptor ³²²	Lamb	Uterus	35,300			5.5+, 5.8+, 6.2	3	n.g.
	Rat	Uterus	49,600			6.4	_	
Exonuclease ³²³	Beef	Spleen				6.67	_	n.g.
Factor IX pools: I, II, III324	Human	Plasma				3.98 ⁺ , 4.16 ⁺ , 4.50(I)	ς,	
						3.85 ⁺ , 4.12, 4.42 ⁺ .	9	
						5.35, 5.80, 6.04(II)		n.g.
						3.85, 4.10, 4.36 ⁺ ,	4	
E. 21 D 325		Corne	24 000	٠	9	7.05	-	_
racioi D	naman	Sei dili	7,000	,, (s.p.c.	†:·	- ,	+
Fatty acid synthetase ³²⁰	Mycobacterium smegmatis			. 4	000,000	8:.	-	n.g.
Fatty acid-binding protein ³²⁷	Rat	Heart	12,000	8	s.p.c.	5.0	-	n.g.
Feline sarcoma virus-coded	Feline sarcoma		130,000			3.9	_	n.g.
precursor polyprotem Ferredoxin ³²⁹	virus Clostridium					2.75	1	10
7	pasteurianum				04.000	1 8 (2) 5 (4) 6 (4) 6 (4)		
refredoxin-inADF reductase***	Spinacn	reaves			34,000 (b) 37,000	4.0(c), 5.0(d), 5.2(c), 5.5(b), 6.0(a)	5	CI
Ferritin ³³¹	Rat	Heart	530,000-		(c, d)	4.6, 4.8	C I	r.t.
Ferritin ^{332,333}	Human (1) Rat (2) Horse (3)	Liver and heart	450,000– 620,000	24	H:21,000 L:19,000	4.8–5.8(1) 5.1–5.9(2) 4.1–5.1(3)	$\sim 6-10$ $\sim 15-18$ 15-18	2
						Transfer of the Property of th		

d)
continue
LE I (
ABI

Protein	Source	Organ and/or	MW	Subunit	nit	Id	No. of	Temper-
		subcellular location		No.	MW		iso- enzymes	ature $(^{\circ}C)$
Ferritin ³³⁴ Ferritin ³³⁵	Human Human	Placenta Tumour and				4.7–5.0 4.90–5.10 (tumour)	~ 6–7 Several	9; E
~ Fotomrotain 336	Money	normal sera			000	5.25–5.65 (normal)		.: :
	Mouse	r oetat piasma, amniotic fluid			/0,000	4.4-5.4	×	r.t.
a-Fetoprotein ³³⁷	Mouse	Hepatoma BW7756	72,000		s.p.c.	$(4.3-5.2), 4.6^{+}$	4-6	n.g.
α -Fetoprotein ³³⁸	Human	Cord serum	71,000		s.p.c.	4.85	-	л Э.
α -Fetoprotein ³³⁹	Human	Hepatoma serum	67,500		s.p.c.	4.57+, 5.2	7	n.g.
		and ascitic fluid						
z-Fetoprotein ³⁴⁰	Human	Foetal tissue				4.7 ⁺ , 5.3	7	n.g.
retuin-like antigen ^{3*1}	Human	Nephro blastoma				3.8+, 4.2	71	n.g.
	;	(wilms tumour)						
F_0F_1 ATPase complex ³⁴²	Rhodospirillum 1	Chromatophores	480,000±			5.4	-	n.g.
ex-Flagellin ³⁴³	rubrum Rhizobium lupini (113-3)	Flagella	30,000		43,000	4.5, 4.65+, 4.8+	3	10
Floringing etanotheral accidence 344	(H13-3)		1			•		
ravivilus suluctural proteins:	virus		000,			3.8		
Envelope glycoprotein			53,000			7.8	m	n.g.
racieocapsia protein			14,000			10.3		
Flavocytochrome C ³⁴⁵	Chromatium				21,000	5.0, 5.2 +, 5.6 +	Э	n.g.
Flavodoxin ³²⁹	Clostridium			-	10,000	3.1	_	10
	pasteurianum						•	·
Folate-binding protein ³⁴⁶	Goat	Milk	37,000		s.p.c.	6.6, 7.3, 8.4	e	n.g.
Formaldehyde dehydrogenase ³⁴⁷	Human	Liver	81,400	CI	40,000	6.35		
F. pili ³⁴⁸	E. coli	Filamentous organs			11,800	3.6	_	, 4
Fructokinase ³⁴⁹	Bovine	Liver	56,000	7	28,000	5.7	-	n.9.
Fructose 1,6-bisphosphatase ³⁵⁰	Mouse	Liver	143,000	4	37,500	6.1	-	n.9
L-Fucose dehydrogenase (NAD-dependent) ³⁵¹	Sheep	Liver	123,000	4	30,000	5.8	-	n eio
α -Fucosidase ³⁵²⁻³⁵⁴	Human	Fucosidosis sera				4.35-4.95	9	n.g.
α -Fucosidase ²¹	Human	Leucocytes				5.6	-	o i
		Fibroblasts				5.7*, 7.0, 7.6	m =	4
		Ammone nme				0.0		

α-L-Fucosidase ^{20,355,356}	Human	Liver	200,000	4	50,000	5.2, 5.4, 5.6 ⁺ , 5.9 ⁺ ,	9	n.g.
a-rFucosidase ³⁵⁷	Human	Foetal liver				5.0, 5.2, 5.5, 5.7, 6.0 ⁺ , 6.4 ⁺ , 6.7	~	D. G.
α-L-Fucosidase ³⁵⁸	Human	Serum	296,000		56,500	5.0+, 5.4	r)
α-L-Fucosidase ³⁵⁹	Human	Brain			51,000	5.7, 5.9, 6.2, 6.4, 6.8 4.7, 5.2, 5.4, 5.75 ⁺ ,	_	II. 99.
076	,					$6.0^+, 6.3^+, 6.65$	7	0-2
z-L-Fucosidase ³⁶⁰	Human	Skin fibroblasts, amniotic fluid cells				4.9, 5.2, 5.4, 5.8, 6.1, 6.5, 7.1	7	8
Fucosyl transferase ³⁶¹	Human	Plasma				4.7 ⁺ , 5.1, 5.5	· m	
D-Galactonate dehydrase ³⁶²	Pseudomonas		240,000	4	57,000	4.5	-	, 4
Galactose-1-phosphate uridylyl transferase ³⁶³	Human	Erythrocyte				5.7 ⁺ , 6.2	61	n.g.
Galactose-1-phosphate urydylyl	Human	Liver				5.30-5.80		
transferase ^{364,365}		Red cell				5.0-5.45	2	n.g.
		Reticulocytes				5.30-5.50		
α -Galactosidase ²⁰	Human	Liver, serum				5.0	-	n.g.
α-Galactosidase A ³⁶⁶	Human	Liver				4.7	-	n.g.
α -Galactosidase (I, II, IV forms) ³⁶⁷	Human	Leukocytes				5.0(I), 4.5(II), 3.95(IV)	ю	n.g.
z-Galactosidase ³⁶⁸	E. coli K 12		329,000	4	82,000	5.1	1	n.g.
β -Galactosidase ²²	Human	Liver				4.4 4.7	4-5	, 0
β -Galactosidase ³⁶⁹	Human	Leukocyte				3.9, 4.5+	СI	n.g.
	Human	KB cells				4.3+, 4.8	сı	20
β -Galactosidase (peaks I and II) ³⁷¹	Human	Placenta	420,000-		77,000			
			480,000(I)		31,000			
			(11)000 000		22,000	3.6, 4.7(I)	C1 -	n.g.
			770,000(11)		000,//	4.04(11)	_ ,	
β -Galactosidase ^{3/2}	Kabbit	Brain				6.3	-	2
β -Galactosidase ^{27,3}	Aspergillus niger		124,000(1)			,		
			150,000(2)			~4.6	-	n.g.
			173,000(3)					
β -Galactosidase ³⁷⁴	Aspergillus oryzae RT 102					4.2	_	0
β -Galactosidase ³⁷⁵	Curvularia		120,000			4.4		n.g.
	maequalis							

4	
`	
_	
_	
_	
$\stackrel{\sim}{-}$	
_	
_	
山	
山	
山	
山	
山	
山	
山	
3LE	
山	
3LE	
BLE	

TABLE I (continued)							!	
Protein	Source	Organ and/or	MW	Subunit	ţ	Id	No. of	Temper-
		subcellular location	,	No.	MW	MAL	iso- enzymes	ature (°C)
γ-Globin (G _γ , A _γ) ³⁷⁶	Human	Foetal hemoglobin				6.85(A _y), 6.95(G _y)	И	r.t.
Globulin (Narbonin) ³⁷⁷ Glucacone-like polypeptides (I, II, III, IV fractions) ³⁷⁸	Vicia narbonensis L. Porcine	Seeds Colon	33,500		s.p.c. 12,000 (I)	5.17 4.5, 4.9, 5.2, 6.1 6.8(1)	2 2	n. 8.
					8000 (II)	6.2(II)	-	•
) (III)	4.8, 5.6, 10(III)	e	4
					(IV)	10(IV)	_	
1,3-\(\theta\)-Glucanase ³⁷⁹	Bacillus No. 221				36,000	4.1	-	n.g.
1,4-\(\beta\)-Glucan glucanohydrolase	Trichoderma		12,500(I)			4.60(1)	2	. 01
(I, II)380	viride		50,000(II)		s.p.c.	3.39(II)	۰ -	2 6
1,4-\$-Ulucan glucanohydrolase	Irichoderma viride OM 9414		70,000			7.57		70
1,4-x-Glucan phosphorylase ³⁸²	Klebsiella		180,000	2	90,000	5.3	-	n.g.
Glucoamylase (Gluc ₁ , Gluc ₂ ,	pneumoniae Rhizopus		74,000			8.7(Gluc ₁ , Gluc ₂)		
(10.3)			(Gluc ₂) (Gluc ₂)			8.8(Gluc ₃)	61	n.g.
			61,400 (Gluc ₃)					
Glucoamylase ³⁸⁴	Endomycopsis		53,000			3.81	-	n.g.
Glucocorticoid receptor385,386	Rat	Liver and			89,000	5.8	_	2-4
Glucosaminephosphate isomerase ³⁸⁷	Rat	Inppocampus Hepatoma(1), liver (2)				4.1, 4.5 ⁺ (1) 5.0 ⁺ (2)	71 -	12

8 7	-5.15 I), 10.3(I) 9.3 5.5 5.5	5 0.3(II) 8+, 5.	3(1)	Z		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	5000					
165,000-		 4	4 4	4 4 ··	4 4 6	4 4 c) 4
67,000	58,570(1) 110,000	58,570(1) 110,000 280,000	58,570(1) 110,000 280,000 283,000	280,000 280,000 283,000 250,000	283,000 283,000 250,000 ~140,000 330,000 250,000	28,570(1) 110,000 280,000 250,000 ~140,000 330,000 250,000 146,000 146,000
	Seeds Fibroblast Platelet	Seeds Fibroblast Platelet Liver Placenta Urine Liver Iysosomes	Seeds Fibroblast Platelet Liver Placenta Urine Liver lysosomes Preputial gland Liver: Golgi Lysosomal	Fibroblast Platelet Liver Placenta Urine Liver lysosomes Preputial gland Liver: Golgi Lysosomal Microsomal Liver	Fibroblast Platelet Liver Placenta Urine Liver lysosomes Preputial gland Liver: Golgi Lysosomal Lysosomal Liver Brain Liver Liver	Fibroblast Platelet Liver Placenta Urine Liver lysosomes Preputial gland Liver: Golgi Lysosomal Microsomal Liver Brain Liver Liver Liver Liver Liver
Stachybotrys atra Sporotrichum pulverulentum Piren Abias	Cicer arietinum L. Human	Cicer arietinum L. Human Mouse Rat	Cicer arietinum L. Human Mouse Rat Rat Rat Rat	Cicer arietinum L. Human Mouse Rat Rat (female) Rat Littorina littorea L.	Cicer arietinum L. Human Mouse Rat Rat (female) Rat Littorina littorea L. Human Human Rat Bacillus subtilis PCI 219	Cicer arietinum L. Human Mouse Rat L. Human L. Human Human Rat Bacillus subrilis PCI 219 Oat Pseudomonas ATCC 21025
				400	Se ⁴⁰⁰ Se ⁴⁰⁰ ase ⁴⁰² e ⁴⁰²	β-Glucuronidase ³⁹⁴ β-Glucuronidase ³⁹⁵ β-Glucuronidase ³⁹⁶ β-Glucuronidase ³⁹⁸ β-Glucuronidase ³⁹⁸ β-Glucuronidase ³⁹⁹ Glutamate decarboxylase ⁴⁰⁰ I-Glutamate dehydrogenase ⁴⁰² Glutamate dehydrogenase ⁴⁰² Glutamate dehydrogenase ⁴⁰³ Glutamate dehydrogenase ⁴⁰⁴ I-Glutamate dehydrogenase ⁴⁰⁴ I-Glutamate dehydrogenase ⁴⁰⁵ I-Glutamate dehydrogenase ⁴⁰⁶ I-Glutamate dehydrogenase ⁴⁰⁷ I-Glutamate dehydrogenase ⁴⁰⁸

(continued)	
_	
Ē	
m	
ΤĀ	

Protein	Source	Organ and/or	MW	Subunit	it —		No. of	Temper-
		subcellular location		No.	— — — — — — — — — — — — — — — — — — —		iso- enzymes	ature $(^{\circ}C)$
7-Glutamyl cyclotransferase ⁴⁰⁸ 7-Glutamyl transferase ⁴⁰⁹	Rat Beef	Kidney Colostrum	000'08		25,000	4.6, 5.1	 cı –	
?-Glutamyl transpeptidase⁴10	Rat	Kidney	98,000		22,000 22,000	5.40, 5.50, 5.65, 5.85* 6.12*, 6.32*, 6.51*, 6.71*, 7.0*, 7.27,		
Glutathione peroxidase ⁴¹¹	Human	Placenta	85,000	4	22,000	7.68, 9.20 4.8	12	n.g. n.g.
Glutathione reductase ⁷¹³	Mouse Baker's yeast	Liver	105,000 120,000			6.46 4.9 ⁺ , 5.9	– (1	n.g. 4
Glutathione-S-arene oxidase transferase ⁴¹⁴	Sheep	Liver	40,000			6.3, 6.9 ⁺ , 7.1, 7.3, 7.5 ⁺	5	4
Glutathione S-transferase ⁴¹⁵	Rat	Liver	45,000	СI	25,000	8.9, 9.8	C1	n.g.
Glutathione synthetase ⁴¹⁶ Glutathionethiol esterase ⁴¹⁷	Bovine Human	Eye lens Red blood cells	180,000			4.75, 4.80	(10	n.g. r
Glutathione transferase ⁴¹⁸	Human	Erythrocytes	47,500	CI	23.750	4.5		L 0.
Glyceraldehyde 3-phosphate	Fish	Muscle	160,000	4	39,000	7.9, 8.25 + 8.42 +	m	4
Glycerol 3-phosphate dehydrogenase ⁴²⁰	Rabbit	Liver Heart				6.3, 6.5, 6.6, 6.8, 7.1 6.3, 6.58* 6.1* 6.58	מנונ	n.g.
sn-Glycerol 3-phosphate dehydrogenase ⁴² 1	E. coli		51,000	C)	25,500	6.0	· —	n.g.
z-Glycerol phosphate dehydrogenase ⁴²²	Drosophila melanogaster					5.4	-	n.g.
z-Glycerol phosphate dehydrogenase ⁴²³	Colias butterflies					5.8, 6.1, 6.2, 6.4	4	r.t.
Glycogen phosphorylase ⁴²⁴	Rat	Muscle (1) Liver (2) Novikoff	185,000(1,2) 200,000(3)			5.60(3), 5.90(2), 6.15(1)	en	n.g.
Glycogen phosphorylase b ⁴²⁵	Human (A)	nepatoma (3) Brain (1) Liver (2)				5.6(A,B.1) 6.1–6.3(A,2)		

(Continued on p. 142)

	Rabbit (B)	Muscle (3)				6.3(A,B,3) 6.1(R.2)		n.g.
426		:			000	(±,4,1) (°,		
Glycogen synthase ⁷²³	Swine	Adipose tissue			90,000	8.4	_	n.g.
Glycoprotein ⁴²⁷	Human	Blood platelets	450,000	3	150,000	4.7	_	n.g.
α -2-Glycoprotein ⁴²⁸	Human	Pregnancy sera	490,000		90,000	4.8	_	n.g.
Glycoprotein ⁴²⁹	Monse	Submandibular			28,000	4.85	_	5 5
-		glands						io :
Glycoprotein (secretory, AM ₂	Mouse	Submandibular			80,000	4.7	_	n.g.
protein) ⁴³⁰		glands			40,000			ı
Glycoprotein ⁴³¹	Chicken	Egg white	27,800			4.8	_	n.g.
Glycoproteins (envelope E_1 , E_2) ⁴³²	Sindbis virus					$6.0(E_1), 9.0(E_2)$	c)	, 4
Glycoprotein ⁴³³	Cercopithecus	Submandibular				10.0, 11.0	c)	4
	aethiops	gland secretion						
Glycosulphatases (I. II) ⁴³⁴	Marine gastropod	Liver	112,000(I)				_	n.g.
	(Charonia		79,000(II)			6.3(II)		į.
	lampas)							
Glyoxalase (1) ⁴³⁵	Saccharomyces							
	cerevisiae		32,000		s.p.c.	7.0	_	
	Human, pig	Erythrocytes	46,000	сı	23,000	8.4	_	4
Gonadotropin ⁴³⁶	Fish	Pituitary gland	40,000	C I	18,000	4.38, 4.57, 4.67*,		
•						4.78+, 4.80+, 5.05	9	n.g.
Gonadotropin ⁴³⁷	Rat	Hypophysis				2.8(FSH), 4.4(LTH).		io i
•		•				4.8(GH), 9.0(LH)		n.g.
Gonadotronin chorionic (hCG)	Нітап		65 000			44 45 46 48 505	0	j 6
isohormones ^{438,439}	TRITTAL		200,00			5.3, 5.65, 5.95, 6.3		i io
Green-fluorescent protein (GFP) ⁴⁴⁰	Renilla reniformis		54,000	CI	27,000	5.34	_	n o
Green haemonrotein441	Rovine	Frythrocytes	27,000			574 583+ 505		ن ر ا
Group macing component (Go	Limon	Seriim	200,11		3. J. c.	7.74, 7.65 , 7.75 7.05(Go 1 East)	C	1
globulta) (vitemia D biadia	ITAIIIAII	Sciani				4.22(Oc-1 1 dst) 5 03(Cc 1 Slam)	,	
grooulin) (vitamin D-omoing						3.03(Gc-1 Slow)	\ 1	
protein)**2-***						5.10(Gc-2)	_	4
						4.95, 5.03,		
						5.10(Gcl-2)	ĸ	
Growth hormone ⁴⁴⁵	Monkey	Pituitary				5.03, 5.23, 5.44 ⁺ ,	4	
						5.78		
	Human	Pituitary				4.58, 4.80+, 5.05,		n g
						5.40	4	ı
Growth hormone receptor 446	Rabbit	Liver, membranes	300,000	4	75,000	4.6	_	n.g.
			, ,					

TABLE 1 (continued)		:	ļ				:	
Protein	Source	Organ and/or subcellular	MW	Subunit	it	Id	No. of iso-	Temper- ature
		location		No.	MW		ent ymes	
Cinanine aminohydrolase ⁴⁴⁷	Rabbit	Liver	112,000	c 1	53,000	4.78		n.g.
Haemagglutinin ⁴⁴⁸	Machura pomifera	Seeds	40,000	רו כו	12,000 10,000	4.75	_	n.g.
Haemagglutinin ⁴⁴⁹	Wistaria	Seeds			28,000	5.4	-	n.g
Haemocyanins ⁴⁵⁰	Spiders:	Haemolymph	71,000(1)			5.2(2)	_	n.g.
	Dugessella californica (1)		(-)000(-)					
Haemoglobin ⁴⁵¹	Cuprennus (2) Dicrocoelium		22,000		15,000	4.51, 4.53	7	12–14
Haemoglobin ⁴⁵²	dendriticum Annelid		3.49 · 106			7.7 *	7	n.g.
	(Eunice anhroditois)							
Haemoglobin ⁴⁵³	Bloodworm	Coelomic cells	55,000	4	13,000	$5.60, 5.90^+, 6.12^+,$		
,	(Glycera gigantea)					$6.2, 0.52, 0.03, 6.78^{+}, 6.92, 7.08,$	> 10	10
					1	7.36	,	31
Haemoglobin ⁴⁵⁴	Bloodworm	Coelomic cells	34,500	c i	1/.000	6.72. 7.25. 7.67	n	<u>.</u>
Haemoglobin ⁴⁵⁵	(Glycera rouxii) Bloodworms	Coelomic cells			15,600	5.4, 6.0, 6.4, 6.5,	٢	
	Glycera		175 000	٨	31 000	7.03 7.44, 6.1	-	i.
	dıbranchiata)		1.3.000	t	000:10	5.2+, 5.5+, 5.9+	\ 4	52
Haemoglobin (I, II, III, IV) ⁴⁵⁶	Killifish	Red cells	64,000	4	16,000	8.20 (I)		
	(Fundulus					7.52 (II) 6.48 (III)		n.g.
	neterocitius)					5.82 (IV)	-	
Haemoglobin III (liganded states):	Chironomus					5.87		
CO-haemoglobin (II)	thummi					5.92		25
Deoxyhaemoglobin (II)** Haemoglobin	Hamster	Peripheral blood				6.80, 7.18 ⁺ , 7.30, 7.41, 7.50	S	r.t.

,	44
	-
	Ď.
	O.
	(ontinued

Haemoglobin ⁴⁵⁹	Hamster	Peripheral blood				6.67, 7.18*, 7.38,		
						7.58, 7.81	S	n.g.
Haemoglobin ⁴⁶⁰	Dog	Red blood cells				6.91 +	с і Л	9
Haemoglobin Alberta ⁴⁶¹ $(\alpha, \beta, 1^{01 \text{ Giu}} - G)_{i})$	Human	Red blood cells				7.05	_	n.g.
Haemoglobin J. Cairo ⁴⁶²	Human	Red blood cells				6.75	-	n.g.
Haemorrhagic component (HRI)463	Trimeresurus flavoviridis	Venom			000'09	4.4		n.g.
Haptoglobins ⁴⁶⁴	Human	Ascitic fluids				4.03-4.24		
	Porcine	Plasma				4.0-4.30		n.g.
	Equine	Serum				3.80-4.15		
Haptoglobin (type 1-1) ⁴⁶⁵	Human	Serum	98,200	c) c)	9,100	4.25	-	n.g.
Haptoglobin-apohemoglobin	Human	Serum				5.10	-	n.g.
Herbage protein ⁴⁶ :	Medicago sativa							
Fraction I	ı					5.5	r ı	
Fraction II						4.4 ⁺ , 4.8 ⁺ , 5.0 ⁺ , 5.1 ⁺	15	n.g.
Hexokinase (P-I, P-II) ⁴⁶⁸	Yeast		104,000	c i	52,000	5.0(P-II), 5.3(P-I)	c)	n.g.
Hexokinase ⁴⁶⁹	Ascaris suum	Muscle			100,000	5.9	_	4
Hexokinase:								
Young cells (1)*/" Total cells (2)	Human	Erythrocyte	120,000(1) 115,000(2)			5.75 (1) 5.75 (2)	_	n.g
Old cells (3)			111,500(3)			5.60 (3)		
Hibernation-inducing triggers ⁴⁷¹	Woodchucks	Plasma				4.5, 5.2	C1	4
rign-defisity lipoproteins: nDL2	пишап	Flasma				4.03, 4.32, 4.34", 4.89, 5.02, 5.22*, 5.41, 5.52*, 5.67, 6.67	10	n.g.
Histidine decarboxylase ⁴⁷³	Rat	Gastric mucosa	94,000		s.p.c.	5.4, 5.75, 6.0	ю	n.g.
Histidyl-t-RNA synthetase ⁴⁷⁴	Rabbit	Reticulocytes	122,000	C)	64,000	5.0	_	n.g.
Histoplasmin: HPD aII ⁴⁷⁵	Histoplasma		12,000		s.p.c.	5.68	_	n.g.
Homoserine dehydrogenase ⁴⁷⁶	capsutatum Rhodospirillum rubetum		110,000	C1	55,000	5.0, 5.3, 5.7, 6.1+	4	n.g.
Hormone (growth) ⁴ ;*	Human	Pituitary				4.95, 5.1 +, 5.2 +	8	4

(continued)
_
Щ
\mathbf{E}
TA

Protein	Source	Organ and/or	MW.	Subunit	ut .	Id	No. of	Temper-
ļ		location		No.	МИ		enzymes	diune (°C)
Hormone (growth; variant) ⁴⁷⁸	Human	Pituitary extracts	22,000			5.85	_	r.t.
Hormone (luteinizing)	нитап	Urine				6./1", /.26", /./2", 8.14*	\ 4	n.g.
Hormone (luteinizing) (IR-LH) ⁴⁸⁰	Rat	Anterior pituitary				7.9, 8.5 ⁺ , 8.8 ⁺ , 9.1 ⁻ , 9.35 ⁺ , 9.6, 9.8	7	n.g.
Horseradish peroxidase C ⁴⁸¹	Horseradish	Root	34,000		s.p.c.	9	-	n.g
Hyaluronate Jyase ²⁸⁶	Streptococci:				•	,		, ,
	Group A Group C					4 4 4 ε.		4
Hyaluronidase ⁴⁸²	Human	Placenta	70,000			5.2	-	4
Hydrogenase ⁴⁸³	Desulfovibrio		000.68		59,000	6.2+, 5.8	CI	п.е.
	vulgaris		0		28,000		1 (ā
Hydrogenase ***	Chromatium		100,000	c I	50,000	4.2, 4.4	C)	n.g.
Hydrogenase	E. coli	Membrane-bound	113,000	c i	56,000	4.2		n.g.
Hydrogenase ⁴⁸⁷	Alcaligenes	Soluble form	205,000			4.85	_	9
	eutrophus H 16							
Hydrolases: cathepsin B1 (1)	Rabbit	Lung,	26.000-			5.0-5.5 (1)	4	\$
and BANA (2) ⁴⁸⁸		lysosomes	29.000			5.8–6.5 (2)	9	sio =
3-Hydroxy-3-methylglutaryl-CoA reductase ⁴⁸⁹	Chicken	Liver, microsomes				6.7	_	n.g.
β -Hydroxy- β -methylglutaryl-CoA reductase ⁴⁹⁰	Rat	Liver, microsomes	200,000	4	51.000	6.2	_	n.g.
4-Hydroxyphenylpyruvate	Human	Liver	87,000	сı	43,000	7.1 (ref. 491)		n.g.
dioxygenase ^{491,492}						6.5–7.5 (ref. 492)	m	r.t.
4-Hydroxyphenylpyruvate dioxygenase ⁴⁹³	Pseudomonas sp. P.J. 874		150,000	4	36,000	4.8	-	n.g.
172-Hydroxysteroid dehydrogenase ⁴⁹⁴ Rabbit	4 Rabbit	Liver				$4.7^+, 4.85^+, 5.0^+, 6.1^+$	\ 4	n.g.
3(17)\$-Hydroxysteroid dehydrogenase ⁴⁴⁵	Pseudomonas testosteroni		98.500	4	23,500	7.0 ⁺ , 7.5 ⁺ (of subunits)	9	n.g.

Hypoxanthine-guanine phospho- ribosyl transferase (HGPRT) ⁴⁹⁶	Human Mouse	Skin fibroblasts L cells				6.25 6.6	-	n.g.
Hypoxanthine guanine phosphoribosyl transferase	Chinese hamster	Liver, V 79 tissue, culture cells	78,000	m	25,000	6.2-, 6.3-, 6.6-	9	n.g.
(HGPRT) ⁴⁹⁷	Saccharomyces		51,000		s.p.c.	5.1	_	n.g.
Hypoxanthine-guanine phosphoribosyl transferase (HGPRT) ⁴⁹⁸	cerevisiae							
Hypoxanthine phosphoribosyl transferase ⁴⁹⁹	Human	HeLa cells			26,000	0.9	-	n.g.
Hypoxanthine phosphoribosyl transferase ⁵⁰⁰	Human	Erythrocytes	81.000	33	26,000	5.6, 5.7 ⁺ , 5.9 ⁺	3	n.g.
Immunoglobulin G: Fc.	Human	Serum	50,000 (Fab)			7.0(Fc), 8.2 ⁺		
ao nagamena			340,000 (Fc)			9.0°, 9.5° (Fab)	V 4	S
Immunoglobulin G (monoclonal) ⁴⁸⁶ Immunoglobulin M (antilactose antibody) ^{502,503} ;	Human Equine	Myeloma serum Serum				7.5. 7.6. 7.7. 7.8, 7.86	Ś	n.g.
H chains						5.4-6.2	10	r.t.
J chains						4.8, 4.9, 5.0	c	r.t.
Immunoreactive glucagon fractions	Dog	Pancreas (1)	3500(1a)			6.25(1a)		
(IRGs)304		gastric fundus (2)	9000(1b)			4.65(1b)		
			3500(2a) 9000(2b)			6.15(2a) $4.50(2b)$		n.g.
			65,000(2c)			6.40(2c)		
Immunoreactive insuline505	Dog	Pancreatic juice				4.8+, 5.7+	V	25
Immunoreactive somatostatin505	Dog	Pancreatic juice				9.7+, 10.2+	۷ د ا	25
Inhibitory factor506	Human	Granulocytes	102,000-			6.3	-	n.g.
1 8 9			128,000					
mio-Inositol 3-methyltransferase ⁵⁰	Pisum sativum		42,000		s.p.c.	6.95	-	n.g.
myo-Inositol 1-methyltransferase30	Уінса тіног		27,000		s.p.c.	7.10	_	n.g.
Interferon ⁵⁰⁸	Rainbow trout	Serum	26.000			(4.5-6.2) 5.3 ⁺		n.g.
		25 27 27 27 27 27 27 27 27 27 27 27 27 27						

(Continued on p. 146)

	/ continued	communea/
-		4
Ĺ	ſ	1
		ĺ
۵	ĭ	3
	1	7 7

				ļ				i
Protein	Source	Organ and/or	MW	Subunit	it	Id	No. of	Temper-
		subcellular location		No.	MW		enzymes	$\stackrel{\text{diwre}}{\stackrel{\circ}{\sim}} C)$
Interferon ⁵⁰⁹	Mouse	Ehrlich ascites	25,000-			⁺ 8.6		n.g.
Interferon ^{510,511}	Human	tumour cells Leukocyte	35,000 17,500– 33,000		s.p.c.	5.5 ⁺ , 6.2 ⁺ , 6.6 ⁺	4	
Interferon ⁵¹²	Human	Fibroblasts Lymphoblastoid	23,000 18,000- 22,000			(6.8–7.8) 5.7 ⁺ , 6.0 ⁺ , 6.3 ⁺	Several 8	4 n.g.
Invertase:							,	
FH4C external (1)	Yeast, FH4C					2.7, 3.32, 3.65 (1)	χ -	¢
FH4C internal (2) Exiernal (3) ⁵¹³	stram (1,2) S. cerevisine (3)					4.2 (2) 3.9-4.5 (3)	- 4	
Iron-binding protein ⁵¹⁴	Guinea pig	Intestinal mucosa	80,000	2	40,000	6.16, 6.23	СI	n.g.
Iron-sulphur protein (high potential type) (HiPIP) ⁵¹⁵	Beef	Heart mitochondria	89,000			8.55	-	n.g.
(Iso)ferritins ⁵¹⁶	Human							
		Normal liver				5.35, 5.54, 5.56	ĸ	
		Normal kidney				5.12, 5.22+, 5.25+	3	
		Normal pancreas				5.19, 5.25+, 5.30+	v	
						5.34 ⁺ , 5.55	ì	
		Normal serum				5.04, 5.16, 5.28,	۲-	n.g.
						5.62+		
		Normal colon				5.20, 5.35 ⁺ , 5.45,		
						5.55	4	
		Renal carcinoma				5.25, 5.35, 5.54+	e	
		Pancreatic				5.19, 5.25, 5.30,		
		carcinoma				5.35+, 5.54*	S	n.g.
		Colonic carcinoma				5.25, 5.36 ⁺ , 5.45,		
						5.54+	4	
(Iso)ferritins ⁵¹⁷	Human	Normal liver,				5.25, 5.33, 5.47 5.65 (1.3)	4	
		Foetal liver,				4.9, 5.1, 5.25, 5.33,		

148)
Ъ.
on
(Continued

	00	5 4 4	t CI	n.g.	ı	10	7 n.g.	3.0	ો		n.g.	\$	i. E				n.g.	4	n.g.	n.g.	Ç	r.t.		4	n.g	,				
9	4	S & 4	4	1	O	3	6-7	4	, ,	S	ĸ	r	n				m	_	-	m	(-	-					
5.47, 5.65 (2)	4.10, 4.25, 4.35,	4.28, 4.51, 4.78 6.57, 6.83, 7.01, 7.21	5.45, 5.87, 6.16, 7.05	4.18+	4.05, 4.15	4.1, 4.2, 4.4 +	4.2–5.1	3.75, 3.82, 3.92+	$3.97^{+}, 4.11^{+}(d_1)$	$3.93, 4.01^{\circ}, 4.11^{\circ}(d_2)$	$3.80^+, 3.95^+, 4.06$	3.9(HUK-1)	4.0(HUK-2)		4.2(HUK-3)		3.8, 3.9, 4.05	4.4	7.6	4.75+	4449+	4.7		5.2	5.4	5.4		5.6		57
		45,000	45,000				s.p.c.										29,000 45,000													
		c	ı																											
	450,000	000 06		33,100	27,000	30,000	50,000	34,500(d ₁)	$31,000(d_2)$		43,600	27,000	(HUK-1;	HUK-2)	29,000	(HUK-3)	64,000	73,000			50.000	120,000		76,000						
hepatoma (2) Leukaemia serum, Liver spleen (3)	Spleen	Root Liver	Brain	Urine	Pancreas	Pancreas	Submaxillary gland	Pancreas			Urine	Urine					Urine	Plasma			Plasma	Plasma		Kidney						
	Horse	Ulex minor Hoo	Rat	Rat	Rat	Dog	Cat	Porcine			Human	Human					Human	Rat	Moraxella	Pseudomonas	Human	Human		Rat	E. coli RTEM	E. coli P111	(TEM1)	E. coli RP 4	(TEM2) Pe apruginasa	RI 113
	(Iso)ferritins ⁵¹⁸	Isoleucine aminopeptidase ⁵¹⁹ Isomerase (aculthioester) ⁵²⁰	Isorenin (acid proteinase) ⁵²¹	Kallikrein ⁵²²	Kallikrein ⁵²³		Kallikrein ⁵²⁴	Kallikrein (d ₁ ,d ₂ forms) ⁵²⁵			Kallikrein ⁵²⁶	Kallikrein ^{527.528}					Kallikrein ⁵²⁹	Kallikrein inhibitor ⁵³⁰	Kanamycin acetyltransferase II531	Δ ⁵ -3-Ketosteroid isomerase ⁵³²	Kininogen ⁵³³	Kininogen ⁵³⁴	Kynurenine pyruvate aminotrans-	ferase ⁵³⁵	β-Lactamase ⁵³⁶	β -Lactamase ⁵³⁷ 539				

(pa
inue
ont
)
_
щ
1
8
⋖
=

IABLE 1 (continued)								
Protein	Source	Organ and/or subcellular location	MW	Subunit	MW.	Id	No. of iso-enzymes	Temper ature (C)
	E. coli P 453 (type 2) P. morganii NCTC 235 Ps. aeruginosa NCTC 8203 Ps. aeruginosa NCTC 8203					8.3 8.7 9.4	-	ත් ජ
Lactase ⁵⁴⁰	Ps. aeruginosa HL Rat	Enterocytes				5.3		
Lactate dehydrogenase (LDH-1) ⁵⁴¹ Lactate dehydrogenase ⁵⁴²	Human Cestoda (Hymenolepis diminuta)	(brush border) Heart muscle				4.8 4.6 7.0		
Lactate dehydrogenase ⁵⁴³ Lactate dehydrogenase ⁵⁴⁴	Lactobacillus L. plantarum L. curvatus L. acidophilus L. casei Ambrstoma		140,000	4	36.000	4.4 4.9 5.1 5.3 5.24 (LDH-1)		ස ස
,	mexicanum					5.58, 5.62 (LDH-2) 5.74, 5.80 (LDH-3) 6.07, 6.14 (LDH-4) 6.52, 6.60 (LDH-5)	· લાલાલાલ	ы. ы.
L-Lactate dehydrogenase, membrane bound ⁵⁺⁵	E. coli	Membranes	480,000		43.000	8.3		n.g.
Lactogen ⁵⁴⁶	Ovine	Placenta			22,500	6.8 (monomer) 7.7 (aggregate)	1	10
Lactogen ³⁴⁷	Human	Placenta				5.0, 5.5, 5.8 6.0, 6.1, 6.2	9	n.g.

Lactoperoxidases ⁵⁴⁸	Monkey: M. mulatta (1). M. faccicularis (2)	Parotid saliva	79,000			6.1, 7.3, 8.4(1) 7.9(2)	e –	n.g.
Lectin ^{549,580}	Ricinus communis Abrus precatorius	Seeds	130,000	כוכו	33,500 32,000	7.1 (ricin) 7.5 (ricin A chain) 4.8 (ricin B chain) 6.1 (abrin) 7.6 (abrin A chain) 7.9 (abrin B chain) 7.0 (abrin B chain)	-	લં
Lectin ⁵⁵¹	Eunonymus	Seeds	166,000		35,000	5.0 (abrus) 4.4 ⁺ , 4.7 ⁺ , 4.9 ⁺	9	n.g.
Lectin ⁵⁵²	Pisum sativum	Seeds	49,000	СI	7,000	4.1 - 5.1, 5.8	4	n.g.
				۲ı	17,000	6.5-		
Lectin ⁵⁵³	Vicia cracca	Seeds	125,000	4 (32,000	5.2-5.6		n.g.
Lecting	Anguilla anguilla Clitocybe nebularis	Serum Fruiting bodies	70,000	1	19,000	2.0 - 0.0 4.3, 4.5	c 1	
	Fomes fomentarius Fruiting bodies	Fruiting bodies	000,09	_	14,300 35,000	5.8, 6.3, 6.5	ю	
					21,000			7.9.
	Maclura pomifera	Seeds	000'09	S	12,000	5.3-5.8		b.
	Marasmius oreades Fruiting bodies	Fruiting bodies	50.000		33,000	5.2–5.4		
	Ononis spinosa	Root	110,000	- 4	30,000	4.0-4.4		
	Sarothammus	Seeds	120,000	4	28,000	6.3	_	
l ectin ⁵⁵⁵	scoparíus Embryonic chick	Pectoral muscle	30,000	c.	15.000	4.0	_	n.g.
Lectin 556	Barley	Seeds	31,000			4.95	_	n.e
Lectin ⁵⁵⁷	Phaseolus	Seeds	119,000			4.6-5.2	S	rt.
Lectin, α -D-galactosyl-binding ⁵⁵⁸	vulgaris Bandeiraea simplicitatia	Seeds	114,000	4	28,500	4.9–5.1	4	n.g.
Leghaemoglobin: Lba. Lbc ⁵⁵⁹	Soybean	Root nodules				4.88 (Lba, high spin) 4.99 (Lba, low spin) 4.50 (Lbc, high spin) 4.64 (Lbc, low spin)	4	C1

7
್ಷ
~
. ~
-
-
•
0
್ಬ
~
_
_
ΕI
щ
щ
щ
BLE
щ
ABLE
BLE

Protein	Source	or.	MW	Subunit	nit	Id	No. of	Temper-
		subcellular location		No.	ММ		iso- enzymes	ature $(^{\circ}C)$
Leghaemoglobin [iron(III) form] ⁵⁶⁰	Soybean	Nodules				4.90 (a)		
						4.62 (C ₁)	∞	C I
						$4.59 (C_2)$		
						4.56 (C ₃) 4.50 (d.)		
						$4.47 (d_2)$		
						4.44 (d ₃)		
Leghaemoglobin ²⁶¹	Phaseolus vulgaris	Root nodules	16,900			4.70 (Lba)	CI	CI
I ancina aminonantidasa540	Dat	Latorography	(Lba)			4.55 (Lbb)		
reacine anniopepinase	Nat	Enterocytes (brush border)				8/.4	-	n.g
Leucyl-tRNA synthetase562	Tetrahymena	Mitochondria	100,000		s.p.c.	6.5	-	2
	pyriformis	Cytoplasm				8.8	_	e.
Ligandin ^{263–263}	Rat	Liver cytosol	46,000	_	22,000	7.3, 8.0, 8.4, 9.5 ⁺ .		
				-	25,000	10.3+	9	n.g.
Light-harvesting pigment protein	Rhodopseudomonas					7.2 ± 0.25)
complex200	sphaeroides strain 2.4.1					7.8 ± 0.2	CI.	n.g.
Lectin, sialic acid-binding (limulin) ⁵⁶⁷	Crab (Limulus polyphemus)	Haemolymph	335,000		19,000	5.0-5.1	33	n. S.
Lipase ⁵⁶⁸	Human	Serum (nancreatic disease)	46,000			6.4, 6.8, 7.4	e	n.g.
Lipase (A, B) ⁵⁶⁹	Pig	Adipose tissue	90.000			5.2 (A)		
)	· ·				5.5 (B)	_	n.g.
Lipase, hormone-sensitive ⁵⁷⁰	Rat	Adipose tissue				6.7	_	4
Lipid-exchange protein ⁵⁷¹	Rat	Hepatoma	11,200		s.p.c.	5.2	-	n.g.
Lipoprotein lipase ⁵⁷²	Pig	Adipose tissue	61,000			4.0	_	n.g.
Lipoprotein lipase ⁵⁷³	Human	Post-henarin	67 000			V .	-	

rt.	n.g.	n.g.	n.g.	9. u	, 4	n.g.	n.g.	n.g.	n.g.	1631
n 9 m 9	4	СI	7	- -	7	_ ^		_	-	bonnite
LDL-I: 4.1 4.5 4.6 4.6 LDL-II: 4.9 5.3 5.35 5.35 5.45 6.1 VLDL-I: 4.2 4.4 4.5 VLDL-II: 4.9 5.0 5.1 5.4 5.45 6.1	5.57-6.03	4.69 (C III) 4.86 (C II)	5.4-6.4	5.5 4.3	6.75, 7.33, 7.80, 8.23, 8.81, 9.17, 9.55	8.3+	4.9 6.85	4.5	5.2(1) 4.5(II)	
				S.D.C.				78,000		
								10		!
				78,000 18,500			100,000	780,000	25,000(I) 60,000(II)	
Serum	Double pre-β-lipo- proteinaemia, primary dys-β- lipoproteinaemia	Blood plasma	Serum	Reticulocytes	Pituitary gland, plasma	Anterior pituitary gland	Tumour cells Leukocytes		Liver	
Human	Human	Human	Human	Rabbit Renilla reniformis	Human	Bovine	Mouse Human	E. coli	Beet	
Lipoproteins: LDL. VLDL (fractions I and II) ⁵⁷⁴	Lipoproteins, VLDL $^{5:5}$	Lipoprotein (apo-CIII, CII) ⁵⁷⁶	Lipoprotein_proteoglycan complex 577	Lipoxygenase ⁵⁷⁸ Luciferin-binding protein ⁵⁷⁹	Luteinizing hormone ⁵⁸⁰	Lutropin ⁵⁸¹	Lymphocyte activating factor ⁵⁸²	Lysine decarboxylase, inducible 583	Lysophospholipases: 1, 11-5-	

(Continued on p. 152)

TABLE I (continued)

IABLE I (continued)								132
Protein	Source	Organ and/or	MW	Subunit	it	Id	No. of	Temper-
		subcentular location		No.	MW		iso- enzymes	ature (^C)
Lysozyme ⁵⁸⁵	Ceratitis	Eggs	23,200		s.p.c.	11 <	-	n.g.
23-Macroglobulin ⁵⁸⁶	capitata Human	Plasma				5.3	1	S
22-Macroglobuling Macromomycin ^{588–590}	Human Streptomyces	Serum	12,500		s.p.c.	4.1–4.9 5.4	7	10 n.g.
	macromomy- ceticus		or 16.000)
Malate dehydrogenase ⁵⁹¹	Saccharomyces	Mitochondrial	68,000	CI (34,000	6.8	_	
Malate dehydrogenase ⁴²²	cerevisiae Drosophila	Cytoplasmic Cytoplasmic	75,000	r I	37,500	6.75-7.1		4 ,
Malate dehydrogenase	Cestoda (Hymenolepis diminuta)	Cycopiasinic				7.45	- -	ப் ப ஜ் ஜ்
Malate dehydrogenase ⁵⁹²	Rat	Liver				6.3	_	r.t
Malate dehydrogenase (MOR-2-AB) ⁵⁹³	Bovine	Mitochondrial	70,000	C1	35,000	8.0-8.5	· C1	n.g.
Malic enzyme ⁵⁹⁴	Cherry	Fruits	180.000			46	-	10
Malonyl-CoA decarboxylase595	Mycobacterium tuberculosis		44,000			6.7		n.g.
Mammary stimulating factor (MSF) ⁵⁹⁶	Mouse	Serum	10,200			5.7	_ ^	n.g.
2-Mannosidase ²¹	Human	Leukocytes Fibroblasts Amniotic fluid				5.4 ⁺ , 6.7 6.3 4.1 5.35 ⁺ 6.35 ⁺	CI - W	4
z-Mannosidase ²⁰ z-Mannosidase ⁵⁹⁷	Human	Liver Dlomo from				4.5)	n.g.
z-D-Mannosidase ⁵⁹⁸	Rat	mannosidosis Liver, Golgi	300,000		75.000	9.0, 5.9 . 7.0 . 7.9	4	n.g.
z-Mannosidase I. 11 ⁵⁹⁹	Phaseolus	membranes	000 066	r	145,000	5.8	-	n.g.
***	vulgaris		000.	ı	000,011	6.1(II)	-	n.g.
β-D-Mannosidase ⁶⁰⁰	Aspergillus niger		130,000			4.7	-	n.g.

Melanocyte-stimulating hormone	Bovine	Kidney	300,000	5	56,000	4.1	-	n.g.	
(MSH) release-inhibiting factor	:					11 (1)	•		
Mercaptoethanol-releasing factor	Human	Serum				4.65, 4.85	: 1	5	
Metalloproteins: Zn/Cd and	Rainbow trout	Liver, kidney, gills,				4.8 + . 5.3 + . 5.6 +	4	n.g.	
Zn, Hg°03		gul				6.3			
Metalloprotein ⁶⁰⁴	Теа	Leaves				9.6-, 8.7, 8.4	c	4	
Metallothionein ⁶⁰⁵	Mouse	Liver				4.0 + . 6.0 +	c i	n.g.	
Methionyl-tRNA deacylase 606	Human	HeLa cells	80,000	СI	40,000	9.0	_	n.g.	
Methylase EcoRI607	E. coli		39,000		s.p.c.	8.7-	<u> </u>	n.g.	
Methyltransferase, cytochrome									
c-specific protein-lysine608	Neurospora crassa		120,000			4.8	_	n.g.	
Metridiolysin ⁶⁰⁹	Sea anemone (Metridium senile)		80,000			5.0	-	n.g.	
2,-Microglobulin ⁶¹⁰	Guinea pig, human	Urine, sera	25.500		s.p.c.	4.3-4.8		n.g	
β Microglobulin ⁶¹¹	Guinea pig	Urine	11,500			9.9	_	n.g.	
β Microglobulin ⁶¹²	Human	Urine from normal							
		and renal trans-	12,000			5.3, 5.7*	c i	n.g.	
		plantation subjects							
β ,-Microglobulin ⁶¹³	Human	Urine				5.75*, 6.0	c i	n.g.	
β Microglobulin-like protein ⁶¹⁴	Chicken	Sera			11.400	5.0+, 6.0	c i	n.g.	
α ,-Microglycoprotein ⁶¹⁵	Human	Urine from			27,000	4.45+, 4.7+, 4.85+,	4	9.	
		leukaemia				0.9			
Migration inhibition factor ⁶¹⁶	Mice	Lymph node							
		lymphocytes	50,000-			6.45	_	n.g.	
Migration inhibitory factor:	Guinea pig	Lymph node cells							
3 MIE	D.J.		65 000			3.0-4.5	4-5		
S MIE			25.000-						
			43,000			5.0-5.5	c)		
Mitogenetic factor (MF) ⁶¹⁸	Human	Lymphocytes	25,000			4.8+, 5.8+, 8.0+, 8.3	4	n.g.	
Myelin basic protein ⁶¹⁹	Dog	Spinal cord	18,000			9.5	_	n.9:	
Myoglobin ⁶²⁰	Yellowfin tuna	-	16.200			8.6	_	п 9.	
)	(Thumnus							٠	
	albacares.)								
Myoglobin ^{6.21}	Chicken	Muscle				7.70 *	8	n.g.	
Myoglobin ⁶²²	Penguin	Breast muscle				$8.5^{-}(1), 8.0(11)$			
	•					7.7(III)	ĸ	15	
			CA-Service of the Control of the Con						

(Continued on p. 154)

	(continued)	
,	_	
L	1	
ć	Ω	
-	₹	

				!				:
Protein	Source	Organ and/or	MW.	Subunit	it	Id	No. of	Temper-
		subcellular location	į	No.	Ми.		iso- enzymes	ature (^CC)
Myokinase (MK) ²³³	Human	Skeletal muscle. heart				8.9 (MK-2) 9.8 (MK-1)	(c)	8 +
Myosin, subfragment-1623	Pig	Cardiac muscle	119,000			6.45, 6.70	c)	4
Myotoxin ⁶²⁴	Prairie rattlesnake		4.100			9.6	-	n.g.
Myrosinase ^{7–7} NADase (NAD glycohydrolase) ²⁸⁶	Streptococci:		1.20,000			4.9 6.	r I	9
	Group A					8.4, 8.9	cı c	٨
NADH-cytochrome c Reductase ⁶²⁶	Pseudomonas					6.6.	ı	r
	arvilla C-1		38,000		s.p.c.	4.2		n.g.
NADPH-adrenodoxin reductase ⁶²⁷	Bovine	Adrenocortical	51,000			5.4	_	n.g.
		mitochondria						
NADPH-flavin reductase ⁶²⁸	Human	Erythrocytes	22,000		s.p.c.	8.1	_	n.g.
Neocarzinostatin ^{6,29-631}	Streptomyces		10,700		s.p.c.	3.3	-	n.g.
Neocarzinostatin ^{6,3,2}	Carzmostaticus Strentomyces					3 1 3 1 2	,	
	carzinostaticus					0.10.0.0	I	
Nerve growth factor ⁶³³	Bungarus	Venom	21,000	c -1	10,500	ca. 10	_	n.g.
	multicinctus	;						
Nerve growth factor ^{0.3+}	Cobra (Naid naid atra)	Venom	22,000	()	11.000	7.02	_	n.g.
Nerve growth factor ⁶³⁵	Human	Placental tissue	150.000			9.5	_	7.9.
Neuraminidase ^{636,637}	Arthrobacter.		88.000		s.p.c.	5.35-, 5.25-5.70		o.
	Clostridium						κ	n.g.
	perfringens							
Neurocuprein ⁶³⁸	Bovine	White and grey matter	9.500			3.5	_	n.g.
Neurophysin precursor ⁶³⁹	Rat	Brain	~ 18,500			5.1 ⁺ , 5.4 ⁺ , 5.6 ⁻ , 6.1 ⁺ , 6.9	S	n.g.
Neurotoxín: ⁶⁴⁰	Bungarus multicinetus	Venom						
z-Type synaptic neurotoxins #-Type synaptic neurotoxins			8000 21000			9.0-9.2 8.8-9.7	- - ^	n.g.

n. g. 4	n.g.	n.g.	n.9.		n.g	n.g.		4 n.g.	l n.g.	1 4] n.g. 	2 n.g.	3 n.g. 6 n.g.		II. E.
9.69 1 4.0 1	5.0	5.5	3.0		5.2	4.8		4.7 ⁺ , 5.0 ⁺ , 5.25 ⁺ , 5.65 5.05, 5.45		4.09		6.3 4.4 3.	4.7, 5.0	5.64, 5.74, 5.86 5.24, 5.34, 5.44, 5.64, 5.74, 5.86	9.0	4.1
		s.p.c.			56.000 33.000		s.p.c.						30,000	31.000		
					4 ()								4	m		
6600 56.000	340,000	90.000	0009		216,000 66,000	220.000	35.000-		25,000-	41,000		180,000	33,000 120,000	93.000		
Venom Serum	Brain						Adrenal gland		Mycelia				Liver cytosol	Placental erythrocyte	Embryo cells Cytosol, mitochondria,	Cytosol
Pelamis platurus Vipera palaestinae	Gold fish	Clostridium	perfringens Clostridium	perfringens Azotobacter vinelandii		Anabaena cylindrica	Rabbit:	Adult	Aspergillus	oryzae Aspergillus	oryzae Leishmania donovani		Rat	Human	Chick	
Neurotoxin (major toxin) ⁶⁴¹ (anti-)Neurotoxin factor ⁶⁴²	Nicotinic acetylcholine	Nitrate reductase ⁶⁴⁴	Nitrate reductase (ferredoxin) ⁶⁴⁵	Nitrogenase:646	Mo- Fe protein Fe protein	Nitrogenase (Mo Fe protein) ⁶⁴	Norephinephrine N-methyl transferase ^{0.48}		Nuclease S, 649	Nuclease inhibitor ⁶⁵⁰	Nucleosidases. ⁶⁵¹	Pyrimidine ribonucleosidase Purine ribonucleosidase	Purine 2 -deoxyribonucleosidase Nucleoside diphocnhatase ⁶⁵²	Nucleoside phosphorylase ⁶⁵³	Nucleoside phosphotransferase ⁰⁵⁴ : C ⁴	D

	(continued)	
	_ 믹	
	4 BL	
Į	_	

rosomes	Protein	Source	Organ and or	МИ	Subunit	nit	Id	No. of	Temper-
Rat Brain, microsomes 6.4 5.4, 5.62, 5.91, 6.26, 5.591, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.26, 5.91, 6.27, 5.			suocenular location		No.	МИ		ıso- enzymes	ature (C)
Human Placental. 54, 562, 591, 6.26. Squid Eocial uterus. 6.48 8.3, 8.7 2 Loligo vulgaris Eocial uterus. 6.15 1 Cuinea pig Focial uterus. 6.15 1 Mature Uterus.cytosolis: Mature 112,000 3 39,000 7.2 1 Human Liver 114,000 3 39,000 7.2 1 Human Liver 114,000 3 36,500 7.5 1 Reye's syndrome 110,000 3 36,500 7.9 1 Fish Reye's syndrome 110,000 2.4,800 7.0 1 Micohacterium winepingris 100,000 2 30,000 4.7 1 Micohacterium Skeletal muscle 12,000 4.9 1 Rubbit Frog Skeletal muscle 12,000 4.9 1 Randi temporaria 12,000 4.9 4.7 1 Randi temporaria 12,000 1.2 1 Randi temporaria 1.2 1	5-Nucleotidase ⁶⁵⁵	Rat	Brain, microsomes		İ		6.4	-	n.g.
Squid 6.15 2 Lam) cytosol fraction 6.15 1 Guinea pig cytosol fraction 6.3.77.8.0 3 Rat Uterus.cytosols: 6.3.77.8.0 3 Immature Internation 6.3.77.8.0 3 Human Liver 111,000 3 39,000 7.2 Human Liver 114,000 3 36,00 7.2 1 Human Normal liver 110,000 3 36,00 6.8 1 Polysphondylium Reye's syndrome 110,000 3 35.2.382.4.50 1 Polysphondylium Muscle 63,000 6.59 4.35.4.50 1 Polysphondylium Muscle 250,000 24,800 7.0 1 Acutomonas Huorescens Bovine 12,000 4.7 1 Skeletal muscle 12,000 4.9 4.9 1 Frog 12,000 4.9 4.97(Va) 1 Rabbit	s -Nucleotidase ^{oso}	Human	Placental. microsomes				5.4, 5.62, 5.91, 6.26, 6.48	\$	4
Guinea pig Foetal. uterus. 6.15 1 Rat Uterus.cytosols: 5.5.587,6.07. 3 Mature Immature 112,000 3 39,000 7.2 1 Rat Liver 114,000 3 36,500 7.2 1 1 Human Liver 110,000 3 36,500 7.2 1 1 Reye's syndrome Inver 110,000 3 36,500 7.95 1 Reye's syndrome Inver 110,000 3 36,500 7.95 1 Fish Muscle 250,000 24,800 7.0 4,357,4,50 1 Polisybondrium Mycobacterium Mycobacterium 4,7 1 smegmatis Pseudomonas Incomment 4,7 1 Mycobacterium Skeletal muscle 12,000 4,9 4,9 1 Turtle Incomponentium 12,000 4,9 1 4,7 1 Rabbit Fro	Octopine dehydrogenase ⁶⁵⁷ isoenzyme 2	Squid (Loligo vulgaris Lam)					8.3, 8.7	C 1	n.g.
Rat Ulerus.cytosols:	³ H]Oestradiol receptor complex ⁶⁵⁸	Guinea pig	Foetal, uterus, evtosol fraction				6.15	-	n.g.
Rat	³H]Oestradiol-17β receptor ⁶⁵⁹	Rat	Uterus, cytosols: Mature				6.3, 7.7, 8.0 5.5, 5.8 ⁺ , 6.0 ⁺ ,	ε .	4
Human Liver 112,000 3 39,000 7.2 1 Human Liver 114,000 3 38,000 7.2 1 Human Liver 110,000 3 36,500 7.95 1 Reye's syndrome 110,000 3 36,500 7.95 1 Fish Polysphondy/ium Pallidum Pallidu	0999	ı	Immature				6.4, 7.5	'n	
Human Liver 110,000 3 38,000 6.8 1 Human Normal liver 110,000 3 36,500 7.95 1 Ilver Reye's syndrome 110,000 3 36,500 7.95 1 Eish Muscle	Junithine transcarbamylase 660	Rat	Liver	112,000	m	39,000	7.2	-	n.g.
Reye's syndrome 100,000 2,50,000 1,5	Jrnithine transcarbamylase**** Jrnithine transcarbamylase ⁶⁶²	Human Human	Liver Normal liver	114,000	m m	38,000	6.8 7.05		n.g.
Chicken Chicken Chicken Fish Muscle Polysphondylium ylase ^{6,6,6} Mycobacterium ylase ^{6,6,6} Ayacterium ylase ^{6,6,6} Hybes Rabbit Frog Rabbit Kanta temporaria Kanta temporaria Kanta temporaria Kanta temporaria			Reye's syndrome liver		ì		8.05		4
ing Polysphondylium Auscle 63,000 6.59 1 pallidum ylase ⁶⁶⁶ Mycobacterium smegmatis Pseudomonas fluorescens Hyoes Bovine Skeletal muscle 12,000 4.7 Turtle 12,000 4.9 Kabbit Kabbit Kabit Kanna temporaria skeletal muscle 12,000 4.9 Frog Skeletal muscle 12,000 4.9	Jvomucoid ⁶⁶³	Chicken					3.52, 3.82°, 4.0, 4.15° 4.35°, 4.50		n.g.
ing Polysphondylium 250,000 24,800 7.0 I pullidum ylase ⁶⁶⁶ Mycobacterium 4.7 I 1 Shedenonas Hoes Bovine Skeletal muscle 12,000 4.4 Chicken 12,000 Rabbit Frog Skeletal muscle 12,000 4.9 I 12,000 Frog Skeletal muscle 12,000 4.9 I 12,000 Frog Skeletal muscle 12,000 4.9 I 12,000 I 12,)xaloacetate decarboxylase664	Fish	Muscle			63.000	6.59	_	ŋ.
ylase ⁶⁶⁶ Aycobacterium 4.7 1 smegmatis 100,000 2 50,000 4.7 1 Hyoes Bovine Skeletal muscle 12,000 4.4 1 Turtle 12,000 4.9 1 Chicken 12,000 4.9 1 Frog Skeletal muscle 4.9 2 Frog Kanna temporaria) 4.75(IVb) 2	allidin (carbohydrate-binding protein) ⁶⁶⁵	Polysphondylium pallidum		250,000		24,800	7.0	_	n.g.
P.seudomonas 100,000 2 50,000 4.7 1	almityl-CoA-ACP-transacylase ⁶⁶⁶	Mycobacterium smegmatis					4.7	_	n.g.
H) ^{oos} Bovine Skeletal muscle 12,000 4.4 Turtle 12,000 4.9 1 Rabbit 12,000 4.9 Frog Skeletal muscle 12,000 4.9 **Rabbit 12,000 4.9	antothenase ⁶⁶ ~	Pseudomonas fluorescens		100,000	()	50,000	4.7	-	10
Turtle 12,000 4.4 Chicken 12,000 4.9 Rabbit 12,000 4.9 Frog 4.97(IVa) 2 (Runa temporaria) 4.75(IVb)	arathyroid hormone (BPTH) ⁶⁶⁸ arvalbumin ⁶⁶⁹	Bovine	Skeletal muscle				8.73	_	n.g.
Frog Skeletal muscle 2.75(IVa) 4.97(IVa) 2.75(IVb)		Turtle Chicken Pobit		12,000			4.4 6.4 6.4	-	n.g.
	arvalbumin (IVa, IVb) ⁶⁷⁰	Frog (Rana temporaria)	Skeletal muscle	000.			4.9 4.97(IVa) 4.75(IVb)	сı	n.g.

158	
Ď.	
ОП	
(Continued	

Parvalbumins ⁶⁷¹	Fish:	White muscle						
	Haddock III		11,348			4.20		
	Whiting III,		11,340			4.44		
	Cod III		11,211			4.1		
	Haddock II		11,904			4.35	_	n.g.
	Cod II		11,513			4.4		
Pectinase ⁶⁷²	Fungi		33,000			4.5-7	15	n.g.
	(Aspergillus niger)							
Pectolytic enzyme-	Aspergillus					3.2, 3.7, 4.1	ĸ	n.g.
stimulating factor ⁶⁷³	japonicus							
P-enolpyruvate carboxykinase	Rat	Liver (cytosol)	82,000		23,600	7.5-, 7.7+, 7.9+,	4	5
ferroactivator ⁶⁷⁴						8.4		
Pepsin ⁶⁻⁵	Bovine					$2.80^+, 2.90^+, 2.99^+, 3.09$	4	20
	Pig					3.027, 3.2	c-I	
	Chicken					4.03-	_ ^	
Peptidase ⁶⁷⁶	Human	Liver	130,000			5.6	_	n.g.
Peroxidase ⁶ :	Melon:)
S,	Infected					3.9+, 4.9, 8.1, 10.9+	4	
•	Not infected					10.0		n.g.
S	Infected					$3.6, 9.2^{+}, 9.9^{+}, 11.0^{+}$	4	ı
,	Not infected					9.2	-	
Peroxidase ⁶⁵⁸	Phellinus igniarus		39,000			2.85 ⁺	c)	n.g.
Peroxidase ⁶⁷⁹	Soybean					$3.2^{+}, 4.2^{+}, 4.5^{+},$		
						5.0+, 7.1+	13	n.g.
Peroxidase ⁶⁸⁰	Horseradish					6.5, 7.1	c)	n.g.
Phenol sulphotransferase 1681	Rat	Liver	65,000	c i	32,500	8.05	_	n.g.
Phenylalanine hydroxylase ⁶⁸²	Сһготорастегішт		32,000		s.p.c.	4.5		n.g.
	violaceum							
Phenylalanine hydroxylase ⁶⁸³	Rat	Hepatoma				5.2	_	
		Liver				5.2+, 5.3+, 5.6	3	r.t.
		Kidney				5.35	-	
Phenylalanine ammonia-lyase ⁶⁸⁴ Phenylalanine(histidine):	Mustard	Cotyledons				5.5†	^	n.g.
pyruvate aminotransferase ⁶⁸⁵	Mouse	Liver,	80,000	c1	40,000	$5.6, 6.0^+, 6.2^+$.	(
089	Danilline busing	mitochondria				7.0 . 0.7	Λ -	n go -
r nenylalanınc racemase	Dacuus orevis					0.1	-	1
							,	160

TABLE I (continued)

Protein	Source	Organ and/or subcellular location	MW	Subunit No.	it MW	Iq	No. of iso-enzymes	Temper- ature	
Phosphatidase C ⁶⁸⁷ Phosphatidase C ⁶⁸⁷ Protein ⁶⁸⁸ protein ⁶⁸⁸	Erwinia carotovora Bovine	Brain, liver. heart				7.5	()	n n n n n n n n n n n n n n n n n n n	
Phosphatdylnositol exchange protein ^{e88} Phosphodiesterase ⁸⁹ Phosphodiesterase ⁸⁰ Phosphodiesterase In ⁹⁰ Phosphodiesterase In ⁹⁰	Bovine Tobacco Mouse Rat	Brain, liver, heart Cell culture Parotid Intestine	160,000		72,000	5.2 ⁺ , 5.5 8.8 5.0 ⁺ , 5.25 ⁺ , 5.4, 5.65 ⁺ 3.4, 4.2-4.5, 7.2	(1-1-		
monoesterase ^{691,692}	Fusarium		106,000			5.9, 6.2+, 6.3+, 6.6+	4	n.g.	
Phosphofructokinase ⁶⁹³	Lactobacillus acidophilus, L. plantarum		154.000	4	38.500	4.9–5.1		n sis	
Phosphoglucomutase34	Human	Erythrocytes				5.05, 5.19, 5.45, 5.56.	٢	<u> </u>	
Phosphoglucose isomerase ⁶⁹⁴	Schistosoma	E 21 - 12 - 12 - 12 - 12 - 12 - 12 - 12	131 000	,	005 57	6.5*, 6.8*, 7.0*, 7.4*	>15	л.	
riospinglacose isoliici ase Wild type Singh variant	Hullall	E. y uni ocy tes	000,151	ì	005,500	9.25	- "	n.g	
Phosphoglucose isomerase ^{4,2,2} D-3-Phosphoglycerate dehydro- genase ^{6,6,6,6,7}	<i>Drosophila</i> Chicken	Liver	165.000	4	41.000	6.3 8.95	. — —	ப் ப வ் வ்	. 3. 101
3-Phosphoglycerate kinase ⁶⁹³ Phosphoglycerate kinase ⁶⁹³ Place 1	Yeast Yeast	; - - -	47.000			7.01 6.94		n.g. 4	
rhosphogyčerac khase Phosphoglycerac mutase ⁷⁰¹ Monophosphoglycerate Bishosphoglycerate	Human Human	Erythrocytes Erythrocytes	57.000			8.7.8 6.2 6.2		n.g.	., 0. 10
Phosphoglycerate mutase ¹⁶⁶ Phosphoglycerate mutase ⁷⁰²	Human Bacillus subtilis	Red cells	75,000			4.9 5.6, 5.9, 6.2 ⁺ 5.6	- ĸ -	20 n.g.	DOK.
Phosphoglyceromutase ¹⁰³ Phosphoglycolate phosphatase ⁷⁰³ O-Phosphohydroxylysine phospho- lyase ⁷⁰⁴	Human Tobacco Rat	Erythrocytes Leaves Liver	86,300 140,000	4	20,500	5.1 5.5 5.5		55. n.g.	13. L-13

Phospholipase A ₂ ⁷⁰⁵	Horse	Pancreas,			5.5	_	n.g.
Phospholipase A ₂ ⁷⁰⁶ Phospholipase A (detergent-	Vipera berus E. coli K 12	pancieane juice Venom	13,400	s.p.c. 21.000	9. <u>2</u> 5.0		5 n.g.
resistant) Phospholipase D ⁷⁰⁸	Bacillus subtilis		21,500	s.p.c.	Ç.4	_	n.g.
Phospholipase D ⁷⁰⁹	Streptomyces chromofuscus		50,000	s.p.c.	5.1	-	n.g.
Phospholipase D ⁷¹⁰ Phospholipid exchange protein ⁷¹¹	Peanut Rat	Seeds Liver, cytosol	200,000	48,500 18,700	4.65 4.2-5.6, 8.3-9.0 3.9.4.7.4.55-5.0-	\ - 0 4	வ் ப் ப
Phospholipid exchange protein Phospholipid exchange protein Phospholipid transfer protein	Bovine Bovine Bovine	Heart Brain cortex	23,500 29,900(1) 30,000(1)		5.3. 5.6 5.2. (1) 5.5. (1)	- cı —	i di di
(1. 11) Phospholipid transfer protein [18] Phosphoprotein [10]	Rat Rat	Liver Incisor dentin	13,000	s.p.c.	8.8 1.1		n.g.
Phosphorylase ⁷¹⁷ Phosphorylase phosphatase ⁷¹⁸	Swine Rabbit	Adipose tissue Muscle		90.000 33.000	6.3 5.0		п. 9. п. 9.
Phosphorylated (1) and dephosphorylated (2) cAMPhinding proteins 19	Bovine	Cardiac muscle	56.000(1) 54.000(2)		5.35(1) 5.40(2)	- -	n ë
Phosphotransferase (GTP-AMP) ⁷²⁰	Beef	Heart, mitochondria	26,000		8.6	_	n.g
R-Phycocyanin ⁷²¹	Red alga (Porphyridium cruentum)		103,000	18,200 (z) 20,500	5.2 (a) (blue) 5.3 (β) (purple)	()	л 9.
Phycoerythrin-545 ⁷²²	Cryptomonas maculata		44.500	9.900 (α) $15,700$ (β)	4.84, 5.05 -, 7.83	m	n g
B Phycoerythrin 23	Porphyridium			}	4.3+, 4.6+, 5.3+	9 <	n.g.
Phytohaemagglutinin ²²⁴	Sunn hemp	Seed	120.000		8.8	_	n.g.
Phytohaemagglutinin ⁻²⁵	Pea (Pisum sativum)				5.90+, 6.35, 7.00+	æ	n.g.
		A SALAN OF STREET, STR))	(Continued on n 160)	1091 11

(pan
I (contin
BLE
TAB

IABLE 1 (continued)					i			
Protein	Source	Organ and/or	MW	Subunit	1	Id	No. of	Temper- ature
		subvellular location		No.	МИ	!	enzymes	(C,
——————————————————————————————————————	Bacteroides nodosus		19,000			4.5	- '	4
Plasminogen (F-1, F-2) ⁷²⁷	Rabbit	Plasma				8.51, 8.91 °, 9.14 ° (F-1)	٠,	ć
						8.64, 8.97*, 9.19*	ю	3
	:	D				(F-2) 6.40°, 6.55°, 6.70°	9	n.g.
Plasminogen 28	Human Human	Piasma Psoriatic scale				6.5–6.6		,
Piasminogen activatoi		extract				5.4-6.2	,	Ċ
						4.4 + 6.0	η - \ .	۱ ،
Plasminogen activator 30	Human	Vascular vessel	70,000		s.p.c.	× × ×	 ^	i e
Plasminogen activator 31	Human	Pancreatic	55,000			%. / 	-	:: :i:
Plasminostreptin. proteinase	Streptomyces		25.000	r١	12.500	6.3	-	Š
inhibitor ⁷³² Platelet adhesiveness inhibitor ⁵³³	antifibrinolyticus Human	Plasma	150,000		31.000	5.1	_	n. eg
# S	11	Distalate			0006	8.0	_	n.g.
	Fluman	Cansid				$8.1(VP_1), 6.4$		
Poliovirus polypepudes	601100100 1					(VP_2) , 6.0 (VP_3) , 7.3 (VP_4)	4	n.g.
Polyamine oxidase ⁷³⁶	Rat	Liver	000.09		s.p.c.	4.9	- -	4
endo-Polygalacturonate trans-	Erwinia					6.9	-	
eliminase**** Poly(A)polymerase ⁻³ *	Hamster	Fibroblasts	145.000			9~	C)	n.g.
			(AII) 155,000 (AII)					
Poly(ADP-ribose)nolymerase ⁷³⁸	Human	Ehrlich ascites	(am)		130,000	9.40	1	n.g.
		tumour cells	:			7	_	4
Poly(ADP-ribose)polymerase ⁷³⁹ Polynucleotide phosphorylase ⁷⁴⁰	Pig Thermus thermonhilus	Thymus nuclei	60.000 190.000		s.p.c. 92,000 73,000	8.4 4.3 ⁺ , 4.7	- 73	. ig.
	lamalum			-	35,000			

Polypeptide, organic solvent soluble ⁷⁴¹	Rhodospirillum rubrum	Photoreceptor complexes.			12,000	7.10	_	n.g.
Polypeptide p30 ⁻⁴²	Mouse	chromatophores C-type endogenous viruses:						
		Class I				6.1 ⁺ , 5.6, 6.6	ю	
		Class II				5.7	_	
		Class III:						
		NIH Swiss				5.5	_	
		ATS				5.5	_	
		NZB^{124}				5.5*, 6.1	c)	n.g.
Polyphenoloxidase ⁻⁴³	Mushroom					4.4, 4.5, 4.55 (high)		
						4.3, 4.65, 4.7, 4.75.		
						4.9 (medium) 5.05.		
						5.9 (low)	10	
	Potato					4.95, 5.05, 5.15 (high)		4
						4.9, 5.4, 5.7 (medium)		
						5.9, 6.0, 6.2, 6.8 (low)	10	
Polyprotein precursor to cyto- chrome c oxidase (P) ⁷⁴⁴	Saccharomyces	Postmitochondrial supernatant			55.000	5.9	_	n.g.
Poly(vinyl alcohol)-degrading	Pseudomonas		30,000			10.3	_	n.g.
enzyme · · ·	~ 0							
Porins	Salmonella	Membrane						
	5 pris marram. SH 5551		39 800			X 4		
	SH 6377		39,300			4.77	_	n.g.
	SH 6017		38,000			4.85)
Postproline-cleaving enzyme ⁷⁴	Lamb	Kidney			58,000	4.8	_	n.g.
Postproline dipeptidyl amino- peptidase(dipeptidyl amino-	Lamb	Kidney	230,000	c 1	115,000	4.9		n.g.
peptidase IV) ⁷⁴⁸								
Prenyltransferase - 49	Chicken	Liver	86,000	r 1	43.000	5.72	_	n.g.
Progesterone-binding protein 30	Human	Mammary cytosol				5.0+, 6.5	c I	n.g.
Progesterone receptor 31, 32	Chick	Oviduct (cytosol)				6.0(A), 7.0(B)	c)	n.g.
Progestin receptor?3	Human	Endometrial carcinoma				5.0+, 6.3	cı.	50

(Continued on p. 162)

ABLE I (Committed	מווווווווווווווווווווווווווווווווווווו	
	1	_	1	
		7	1	

								ı
Protein	Source	Organ and or	MW	Subunit		Id	No. of	Temper-
		location		No. M	MW		enzymes	(J.)
Prolactin ^{734,755}	Human	Amniotic fluid	27,000(c) 36,000 (A. B. D)			5.3, 5.7, 6.2	3	n.g.
Prolactin*45	Monkey Human	Pituitary Pituitary				5.78, 6.0 ⁺ , 6.78 5.45, 5.82, 5.93 ⁺	m m	n.g.
Prolyl dipeptidase 350	Bovine	Kidney	100,000		9	4.25	- (n.g.
rrolyi nydroxylase	Cnick	Embryos	748,000		(x) (00) (00)	4.7, 5.3(subunits p <i>t</i>)	⁵ 1	n 20
Prostaglandin synthetase	Sheep	Vesticular gland	85,000		(β)	6.6-7.3		n. ë.
Prostatic-binding protein 759	Rat	Ventral prostate	51,000	_	19,000 (E)	4.6(F)		
				_	20,000 (S)	4.9(S)	c)	n.g.
Protease ⁶⁸⁷	Erwinia carotovora					8.3	-	n.g.
Protease of	Staphy lococcus aureus				39,000	4.6	-	n.g.
Protease ⁶¹	A. oryzae B. subtilis				22,000	5.7 ⁺ (7.0–10.0), 8.2 ⁺	15	n.g.
Protease ⁷⁶²	Lupinus augusti- folius	Seeds	27,500	·s	s.p.c.	0.6	-	n.g.
Protease 63	Agave americana variegata	Leaves	57,000			5.25	-	S
Protease inhibitor: I1, I2 64	Rat	Skin	$74,000(I_1)$ $13,400(I_2)$			4.6(I ₁) 4.9(I ₂)	C.F.	п.g.
Protease inhibitor, I-V ⁻⁶⁵ Protease trypsin-like ⁷⁶⁶	Soybean Streptomyces griseus	Seeds	7000-8000			4.2-6.2 6.5, 7.5, 9.2+	νm	ர். ஜ். பு
Protein (basic) ⁻⁶⁻	Rat	Stratum corneum, epidermis			50,000	9.38, 9.60, 10.5+	m	n.g.
Protein (gene 32) 68	Bacteriophage T4	4			35,000	5.0°, 4.95	•1	n.g.

164)
D.
on
red
tim
on

Protein (nuclear) 009	Physarum polycephalum	Nuclei		34,000	8.35	-	n.e
Proteins:	Spinacia	Leaves, chloroplast					
Photosystem I				68,000	>5.6		
				33,000-	>5.9-6.8		8
Photosystem II ⁰				33,000	>5.3, 6.3		
Protein A 1	Staphylococcus		41.000		5.1	_	n.g.
Protein-arginine methyl-transferase 22	Calf	Brain			5.1	-	n.g.
Proteinase A inhibitors (I ^A .I ^A) ⁷⁻³	Yeast		23,000 4	0009	5.7^{+} , 6.0, 6.5 (1_{2}^{A}) 5.6, 5.99, 6.3 $^{+}$ (1_{2}^{A})	ιυ	n.g.
Proteinase inhibitors 7.74	Stephanurus dentatus	Excretory gland cells		9500	6.45(1) 6.20(11) 5.34(11)	n 60	n.g.
Proteinase inhibitor 5 Proteinase (metallo, extra- cellular, I-IV) - 26	Horse Chromobacterium livium (NCIB 10926)	Leukocyte, cytosol	75,000(1) 72,000(11) 67,000(111)	35.200	5.38 5.38 5.38 7.15(1) 6.15(11) 4.35(1V)	- 4	п ээ
Protein, bactericidal and membrane-active???	Human	Granules of polymorphonuclear	93,000	s.p.c.	8.6	-	n.g.
Protein. fraction 1: Large subunits (L 1, 2, 3) Small subunits (S 1, 2) ⁷⁷⁸	Товаесо		\$6,000 (L1, L2, L3) 12,500 (S1, S2)		6.36(L1), 6.30(L2) 6.23(L3) 5.50(S1), 5.44(S2)	S	n. 9.
				12/2/2019			

TABLE I (continued)

Protein	Source	Organ and/or subcellular location	MW.	Subunit	Id	No. of iso-	Temper- ature
Protein kinase ⁷⁷⁹	Rat	Liver: microsomes MI MII MIII MIII Cytosol: CIa CIIa CIIa CIII			No cAMP: 8.05 5.50 4.80 4.80 6.05 5.50 8.10, 7.35 No cAMP: 8.10 5.10 5.45 4.90 + cAMP: 8.10 5.45 8.15 8.15 8.15		0
Protein kinase, cAMP-dependent ⁸⁰ Protein kinase, cAMP-dependent: ⁸¹ Holoenzyme cAMP-independent catalvtic	Bovine Bovine	CIII Heart Cerebral cortex	39,000	40 000	8.15, 7.35 7.01*, 7.48*, 7.78* 5.5 7.0	\ \ \	й. 8.
subunit cAMP-binding regulatory subunit Protein kinase. cAMP dependent	Calf	Ovarian cytosols		52,000	5.0(1) 4.9–5.0(II)	-	n.g. n.g.
Protein kinase, cAMP dependent ⁷⁸³ Protein kinase, cAMP dependent ⁷⁸⁴	Rabbit Rabbit	Skletal muscle Skeletal muscle	11,300 226,000	180,000 48,000 42,000	5.3(V) 4.24 5.27	- -	n.g. r.t.

Protein kinase, cAMP dependent ⁷⁸⁵ Protein kinase, cGMP-dependent ⁷⁸⁶ Protein kinase cAMP dependent ⁵⁶ Protein kinase (cGMP-dependent) stimulatory modulator ⁸⁷	Yeast Bovine Mouse Dog	Lung Parotid Heart	150.000	c1 c1	74.000	7.7 5.4 5.00, 5.15, 5.32 4.0		
Protein kinase, nucleoside- dependent 788	Trypanosoma		000'06			4.85	1	c)
Protein, low-sulphur ⁷⁸⁹	Sheep	Wool				5.35(5), 5.05(7a), 5.05(7b), 4.9(7c), 5.08(a), 4.8(8b)	∞	20
Protein M ⁻⁹⁰	Streptococci		70,000	c i	36,000	4.5 ⁺ , 4.7 5.7 ₋ 5.9	~	5
Protein. mRNP-48 ⁷⁹¹ Protein S (vitamin K-dependent) ⁷⁹²	Rabbit Bovine Human	Reticulocytes Plasma Plasma	64,000		48,000 s.p.c. s.p.c.	5.0 5.4-5.9 5.0-5.5		n.g. ig. g.
Protein, stimulating aerobic	Pig	Kidnev	000 22		ŝ	\$ 10D 4 90D	r	t g
Protein. structural (major component) ⁷⁹⁴	Giant land snail (Strophocheilus	Calcified eggs			53,000	6.9	ı –	i ii ii oi
Proteins, structural: 795	oblongus) Western equine encephalitis							
E ₁ protein Nucleocapsid protein						6.5 4.0		n.g.
Protein, TCDD receptor 796	Rat	Liver, cytosol Serum				5.15–5.25 5.7–5.8		0-3
Proteolipid apoprotein ^{797,798} Pseudocholinesterase ⁹⁹	Bovine Human	Brain, white matter Sera Genetic variant				8.9–9.2 3.95 4.4.4.9		25 n.g.
Pteroyl-7-oligoglutamyl endo-	Chicken	Intestine	80,000			4.8	-	n.g.
Purine nucleoside phosphorylase ⁸⁰¹	Human	Erythrocytes	000'06	6	30,000	5.85 ⁺ , 5.92 ⁺ , 6.02 ⁺ , 6.08 ⁺ , 6.14, 6.25	9	
	Rat Bovine	Erythrocytes Spleen	90,000	ю.	30,000	5.6. 5.7 5.4	e1 -	n.g.

TABLE I (continued)

Protein	Source	/or	MW	Subunit	Į,	Id	No. of	Temper-
		subcellular location		No.	MW		iso- enzymes	ature (°C)
Purine nucleoside phos- phorylase ^{802,803}	Human	Erythrocytes	93,000	3	30,000	6.20 ⁺ , 6.29 ⁺ , 6.41 ⁺ , 6.63 ⁺ , 6.83, 6.95	9	n.g.
$Purine\ phosphoribosyltransferase^{804}$	Human: Gilles de la Tourette	Erythrocytes				(submin pro) 5.6, 5.8 ⁺ , 6.0 ⁺ , 6.1 ⁺ , 6.2	\$	n.g.
Pyrophosphatase (inorganic) ⁸⁰⁵	synctonie Thiobacillus thiooxidans		88,000	4	22,000	5.05	-	n.g.
Pyrophosphatase (inorganic) 806 Pyrrolidonecarboxylate peptidase ⁸⁰⁷	Brewer's yeast Klebsiella cloacae	Hyaloplasm	74,000		000,09	5.0	3	n.g. 2.5
Pyruvate kinase ⁸⁰⁸	Neurospora					6.40(free)	_	n.g.
Pyruvate kinase ⁸⁰⁹ Pyruvate kinase ⁸¹⁰ Pyruvate kinase ⁸¹¹	Yeast Chicken Turtle	Skeletal muscle Heart	220,000 212,000	4 4	57,000 53,000	6.05 6.05 6.05	- 61 -	9. 9. 9. 9. 9. 9.
Pyruvate kinase ⁸¹² Pyruvate kinase ⁸¹³	Rat Rat	Liver Liver				5.2, 5.3, 5.9 ⁺ 6.3, 6.6 ⁺ (subtanit p/s)	ю сı	n. g. ri g. rig.
Pyruvate kinase ⁸¹⁴	Rat	Muscle: foetal				5.2 ⁺ , 6.0, 6.8, 7.3	4 -	
Pyruvate kinase (type A) ⁸¹⁵ Pyruvate kinase (type L) ⁸¹⁶ Dyruvate oxidase ⁸¹⁷	Pig Human E coli	Kidney	249,000 240,000	4 4 4	60,000	5.6 5.85 ⁺ , 6.28 5.6	- 0 -	n.g. 0
PZ-peptidase ⁸¹⁸ Ouinate (shikimate)dehvdrogenase ⁸¹⁹		Embryos	77,000	٠	S D.C.	5.0 4.79 ⁺ , 4.88 ⁺ , 5.09 ⁺	v	
Quinolinic acid phosphoribosyl- transferase ⁸²⁰		Endosperm	70,000	¢1	35,000	5.9	-	r.t.
Receptor, cholinergic ⁸²¹	Housefly	Heads, central nervous system	350,000		82,000 90,000	4.8 ⁺ , 6.8, 9.4	3	n.g.

Reductase, -azo and -nitro ⁸²²	Ascaris lumbri- coides var. suum					4.75	_	
Renin ⁸²³	Moniezia expansa Human	Juxtaglomerular	40,000	_	20,000	4.50 4.95, 5.10, 5.35, 5.55,	_	n.g.
		cell tumour		_	25,000	5.70	5	n.g.
Renin ⁸²⁴	Human	Plasma				4.79, 4.88, 4.94, 5.02	4	n.g.
Renin ⁸²⁵	Hog	Kidney	40,000			4.70, 4.95+	c -1	n.g.
Renin ^{826,827}	Hog	Kidney	36,400			5.2	-	4
Renin ⁸²⁸	Rabbit	Kidney	37,000			5.1, 5.3 ⁺ , 5.42 ⁺ , 5.5 ⁺	4	r.t.
Rennetts ^{829.830}	Calf	Stomach				4.70+	-	
	Endothia parasitica					4.89+	-	-
	Mucor miehei					4.20+	_ ^	1:1
	Mucor pusillus Lindt					3.95+	_ ^	
Retinol binding protein ⁸³¹	Rat	Testis, cytosol	14,600			4.8, 4.9	N	n.g.
Rh-antigen ⁸³² :	Human	Erythrocyte						
Ļ		membrane	000 03			1		
ı			-000,000			/•/		
			100,000					
C			-000,00			7.6		
			100,000					
v			20,000-			7.5		
			30,000				_	n.g.
ပ			20,000-			7.5		
			30,000					
D			-000,01			7.3		
			30,000					
Rh(e) antigen ⁸³³	Human	Erythrocyte						
		membrane	20,000-			5.3, 6.4, 7.2 +, 7.5 +,		
			30,000			8.2	S	n.g.
Rhodopsin ^{834,835}	Bovine	Retina				5.07+, 5.36+, 5.95	ĸ	n.g.
Rhodpsin ⁸³⁶	Bovine	Retina				$4.5, 4.7, 4.9, 5.2, 6.0^{+}$	5	n.g.
Riboadenylate transferase ⁸³⁷	Calf	Thymus	62,000		s.p.c.	7.4	_	n.g.
Ribonuclease ^{838,839}	Human	Urine	21,500			4.1	_	n.g.
Ribonuclease ⁸⁴⁰ :	Vicia faba	Root cells				3 3		
A ₁ ,A ₂ ,A ₃					,	~4+	3	\$
C_1,C_2					•	+8 ~	C)	i i

(Continued on p. 168)

TABLE I (continued)

Protein	Source	Organ and/or subcellular location	MW	Subumit No.	ii MW	Id	No. of iso-enzymes	Temper- ature
Ribonuclease ⁸⁴¹	Plant	Petals		•		4.95 -, 5.2, 5.39	ا ا	n.g.
Ribonuclease (l. 11) ⁸⁴²	Physarum	Exoplasmodial	25,000			4.3(1), 3.8(11)	-	n.g
Ribonuclease inhibitor ⁸⁴³	<i>polycephalum</i> Human	Placenta	50,000			4.8	-	4-0
Ribulose 1.5-diphosphate	Nicotiana	Leaves				6.0, 6.5+	c1	n.g.
carboxylase ⁸⁴⁴ mRNA-binding protein ⁸⁴⁵	<i>tabacum</i> Rabbit	Reticulocyte poly-			39.000	(subunit p <i>f</i> s) 6.35	1	n.g.
mRNA-binding protein ⁸⁴⁶	Rabbit	Reticulocyte poly- ribosomes	120,000		66,000	5.35	_	n.g.
tRNA ligase: A. B ⁸⁴⁷	Wheat germ		105,000(A) 70,000(B)		s.p.c.	6.0(A) 5.85(B)		n.g.
tRNA nucleotidyltransferase ⁸⁴⁸ RNA polymerases (A.B) ⁸⁴⁹	E. coli Yeast				\$2,000 27,000	5.85	1	n.g.
					23,000 14,500	4.5	т	n.g
	-		•			(syd nung by s)		
Rubredoxin°30	Pseudomonas oleovorans		19,000			c <u>.</u>	-	n.g.
Saccharopine dehydrogenase ⁸⁵¹	Baker's yeast	÷.	39,000		s.p.c.	10.1		0
Serine protease ⁸⁵³	C nicken Human	Intestine Hepatoma 8999 (mitochondria)	24.000			4.5 10.6	-	gi gi gi gi
;		(introcuonaria) fraction)						
Serine proteinase ⁸⁵⁴	Phycomyces blake- sleeanus		18,000 22,000 60,000			7.6 5.1 4.4	к	n.g
Serine proteinase inhibitor854	Phycomyces blake- sleeanus		10,000(1)			4.50 4.95	e)	n.g.
Serine-pyruvate amino- transferase ⁸⁵⁵	Mouse Dog Cat	Liver Liver Liver	80,000	רו רו רו	40,000 40,000 40,000	6.1, 6.3, 6.6 ⁺ , 6.9 ⁺ 6.6, 6.9 ⁺ 6.6, 6.9 ⁺	4 (1 (1	4

Sialyltransferase ⁸⁵⁰ Skeletin ^{857,858}	Human Cow	Liver Heart purkinje fibros	55,000		5.0–8.6 6.35	» –	0-2 n.g.
Somatic extracts of adult worms (SEAW)859	Dipetalonema vitae				3.3 ⁺ , 4.0 ⁺ , 4.3 ⁺ , 4.4 ⁺ , 5.2 ⁺	6	n.g.
Somatic extracts microfilariae (SEM)*59					3.2+, 4.4+	6	5
Somatomedin ⁸⁶⁰	Rat	Plasma	160,000	0006	9.0^+ (subunit pI)		n.g.
Spectrin: I, I1 ^{861.862}	Human	Erythrocyte	237,500(1)	s.p.c.	5.6	_	n.g.
		ſ	(11)000,062	s.p.c.	· ·	-	ş
Sperm-activating substance (SAS)863	Pseudo-centrotus	Eggs	630		5.3	- .	n.g.
Sphingomyelinase ⁸⁶⁴	Bacillus cereus		24,000		5.6	_	r.t.
Sphingomyelinase ⁸⁶⁵	Human	Skin fibroblasts			4.85, 6.15 ⁺ , 6.80, 7.25,	٢	Ş
Sabin	1	300			46+57+	- c	ij c
Spiningernyennase Spinin ⁸⁶⁷	Marine bacterium	FIVE	19,000	s.p.c.	3.45	. .	4
	D 71			•			
S-Succinylglutathione hydrolase ⁸⁶⁸	Human	Liver	17,000	s.p.c.	8.7	-	n.g.
Staphylocoagulase ⁸⁶⁹	Staphylococcus		61.000		4.53	_	n.g.
	aureus						
17β-Hydroxy-C ₁₉ -steroid	Guinea pig	Liver	32,000	s.p.c.	8.3(Pre-1)		
dehydrogenase ⁸⁷⁰			(Pre-1, Pre-2,		6.6(EI-1)		
			EI-1. EII-1)		6.8(EI-2)		n.g.
			35,000	24,000	5.9(EII-1)		
			(EI-2, EII-2, 1	11,000	6.3(EII-2)		
			EIII)				
Steroid-receptor complex ⁸⁻¹	Rat	Prostate gland			5.81	-	n.g.
Stimulatory factor for RNA	Lamb	Thymus	24,000		8.0	_	n.g.
polymerase II ⁸⁷²							
Streptokinase ²⁸⁶ ;	Streptococci				;	•	
Group A					5.8		•
Group C					5.4	۰ ۱	4
Streptolysin O ²⁸⁶	Streptococci				$6.0^+, 7.5$	nı •	4
Strictosidine synthetase853	Catharanthus		38,000		4.6	-	n.g.
	roseus						

(Continued on p. 170)

continued
_
щ
뭂
A

		1			: :			
Protein	Source	Organ and/or	MW	Subunit		Id	No. of	Temper-
		subcellular location		No.	MW		iso- enzymes	ature (C)
Subtilisins ⁸⁻⁴ : Carlsberg Novo	Bacillus species					6.7		
Sucrase ^{87,5}	Honey bee (Apis mellifera)	Head, abdomen	51,000-82,000			6.5	-	n. 9
Sulphating enzyme of bile salts ⁸⁻⁶ Sulphogalactosylsphingosine sulphatase ⁸⁷⁷	Rat Human	Liver, cytosol Skin fibroblasts	130,000			5.3 4.8		0 n.g.
Supernatant protein factor (SPF)878	Rat	Liver	47,000		s.p.c.	6.74	-	n.g.
Superoxide dismutases ⁸⁷⁹	Fruit fly (Ceratitis capitata [)		35,000			5.4, 5.9 +	c i	n.g.
Superoxide dismutase ⁸⁸⁰	Red alga (Porphyridium		40,000	C1	20,000	4.2	_	n.g.
Superoxide dismutase ⁸⁸¹	Blue-green alga (spirulina)				32,000	4.35, 4.60	c I	n.g.
Superoxide dismutase ⁸⁸²	Rat	Liver				4.65, 4.75 4.85 ⁺ 5.15 ⁺	4	o L
Taurocyamine kinase ⁸⁸³	Lugworm (Arenicola marina)	Body-wall musculature	60,000		22,000 14,000 11,000	(6.1-7.8) 7.3+	- ∞	n.g.
T cell-replacing factor (TRF-II) ⁸⁸⁴	Mice	Spleen	45,000 35,000 25,000			4.4, 5.1 ⁻ , 6.3, 6.9 ⁺	4	4
Tetrahydrofolate** ⁸⁸⁵ ; Dehydrogenase Cyclohydrolase Synthetase	Porcine	Liver	150,000		s.p.c.	9.9	_	n.g.
Certahydrofolate reductase***6 Testosterone-estradiol-binding globulin (TeBG)**7	Pig Human	Liver Plasma	180,000 94,000			4.8 5.51		n.g. n.g.

:	1
1	`
1	_
	٠.
	2
	~
	≂
	_
-	Z
	2
	7
	2
•	=
	=
	=
	0
Š	0
	<u>_</u>

Thiamine-binding protein ⁸⁸⁸ Thioredoxin reductase ⁸⁸⁹ Thrombin ⁸⁹⁰	E. coli Rat Bovine	Novikoff tumour Plasma	116,000	¢-1	58,000	6.0 5.1 7.05		n.g. 8.g.
z-Thrombin ⁸⁹¹	Human	Plasma	36.600		32,000	6.35, 6.55, 7.0 ⁺ , 7.3 ⁺ , 7.6 ⁺	٧.	5
Thymidylate kinase ⁸⁹²	Mouse	LMTK mouse cells	71,000	- ,	000	7.7, 8.2+) (:] -	ம் க ்
I hymidyiate synthetase	<i>E. con</i> Chick	Embryo cells	04,000	1	2.,000	4.7 9.7(F) 6.5(A)		
Thymine dimer excising nuclease ⁸⁹⁴	Human	KB cells				6.0(A,C). 9.0(B)	8	n.g
Thyrotropin ⁸⁹⁶ Thyrotropin ⁸⁹⁶	Calf Human	Thymus	3,350			4.2 7.25 (1), 6.62 (11) 6.08 (111), 5.93(11a), 5.45(IV) 5.18(V ^b)	_	ы с ы о
Thyrotropin-releasing hormone deamidase ⁸⁹⁷	Rat	Brain	73,500		s.p.c.	4.5	-	. d
Toxin ⁸⁹⁸	Pseudomonas					5.8		n.g.
z-Toxin ⁸⁹⁹	Clostridium	Venom				4.8(α_0), 4.81 ⁺ (α_1), 4.82 ⁺ (α_2), 4.83(α_3)	4	r.t.
α-Toxin ⁹⁰⁰ Τοxin ⁹⁰¹	Staphylococcal Scorpion (Palamineus	Venom	36,000 7000			7.98		10 n.g.
Toxin, delta ^{vo2}	gravivamus) Clostridium nerfiingens				42,000	8.8, 9.4	СI	n.g.
Toxin, epidermolytic ⁹⁰³	Staphylococcus		25,000			6.0, 7.0 +	СI	n.g.
Toxin, haemolytic ^{»04}	Sea anemone (Stoichactis helianthus)		16,000			8.6	-	n.g.
Toxin, haemorragic ⁹⁰⁵	Crotalus	Venom	25,700		s.p.c.	5.6	-	n.g.
Toxin, paralysing 906	Wasp (Microbracon hebetor)	Venom	61,000			8.9	-	n.g
							7.2	173

TABLE I (continued)

Protein	Source	Organ and/or	MW	Subunit	it	Id	No. of	Temper-
		succeitaias location		No.	МИ		tso- enzymes	ature (°C)
Toxin (pyrogenic exatoxin type C)907	Streptococcal Group A		13,200		s.p.c.	6.7	-	n.g.
Transaldolase, type III908	Candida utilis		63.600			3.95	-	n.g.
Transcobalamin I and II909	Porcine	Serum	135,000(I)			3.23, 3.42, 3.69(I)	3	ı
:	;	i	38,000(11)			3.47(II)	_	4
Transcobalamin II-cyanocobala- min ⁹¹⁰	Human	Plasma			37,000 29.000	(6.2-6.8), $6.30^+, 6.45^+$	4	n.g.
Transferrin Tl ^{C3 911,912}	Human	Serum				5.2, 5.6, 5.9, 6.0, 6.1,	9	n.g.
Transferrin ⁹¹³	Rat	Serum				5.8. 6.0	(°)	n.g.
Transglutaminase ⁹¹⁴	Rabbit	Liver	80,000		s.p.c.	5.35	_	11. 9.
Triglyceride lipase ⁵⁷²	Human	Post-heparin	000,69		•	4.95, 5.3, 7.6	3	i i
Trehalase ⁵⁴⁰	Rat	plasma Enterocytes				4 99	-	5
		(brush border)					•	
Triacylglycerol acylhydrolase9115	Pseudomonas fluorescens		33,000		s.p.c.	4.46		4
Triacylglycerol lipase916	Rat	Liver, cytosol	42,000			7.2	_	n.g.
Triacylglycerol lipase917	Mycobacterium phloi		40,000			3.8	_	n.g.
Triosephosphate isomerase918	Friei Human	Erythrocytes				6.0+, 5.6		n.g.
Tropomyosin ⁹¹⁹	Canine	Cardiac	70,000	c)	35,000	5.4, 5.6	c-1	n.g.
Trypsin inhibitor ⁹²⁰	Eggplant	Exocarps	5,000- 10,000			4.2, 4.7 ⁺ , 6.0	3	n.g.
Tryptophan aminotransferase921	Rat	Brain	55,000			6.2	-	0
Tubulin ⁹²²	Bovine	Brain			56,000	5.2, 5.4 (subunit p/s)	c)	n.g.
Tyrosinase ⁹²³	Porcellio laevis	Cuticle	122,000	4	31,000	6.1 ⁺ , 7.1	c٦	4
Tyrosine ⁹²⁴	Frog	Epidermis	200,000	4	50,000	9.25	_	n.g.
L (-)-Tyrosine decarboxylase ⁹²⁵	Streptococcus faecalis					4.5, 3.2	ে	-
Tyrosine hydroxylase ⁹²⁶	Beef	Adrenal gland			000,09	9.9	-	n.g.
UDP-glucose-4-epimerase927	Physarum policephalum					6.0, 6.7 +, 7.6	ю	0

UDP-glucuronosyltransferase"2"	Rat	Liver,	29,000		s.p.c.	6.31, 6.56, 6.68	3	n.g.
UMP:pyrophosphate phos- phoribosyltransferase ⁹²⁹	Yeast		80,000		58,000	5.27*, 5.35	C1	n.g.
Uricase ⁹³⁰	Mackerel	Liver, peroxisomes	127,000			7.8	_	n.g.
Uridine nucleosidase ⁹³¹	Yeast		44,000		s.p.c.	4.03	_	n.g.
Urokinase ⁹³²	Human	Urine	47,000		33,000	8.60-, 8.90	c i	i.
			33,400	-	s.p.c.	8.05, 8.35+,		
						8.60+, 8.70+	4	25
Valyl-tRNA synthetase933	E. coli		112,000		s.p.c.	4.8	_	n.g
Vicilin peptidohydrolase934	Mung-bean	Cotyledons	23,000			3.75	_	n oi
Vitamin B ₁₂ -binding protein ^{935,936}	Human	Gastric mucosa	63,000			4.84, 4.94 ⁺ , 5.06 ⁺ .		1
						5.10, 5.18, 5.44, 5.64	7	n.g.
Vitamin B ₁₂ -binding protein ⁹³⁷	Human	Plasma	120,000			3.0, 3.3 +, 3.6	c	i i
			(TCI)					
			35,000			$3.3, 3.6^+, 3.9, 4.2$	4	n.g.
37.00		Ç	(1111)			10		
Vitamin D-binding protein 73%	Kat	Serum	27,000		s.p.c.	5.2	_	4
Vitellin ⁹³⁹	Locusta	Oocyte		_	110,000			
	migratoria			_	130,000			
			530,000	_	120,000	6.9	_	n.g.
					55,000			
Xanthine dehydrogenase 940	Streptomyces		125,000	cı,	67,000	4.4	_	п. 9
	cyanogenus							,
$endo-1,4-\beta-Xylanase^{941}$	Aspergillus niger Str. 14		27,000		s.p.c.	5.4	-	n.g.
β -Xylosidase ⁹⁴²	Penicillium wortmanni		100,000			5.0	_	n.g.
Zeins ^{943–945}	Maize	Endosperm, protein			0096	6-9	15	ī
		bodies			13,500 21,000 ⁻ 22,000 ⁺			
	The state of the s	or street, course constitutional states of the constitution of		Company Laboratory	The state of the s			

a useful feature for the reader: all the relevant information about the article (volume, year, first and last page, etc.) is neatly printed in the upper left (or right) corner of the first page, thus greatly facilitating its quotation. The prize for "unreadability", unfortunately, goes to *Biochemistry*, whose abstracts are far from being fully informative, and whose ideas for classifying an article are unfortunate: the same vital information (volume, year, first and last page, etc.) is scattered throughout the pages of the article, rendering its collection more difficult. Perhaps the Editors of the journal still live with the presumption that a reader of a given article will go through its whole length, whereas it is common knowledge today that even Nobel Laureates barely manage to carry their readership to the end of the summary in their articles.

A few words should be said about pH (and thus pI) measurements in isoelectric focusing (IEF). We have already dealt with it extensively in our first paper⁹⁴⁶, to which the reader is referred. It is frustrating that most scientists still do not report the temperature of pH measurement after IEF (albeit in most instances it could be presumed to be room temperature, i.e., 20–25°C outside the tropics). Fredriksson⁹⁴⁸ has published tables which allow a pH course mapped at room temperature to be converted into the one existing during the focusing experiment (usually at 4°C) and vice versa. The pI values of proteins should be expected to decrease with increasing temperature. The magnitude of the temperature coefficient dpI/dT depends on the protolytic composition of the protein and, to a lesser extent, on the temperature. For a strongly acidic protein, dpI/dT should be ca. -0.005 pH unit per degree at about 4° C, whereas for a strongly basic protein it should be ca. -0.03 pH unit per degree. When performing IEF in presence of additives (glycerol, sucrose, ethylene glycol, urea, etc.), the pH readings should be corrected for the variation of the dielectric constant of water, as this in turn influences the pK of ionizable groups. Gelsema's group has published a series of papers on this topic 949,950. The interference of carbon dioxide absorption on pl values determined at alkaline pH in thin-layer gel IEF has been measured by Delincée and Radola⁹⁵¹.

2. ACKNOWLEDGEMENTS

This project would have been impossible without generous help from LKB Produkter (Bromma, Sweden), who put at our disposal a collection of more than 4000 articles on IEF, and two copying machines. Another lucky event was a 2-month visiting professorship for P.G.R. at the Department of Biochemistry, University of Uppsala, Sweden, which allowed week-end trips to Stockholm to "digest" the literature in the field, together with K.E. P.G.R. is supported by grants from the Consiglio Nazionale delle Ricerche (CNR) and Ministero della Pubblica Istruzione (MPI, Rome).

3. SUMMARY

Proteins with known isoelectric points (p1), as determined by isoelectric focusing, are tabulated. When available, the native molecular weight and the subunit molecular weight and stoichiometry are reported. For each entry, the source and, when applicable, the organ of origin and/or subcellular location are given. A previous table [P. G. Righetti and T. Caravaggio, J. Chromatogr., 127 (1976) 1-28] covered the years from 1966 (the introduction of isoelectric focusing) to 1975. The present compilation spans the years 1976–1979 and contains approximately three times as many references and entries (>900).

REFERENCES

- 1 A. F. D'Adamo, Jr., J. Peisach, G. Manner and C. T. Weiler, J. Neurochem., 28 (1977) 739-744.
- 2 A. Sobel, M. Weber and J. P. Changeux, Eur. J. Biochem., 80 (1977) 215-224.
- 3 J. O. Dolly and E. A. Barnard, *Biochemistry*, 16 (1977) 5053-5060.
- 4 J. P. Brockes and Z. W. Hall, Biochemistry, 14 (1975) 2092–2099.
- 5 P. Ott, B. Jenny and U. Brodbeck, Eur. J. Biochem., 57 (1975) 469-480.
- 6 E. Niday, C. S. Wang and P. Alaupovic, *Biochim. Biophys. Acta*, 469 (1977) 180-193.
- 7 H. Grossmann and M. Liefländer, J. Chromatogr., 177 (1979) 99-107.
- 8 R. Raba, A. Aaviksaar, M. Raba and J. Sugur, Eur. J. Biochem., 96 (1979) 151-158.
- 9 S. R. Lee, J. L. Latta and W. B. Elliott, Comp. Biochem. Physiol., 56C (1977) 193-197.
- 10 T. L. Rosenberry, Y. T. Chen and E. Bock, *Biochemistry*, 13 (1974) 3068-3079.
- 11 R. Jonas and W. Huth, Biochim. Biophys. Acta, 527 (1978) 379-390.
- 12 R. Polsky and L. Shuster, Biochim. Biophys. Acta, 445 (1976) 25-42.
- 13 R. Polsky and L. Shuster, *Biochim. Biophys. Acta*, 445 (1976) 43-66.
- 14 Y. Uda, S. C. Li and Y. T. Li, J. Biol. Chem., 252 (1977) 5194-5200.
- 15 G. Mersmann, K. Von Figura and E. Buddecke, Biochim. Biophys. Acta, 364 (1974) 88-96.
- 16 K. Von Figura, Eur. J. Biochem., 80 (1977) 525-533.
- 17 K. Von Figura, Eur. J. Biochem., 80 (1977) 535-542.
- 18 A. Khar and S. R. Anand, Biochim. Biophys. Acta, 483 (1977) 141-151.
- 19 A. Khar and S. R. Anand, Biochim. Biophys. Acta, 483 (1977) 152-159.
- 20 B. Hultberg, Clin. Chim. Acta, 88 (1978) 441–448.
- 21 H. Christomanou, C. Cap and K. Sandhoff, Neuropädiatrie, 8 (1977) 238-252.
- 22 D. F. Farrell, M. P. Macmartin and A. F. Clark, Clin. Chim. Acta, 89 (1978) 145-155.
- 23 M. G. Brattain, P. M. Kimball and T. G. Pretlow, Cancer Res., 37 (1977) 731-735.
- 24 S. Wood and B. G. MacDougall, Amer. J. Hum. Genet., 28 (1976) 489-495.
- 25 E. Conzelmann, K. Sandhoff, H. Nehrkorn, B. Geiger and R. Arnon, Eur. J. Biochem., 84 (1978) 27-33.
- 26 J. A. Lowden, Clin. Chim. Acta, 93 (1979) 409-417.
- 27 B. Geiger, E. Calef and R. Arnon, *Biochemistry*, 17 (1978) 1713–1717.
- 28 A. Hiatt and W. Johnson, Amer. J. Hum. Genet., 29 (1977) 53-56.
- 29 S. K. Srivastava, Y. C. Awasthi, A. Yoshida and E. Beutler, J. Biol. Chem., 249 (1974) 2043-2048.
- W. C. Brown, D. Vellom, E. Schnepf, C. Ito, W. Cook and C. Greer, Abstr. Ann. Meet. Amer. Soc. Microbiol., 77 (1977) 164–164.
- 31 S. Buoquelet and G. Spik, Eur. J. Biochem., 84 (1978) 551–559.
- 32 M. Yamanaka, Y. Tsubota, M. Anai, K. Ishimatsu, M. Okumura, S. O. Katsuki and Y. Takagi, J. Biol. Chem., 249 (1974) 3884–3889.
- 33 P. Bhattacharya, J. R. Moskal and S. Basu, Proc. Nat. Acad. Sci. U.S., 74 (1977) 842-845.
- 34 P. E. Burdett and P. H. Whitehead, Anal. Biochem., 77 (1977) 419-428.
- 35 S. A. Sorensen, Biochem. Genet., 12 (1974) 345-357.
- 36 T. M. Chu, M. C. Wang, R. Kuciel, L. Valenzuela and G. P. Murphy, Cancer Treat. Rep., 61 (1977) 193–200.
- 37 B. K. Choe, E. J. Pontes, I. McDonald and N. R. Rose, Prep. Biochem., 8 (1978) 73-89.
- 38 P. Vihko, M. Kontturi and K. Korhonen, Clin. Chem., 24 (1978) 466-470.
- 39 P. Vihko, Clin. Chem., 24 (1978) 1783-1787.
- 40 T. Nakabayashi and H. Ikezawa, J. Biochem., 84 (1978) 351-360.
- 41 J. D. Sallis and E. R. Guiler, Comp. Biochem. Physiol., 56B (1977) 189-193.
- 42 I. Igaue, H. Watabe, K. Takahashi, M. Takekoshi and A. Morota, Agr. Biol. Chem., 40 (1976) 823 825.
- 43 H. Suyama, I. Ohya, T. Imai and I. Nakasono, Nippon Hoigaku Zasshi, 30 (1976) 26-35.
- 43a Y. Tsujita and A. Endo, Biochim. Biophys. Acta, 445 (1976) 194-204.
- 44 S. Emi, D. V. Myers and G. A. Iacobucci, *Biochim. Biophys. Acta*, 445 (1976) 672–682.
- 45 C. A. Slaughter, D. A. Hopkinson and H. Harris, Ann. Hum. Genet., 40 (1977) 385-401.
- 46 F. Landon, C. Huc, F. Thomé, C. Oriol and A. Olomucki, Eur. J. Biochem., 81 (1977) 571-577.
- 47 K. Zechel and K. Weber, Eur. J. Biochem., 89 (1978) 105-112.
- 48 K. Zechel, Hoppe-Seyler's Z. Physiol. Chem., 358 (1977) 1304-1305.
- 49 J. D. Pardee and J. R. Bamburg, *Biochemistry*, 18 (1979) 2245–2252.

- 50 M. D. Flanagan and S. Lin, J. Neurochem., 32 (1979) 1037–1046.
- 51 R. K. Berge and M. Farstad, Eur. J. Biochem., 96 (1979) 393-401.
- 52 P. P. Trotta and M. E. Balis, *Biochemistry*, 17 (1978) 270-278.
- 53 P. P. Trotta, R. A. Peterfreund, R. Schonberg and M. E. Balis, *Biochemistry*, 18 (1979) 2953–2959.
- 54 A. Guranowski and J. Pawelkiewicz, Eur. J. Biochem., 80 (1977) 517-523.
- 55 H. H. Richards, P. K. Chiang and G. L. Cantoni, J. Biol. Chem., 253 (1978) 4476–4480.
- 56 H. I. Chiu, D. J. Franks, R. Rowe and D. Malamud, *Biochim. Biophys. Acta*, 451 (1976) 29–40.
- 57 P. J. Russell, Jr., J. M. Horenstein, L. Goins, D. Jones and M. Laveda, J. Biol. Chem., 249 (1974) 1874–1879.
- 58 T. K. Pradhan and W. E. Criss, *Enzyme*, 21 (1976) 327–331.
- 59 T. Spector, T. E. Jones and G. B. Elion, J. Biol. Chem., 254 (1979) 8422-8426.
- 60 M. Malmqvist, Biochim. Biophys. Acta, 537 (1978) 31-43.
- 61 T. P. Nowak and S. H. Barondes, *Biochim. Biophys. Acta*, 393 (1975) 115–123.
- 62 R. H. Rice and M. E. Etzler, *Biochemistry*, 14 (1975) 4093–4099.
- 63 M. Monsigny, C. Sene, A. Obrenovitch, A. C. Roche, F. Delmotte and E. Boschetti, Eur. J. Biochem., 98 (1979) 39–45.
- 64 T. Katayama, T. Matsuda, K. Kato and S. Kotani, Biken J., 19 (1976) 75-91.
- 65 S. P. Basu, S. N. Rao and J. A. Hartsuck, Biochim. Biophys. Acta, 533 (1978) 66-73.
- 66 P. Sudaka, A. M. Rigat, R. Masseyeff and H. Liebschutz, Biomedicine, 25 (1976) 337-341.
- 67 A. V. Konarev, *Biokhimiya*, 43 (1978) 622-624.
- 68 T. K. Li and L. J. Magnes, *Biochem. Biophys. Res. Commun.*, 63 (1975) 202-209.
- 69 C. W. Bamforth and J. R. Quayle, Biochem. J., 181 (1979) 517-524.
- 70 O. Fejér, K. Orosz-Fejér and A. Belea, Theor. Appl. Genet., 54 (1979) 37-39.
- 71 W. Leicht, F. Heinz and B. Freimüller, Eur. J. Biochem., 83 (1978) 189-196.
- 72 A. K. H. Macgibbon, R. L. Motion, K. E. Crow, P. D. Buckley and L. F. Blackwell, Eur. J. Biochem., 96 (1979) 585–595.
- 73 R. Lindahl, Biochem. J., 183 (1979) 55-64.
- 74 T. Koivula and M. Koivusalo, Biochim. Biophys. Acta, 397 (1975) 9-23.
- 75 C. Siew, R. A. Deitrich and V. G. Erwin, Arch. Biochem. Biophys., 176 (1976) 638-649.
- 76 H. Sawada, A. Hara, M. Hayshibara and T. Nakayama, J. Biochem., 86 (1979) 883-892.
- 77 B. Wermuth, J. D. B. Münch and J. P. van Wartburg, J. Biol. Chem., 252 (1977) 3821–3828.
- 78 D. R. Yeltman and B. G. Harris, Biochim. Biophys. Acta, 484 (1977) 188-198.
- 79 F. Schapira, C. Gregori and A. Hatzfeld, Clin. Chim. Acta, 78 (1977) 1-8.
- 80 A. Hatzfeld, J. Elion, F. Mennecier and F. Schapira, Eur. J. Biochem., 77 (1977) 37-43.
- 81 P. Goren, A. Z. Reznick, U. Reiss and D. Gershon, FEBS Lett., 84 (1977) 83-86.
- 82 R. F. Dons and C. C. Doughty, *Biochim. Biophys. Acta*, 452 (1976) 1–12.
- 83 C. M. Sheaff and C. C. Doughty, J. Biol. Chem., 251 (1976) 2696–2702.
- 84 M. J. Reasor, D. Nadeau and G. E. R. Hook, *Lung*, 155 (1978) 321–335.
- 85 K. Nose, J. Biochem., 79 (1976) 283-288.
- 86 K. D. Gerbitz, H. J. Kolb and O. H. Wieland, Hoppe-Seyler's Z. Physiol. Chem., 358 (1977) 435-446.
- 87 R. Otani, K. Higashino and Y. Yamamura, Clin. Chim. Acta, 82 (1978) 249-258.
- 88 K. S. Badger and H. H. Sussman, Proc. Nat. Acad. Sci. U.S., 73 (1976) 2201-2205.
- 89 P. A. Holmgren, T. Stigbrand and G. Beckman, Biochem. Genet., 15 (1977) 521-530.
- K. L. Bazzell, G. Price, S. Tu, M. Griffin, R. Cox and N. Ghosh, Eur. J. Biochem., 61 (1976) 493-499.
- 91 M. A. Luduena and H. H. Sussman, J. Biol. Chem., 251 (1976) 2620-2628.
- D. H. Smile, M. Donohue, M. F. Yeh, T. Kenkel and J. M. Trela, J. Biol. Chem., 262 (1977) 3399– 3041.
- 93 H. Nagano, H. Kiuchi, Y. Abe and R. Shukuya, J. Biochem., 80 (1976) 19-26.
- 94 C. Y. Kuo and T. J. Yoo, Int. Arch. Allergy Appl. Immunol., 54 (1977) 308-314.
- D. G. Marsh, W. B. Bias, J. Santilli, Jr., B. Schacter and L. Goodfriend, *Immunochemistry*, 12 (1975) 539–543.
- T. A. Springer, J. F. Kaufman, L. A. Siddoway, D. L. Mann and J. L. Strominger, J. Biol. Chem., 252 (1977) 6201–6207.
- 97 J. R. Gysi and H. Zuber, Biochem. J., 181 (1979) 577-583.
- 98 J. E. Alouf, M. Kiredjian and C. Geoffroy, Biochimie, 59 (1977) 329-336.
- 99 M. C. Tobes and M. Mason, J. Biol. Chem., 252 (1977) 4591-4599.

- 100 B. Ketterer, E. Tipping, J. F. Hackney and D. Beale, *Biochem. J.*, 155 (1976) 511-521.
- A. M. Buzenet, C. Fages, M. Bloch-Tardy and P. Gonnard, Biochim. Biophys. Acta, 522 (1978) 400-101
- 102 J. R. Paterniti, Jr. and D. S. Beattie, J. Biol. Chem., 254 (1979) 6112-6118.
- 103 P. M. Anderson and R. J. Desnick, J. Biol. Chem., 254 (1979) 6924-6930.
- 104 R. C. Davies and A. Neuberger, *Biochem. J.*, 177 (1979) 649-659.
- 105 W. Hoffman and A. Hüttermann, J. Biol. Chem., 250 (1975) 7420-7427.
- 106 E. Söderling, M. Knuuttila and K. K. Mäkinen, FEBS Lett., 76 (1977) 219-223.
- 107 S. L. Yun and C. H. Suelter, J. Biol. Chem., 253 (1978) 404-406.
- 108 J. W. Mayo and D. M. Carlson, Arch. Biochem. Biophys., 163 (1974) 498-506.
- 109 T. Takeuchi, T. Matsushima and T. Sugimura, Clin. Chim. Acta, 60 (1975) 207-213.
- 110 T. Takeuchi, Clin. Chem., 25 (1979) 1406-1410.
- 111 S. B. Abramson, I. G. Renner and A. P. Douglas, Gastroenterology, 76 (1979) 1089–1089.
- 112 I. L. MacGregor and D. Zakim, Aust. N.Z. J. Med., 6 (1976) 551-556.
- 113 M. D. Levitt, C. Ellis and R. R. Engel, J. Lab. Clin. Med., 90 (1977) 141-152.
- 114 S. B. Ray, B. E. Rothenberg and M. G. Rosenfeld, J. Biol. Chem., 254 (1979) 1196-1204.
- 115 U. Hilgenfeldt and E. Hackental, Biochim. Biophys. Acta, 579 (1979) 375-385. 116 M. P. Printz, J. M. Printz, J. A. Lewicki and T. Gregory, Circ. Res., Suppl. II, 41 (1977) 37-43.
- 117 M. P. Printz, J. M. Printz and R. T. Dworschack, J. Biol. Chem., 252 (1977) 1654–1662.
- 118
- N. K. Hall, F. Deighton and H. W. Larsh, Infect. Immun., 19 (1978) 411-415. 119 R. H. Davis, Jr. and E. Steers, Jr., *Immunochemistry*, 15 (1978) 371–378.
- 120 J. A. Morris, A. E. Stevens and W. J. Sojka, Infect. Immun., 19 (1978) 1097-1098.
- 121 U. H. Stenman, M. Seppälä, E. M. Rutanen and E. Ruoshlanti, Protides Biol. Fluids, Proc. Collog., 24 (1976) 457–460.
- 122 O. Henriksen, E. A. Robinson and E. Appella, J. Biol. Chem., 254 (1979) 7651–7658.
- 123 C. R. Howard and J. Zuckerman, J. Immunol. Methods, 14 (1977) 291-301.
- 124 F. B. Hollinger, M. Morrison, R. Chairez and G. R. Dreesman, J. Immunol. Methods, 8 (1975) 67-84.
- 125 I. Bernier, A. Dautigny, J. Colombani and P. Jollés, Biochim. Biophys. Acta, 490 (1977) 341-349.
- 126 C. V. Abraham and S. Bakerman, Clin. Chim. Acta, 60 (1975) 33-43.
- 127 C. J. Krause, Ann. Otol., 84 (1975) 787-794.
- 128 K. Sugamura and J. B. Smith, Clin. Exp. Immunol., 26 (1976) 28-34.
- 129 L. Heck, R. Rosenberg and H. Remold, Prep. Biochem., 9 (1979) 359-377.
- 130 B. Nordenmann, C. Nyström and I. Björk, Eur. J. Biochem., 78 (1977) 195-203.
- 131 W. R. Abrams, P. Kimbel and G. Weinbaum, Biochemistry, 17 (1978) 3556-3561.
- 132 J. O. Jeppsson, C. B. Laurell and M. Fagerhol, Eur. J. Biochem., 83 (1978) 143-153.
- 133 L. I. Gidez, J. B. Swaney and S. Murnane, J. Lipid Res., 18 (1977) 59-68.
- 134 J. B. Swaney and L. I. Gidez, J. Lipid Res., 18 (1977) 69-76.
- 135 J. S. Parks and L. L. Rudel, J. Biol. Chem., 254 (1979) 6716-6723.
- 136 V. G. Shore, B. Shore and S. B. Lewis, *Biochemistry*, 17 (1978) 2174-2179.
- 137 G. Utermann and U. Belshegel, Eur. J. Biochem., 99 (1979) 333-343.
- 138 A. L. Catapano, R. L. Jackson, E. B. Gilliam, A. M. Gotto, Jr. and L. C. Smith, J. Lipid Res., 19 (1978) 1047 1052.
- 139 M. M. Bergseth and A. C. Nestruck, Biochim. Biophys. Acta, 573 (1979) 175-183.
- 140 G. Utermann, U. Beisiegel, M. Hees, G. Mühlfellner, N. Pruin and A. Steinmetz, Protides Biol. Fluids, Proc. Collog., 25 (1977) 285-288.
- 141 F. A. Shelburne and S. H. Quarfordt, J. Biol. Chem., 249 (1974) 1428-1433.
- 142 S. O. Olofsson, W. J. McConathy and P. Alaupovic, Biochemistry, 17 (1978) 1032-1036.
- 143 M. Tanaka and T. Uchida, *Biochim. Biophys. Acta*, 522 (1978) 531–540.
- 144 G. Wilcox and P. Meuris, Mol. Gen. Genet., 145 (1976) 97-100.
- 145 K. Hiwada, M. Yokoyama and T. Kokubu, Clin. Chim. Acta, 93 (1978) 113-117.
- K. Iwada, T. Kokubu and M. T. Terao, Clin. Chim. Acta, 88 (1978) 311-313. 146
- 147 R. L. Stevens, A. L. Fluharty, A. R. Killgrove and H. Kihara, Biochim. Biophys. Acta, 445 (1976)
- 148 R. L. Stevens, A. L. Fluharty, A. R. Killgrove and H. Kihara, Biochim. Biophys. Acta, 481 (1977)
- H. Christomanou and K. Sandhoff, Clin. Chim. Acta, 79 (1977) 527-531. 149

179

- 150 S. I. Wasserman and K. F. Austen, J. Biol. Chem., 252 (1977) 7074-7080.
- 151 H. Schlegel and P. Christen, Biochem. Biophys. Res. Commun., 61 (1974) 117-122.
- H. Schlegel and P. Christen, Biochim. Biophys. Acta, 532 (1978) 6-16. 152
- 153 H. Schlegel, P. Zoaralek and P. Christen, J. Biol. Chem., 252 (1977) 5835-5838.
- 154 A. Orlacchio, M. Campos-Cavieres, I, Pashev and E. A. Munn, Biochem. J., (1979) 583-593.
- 155 T. Saermark and H. Vilhardt, Biochem. J., 181 (1979) 321-330.
- 156 H. J. Hachmann and A. G. Lezius, Eur. J. Biochem., 61 (1976) 325-330.
- 157 M. le Maire, K. E. Jørgensen, H. Røigaard-Petersen and J. V. Møller, Biochemistry, 15 (1976) 5805-
- 158 E. Ebner and K. L. Maier, J. Biol. Chem., 252 (1977) 671-676.
- 159 O. Frøyshov, Anal. Chim. Acta, 98 (1978) 137-139.
- 160 J. J. Plantner and E. L. Kean, Fed. Proc., 37 (1978) 1819-1819.
- 161 M. Järvinen and V. K. Hopsu-Havu, Acta Chem. Scand., B29 (1975) 772-780.
- 162 T. Nagasawa, Y. Kawabata, Y. Tani and K. Ogata, Agr. Biol. Chem., 40 (1976) 1743-1749.
- 163 J. R. Chowdhury, N. R. Chowdhury, M. M. Bhargava and J. M. Arias, J. Biol. Chem., 254 (1979)
- 164 H. W. Meslar, S. A. Camper and H. B. White, III, J. Biol. Chem., 253 (1978) 6979-6982.
- 165 R. Sasaki, K. Ikura, E. Sugimoto and H. Chiba, Eur. J. Biochem., 50 (1975) 581-593.
- 166 L. F. Hass and K. B. Miller, J. Biol. Chem., 253 (1978) 3798-3803.
- 167 M. Hall, T. H. Hudson, R. W. von Borstel, B. C. Osmond and S. D. Hoeltzlt, Abstr. Soc. Neurosci. 8th Annu. Meet., Nov. 1978, St. Louis, Missouri, Abstract No. 1643.
- 168 A. Seto, Y. Arimatsu and T. Amano, Neurosci. Lett., 4 (1977) 115-119.
- 169 G. Lindstedt, S. Lindstedt and I. Nordin, Biochemistry, 16 (1977) 2181-2188.
- 170 T. Nagasawa, H. Sugisaki, Y. Tani and K. Ogata, Biochim. Biophys. Acta, 429 (1976) 817-827.
- 171 M. G. Cherian, Biochem. Biophys. Res. Commun., 61 (1974) 920-926.
- 172 M. Webb and R. W. Stoddart, Biochem. Soc. Trans., 2 (1974) 1246-1248.
- 173 R. S. Tuan, W. A. Scott and Z. A. Cohn, J. Biol. Chem., 254 (1979) 1011-1016.
- 174 G. W. Wallace and L. D. Satterlee, J. Food Biochem., 1 (1977) 367-384.
- 175 L. J. Van Eldik and D. M. Watterson, J. Biol. Chem., 254 (1979) 10250-10255.
- 176 A. M. Register, M. K. Koester and E. A. Noltmann, J. Biol. Chem., 253 (1978) 4143-4152.
- 177 H. F. Deutsch, J. R. Jabusch and K. T. D. Lin, J. Biol. Chem., 252 (1977) 555-559.
- 178 P. J. Wistrand and T. Wahlstrand, Biochim. Biophys. Acta, 481 (1977) 712-721.
- R. W. King, L. C. Garg, J. Huckson and T. H. Maren, Mol. Pharmacol., 10 (1974) 335-343. 180 N. Høiring and O. Svenmark, Biochim. Biophys. Acta, 481 (1977) 500-514,
- 181 W. Junge, K. Leybold and B. Philipp, Clin. Chim. Acta, 94 (1979) 109-114.
- 182 M. Hashinotsume, K. Higashino, T. Hada and Y. Yamamura, J. Biochem., 84 (1978) 1325–1333.
- 183 A. Koheil and G. Forstner, Biochim. Biophys. Acta, 524 (1978) 156-161.
- 184 Y. Narahashi and K. Yoda, *J. Biochem.*, 86 (1979) 683–694.
- 185 A. L. Bieber, T. Tu and A. T. Tu, Biochim. Biophys. Acta, 400 (1975) 178-188.
- 186 Y. H. Edwards, J. F. A. Chase, M. R. Edwards and P. K. Tubbs, Eur. J. Biochem., 46 (1974) 209-215.
- 187 J. F. Lenney, Biochim. Biophys. Acta, 429 (1976) 214-219.
- 188 G. S. Jacob and W. H. Orme-Johnson, *Biochemistry*, 18 (1979) 2967–2974.
- 189 T. Olofsson and I. Olsson, Biochim. Biophys. Acta, 482 (1977) 301–308.
- 190 G. L. Jones and C. J. Masters, Arch. Biochem. Biophys., 169 (1975) 7-11.
- 191 P. Mainferme and R. Wattiaux, Cancer Biochem. Biophys., 1 (1976) 313-316.
- 192 M. Moo-On Huh and A. J. Friedhoff, J. Biol. Chem., 254 (1979) 299-308.
- 193 T. Inaba, N. Shindo and M. Fujii, Agr. Biol. Chem., 6 (1976) 1159-1165.
- 194 T. Inaba, N. Fujinaga and Y. Hiraoka, Saga Daigaku Nogaku Iho, 45 (1978) 53-63.
- 195 T. Inaba, K. Yamada and H. Takei, Saga Daigaku Nogaku Iho, 45 (1978) 27-35.
- 1.96 M. Warwas and W. Dobryszycka, Biochim. Biophys. Acta, 429 (1976) 573-580.
- 197 P. Evans and D. J. Etherington, Eur. J. Biochem., 83 (1978) 87-97.
- 198 K. Takahashi, M. Isemura and T. Ikenaka, J. Biochem., 85 (1979) 1053-1060.
- 199 T. Towatari, Y. Kawabata and N. Katunuma, Eur. J. Biochem., 102 (1979) 279-289.
- 200 K. Yamamoto, N. Katsuda, M. Himeno and K. Kato, Eur. J. Biochem., 95 (1979) 459-467.
- 201 H. Kirschke, J. Langner, B. Wiederanders, S. Ansorge and P. Bohley, Eur. J. Biochem., 74 (1977) 293-301.

- 202 A. R. Ayers, S. B. Ayers and K. E. Eriksson, Eur. J. Biochem., 90 (1978) 171-181.
- 203 U. Westermark and K. E. Eriksson, Acta Chem. Scand., B29 (1975) 419-424.
- 204 J. Eriksen and J. Goksoyr, Eur. J. Biochem., 77 (1977) 445-450.
- 205 T. Hirayama, H. Nagayama and K. Matsuda, J. Biochem., 85 (1979) 591-599.
- 206 T. M. Wood and S. I. McCrae, Carbohydr. Res., 57 (1977) 117–133.
- 207 G. Lundblad, B. Hederstedt, J. Lind and M. Steby, Eur. J. Biochem., 46 (1974) 367-376.
- 208 G. Lundblad, M. Elander, J. Lind and K. Slettengren, Eur. J. Biochem., 100 (1979) 455-460.
- 209 R. E. Ulane and E. Cabib, J. Biol. Chem., 249 (1974) 3418–3422.
- 210 S. K. Erickson, D. J. Meyer and R. G. Gould, J. Biol. Chem., 253 (1978) 1817-1826.
- 211 R. C. Pittman, J. C. Khoo and D. Steinberg, J. Biol. Chem., 250 (1975) 4505-4511.
- 212 D. B. Zilversmit, L. B. Hughes and J. Balmer, Biochim. Biophys. Acta, 409 (1975) 393-398.
- 213 S. Ikuta, S. Imamura, H. Misaki and Y. Horiuti, J. Biochem., 82 (1977) 1741-1749.
- 214 R. A. Andersen, T. Aune and J. A. Barstad, Comp. Biochem. Physiol., 61C (1978) 81-87.
- 215 R. A. Andersen and A. Mikalsen, Comp. Biochem. Physiol., 62B (1979) 133-138.
- 216 V. Kasche, H. Amnéus, D. Gabel and L. Näslund, Biochim. Biophys. Acta, 490 (1977) 1-18.
- O. Rojas-Espinosa, P. Arce-Paredez, A. M. Dannenberg, Jr. and R. L. Kamenetz, *Biochim. Biophys. Acta*, 403 (1975) 161–179.
- 218 S. Nakamura, S. Iwanaga, T. Harada and M. Niwa, J. Biochem., 80 (1976) 1011-1021.
- 219 G. Marcoullis, R. Gräsbeck and E. M. Salonen, Biochim. Biophys. Acta, 497 (1977) 663-672.
- 220 P. J. Lachmann, L. Halbwachs, A. Gewurz and H. Gewurz, Immunology, 31 (1976) 961-968.
- 221 D. Cavard and C. J. Lazdunski, Eur. J. Biochem., 96 (1979) 519-524.
- 222 D. N. Neff and A. Bernstein, Arch. Biochem. Biophys., 176 (1976) 144-153.
- 223 G. P. Stricklin, A. Z. Eisen, E. A. Baner and J. J. Jeffrey, *Biochemistry*, 17 (1978) 2331-2337.
- 224 E. R. Stanley and P. M. Heard, J. Biol. Chem., 252 (1977) 4305-4312.
- 225 M. C. Wu, J. K. Cini and A. A. Yunis, J. Biol. Chem., 254 (1979) 6226-6228.
- 226 K. Okamura and S. Fujii, *Biochim. Biophys. Acta*, 534 (1978) 258–266.
- 227 P. Cavatorta, P. R. Crippa and A. M. Tosi, Experientia, 34 (1978) 849-850.
- 228 V. H. Thanh and K. Shibasaki, *Biochim. Biophys. Acta*, 490 (1977) 370–384.
- 229 N. J. Maclusky, B. B. Turner and B. S. McEwen, Brain Res., 130 (1977) 564-571.
- 230 B. Bodmer and R. Siboo, J. Immunol., 118 (1977) 1086-1089.
- 231 A. R. Cattan, J. M. Jamieson, E. J. Milner-White and N. C. Price, *Biochem. Soc. Trans.*, 6 (1978) 220–220.
- 232 R. A. Wevers, R. J. Wolters and J. B. J. Soons, Clin. Chim. Acta, 78 (1977) 271-276.
- 233 A. Thorstensson, K. Elwin, B. Sjödin and J. Karlsson, Scand. J. Clin. Lab. Invest., 36 (1976) 821-826.
- 234 K. Rikitake, I. Oka, M. Ando, T. Yoshimoto and D. Tsuru, J. Biochem., 86 (1979) 1109-1117.
- 235 L. A. Williams and J. Piatigorsky, Eur. J. Biochem., 100 (1979) 349–357.
- 236 L. A. Williams and J. Piatigorsky, *Biochemistry*, 18 (1979) 1438–1442.
- 237 J. Piatigorsky, *Exp. Eye Res.*, 27 (1978) 227–237.
- 238 P. M. Ueland and S. O. Døskeland, J. Biol. Chem., 252 (1977) 677-686.
- 239 T. Lindl and G. Chapman, Biochem. Biophys. Res. Commun., 71 (1976) 1273-1282.
- 240 A. S. Tsang and M. B. Coukell, Eur. J. Biochem., 95 (1979) 407–417.
- 241 E. L. Dicou and Ph. Brachet, *Biochim. Biophys. Acta*, 578 (1979) 232-242.
- 242 M. Terai, C. Furihata, T. Matsushima and T. Sugimura, Arch. Biochem. Biophys., 176 (1976) 621-629.
- 243 W. J. Pledger, G. M. Stancel, W. J. Thompson and S. J. Strada, *Biochim. Biophys. Acta*, 370 (1974) 242–248.
- 244 W. J. Pledger, W. J. Thompson and S. J. Strada, Biochim. Biophys. Acta, 391 (1975) 334-340.
- 245 K. P. Minneman, J. Neurochem., 27 (1976) 1181–1189.
- 246 Y. M. Ling, Y. P. Liu and W. Y. Cheung, J. Biol. Chem., 249 (1974) 4943-4951.
- 247 M. E. Hemler, C. G. Crawford and W. E. M. Lands, Biochemistry, 17 (1978) 1772–1779.
- 248 R. Griffiths and N. Tudball, Eur. J. Biochem., 74 (1977) 269–273.
- 249 G. B. Wilson, H. H. Fudenberg and T. L. Jahn, Pediatr. Res., 9 (1975) 635-640.
- 250 G. B. Wilson and H. H. Fudenberg, Tex. Rep. Biol. Med., 34 (1976) 51-71.
- 251 G. B. Wilson, M. T. Monsher and H. H. Fudenberg, *Pediatr. Res.*, 11 (1977) 139-141.
- 252 G. B. Wilson and H. H. Fudenberg, Pediatr. Res., 12 (1978) 801-804.
- 253 J. M. Thomas, A. D. Merritt and M. E. Hodes, *Pediatr. Res.*, 11 (1978) 138-142.

- J. Scholey, D. A. Applegarth, G. E. Davidson and L. T. K. Wong, Pediatr. Res., 12 (1978) 800-800.
- 255 G. B. Wilson and H. H. Fudenberg, Pediatr. Res., 11 (1977) 317-324.
- 256 Y. Nisimoto, F. Takeuchi and Y. Shibata, J. Biochem., 82 (1977) 1257-1266.
- 257 K. Kita, I. Yamato and Y. Anraku, J. Biol. Chem., 253 (1978) 8910-8915.
- 258 G. E. Tarr and W. M. Fitch, Biochem. J., 159 (1976) 193-199.
- 259 A. I. Al-Ayash and M. T. Wilson, Comp. Biochem. Physiol., 56B (1977) 147-152.
- 260 A. F. W. Coulson and R. I. C. Oliver, *Biochem. J.*, 181 (1979) 159–169.
- 261 M. Rönnberg and N. Ellfolk, Acta Chem. Scand., B29 (1975) 719-725.
- 262 J. C. Gray, Eur. J. Biochem., 82 (1978) 133-141.
- 263 A. Berg, M. Ingelman-Sundberg and J. A. Gustafsson, J. Biol. Chem., 254 (1979) 5264–5271.
- 264 B. E. Tilley, M. Watanuki and P. F. Hall, Biochem. Biophys. Res. Commun., 70 (1976) 1303-1308.
- 265 B. E. Tilley, M. Watanuki and P. F. Hall, Biochim. Biophys. Acta, 488 (1977) 330-339.
- 266 B. E. Tilley, M. Watanuki and P. F. Hall, Biochim. Biophys. Acta, 493 (1977) 260-271.
- 267 F. P. Guengerich, Biochim. Biophys. Acta, 577 (1979) 132-141.
- 268 D. Barber, S. R. Parr and C. Greenwood, *Biochem. J.*, 157 (1976) 431–438.
- 269 J. A. Gustafsson and A. Pousette, Biochemistry, 14 (1975) 3094-3099.
- 270 P. J. Davis, B. S. Handwerger and F. Glaser, J. Biol. Chem., 249 (1974) 6208-6217.
- 271 C. D. Whitfield and S. G. Mayhew, J. Biol. Chem., 249 (1974) 2811–2815.
- 272 B. Schmidt, H. J. Breter and R. K. Zahn, Enzyme, 19 (1975) 193-200.
- 273 Y. Seki, K. Kobayashi and M. Ishimoto, J. Biochem., 85 (1979) 705–711.
- 274 J. L. Schottel, J. Biol. Chem., 253 (1978) 4341-4349.
- 275 E. Bohnenberger and H. Sandermann, Jr., Eur. J. Biochem., 94 (1979) 401-407.
- 276 B. T. Kaufman and V. F. Kemerer, Arch. Biochem. Biophys., 172 (1976) 289-300.
- 277 B. T. Kaufman and V. F. Kemerer, Arch. Biochem. Biophys., 179 (1977) 420-431.
- 278 D. P. Baccanari, D. Averett, C. Briggs and J. Burchall, Biochemistry, 16 (1977) 3566-3572.
- 279 S. Webber, T. L. Deits, W. R. Snyder and J. M. Whiteley, Anal. Biochem., 84 (1978) 491-503.
- 280 R. Zech and K. D. Wigand, Experientia, 31 (1975) 157-158.
- 281 D. Depierre, J. P. Bargetzi and M. Roth, Biochim. Biophys. Acta, 523 (1978) 469-476.
- 282 P. W. Goodenough, Phytochemistry, 17 (1978) 633-636.
- 283 G. W. Rushizky and J. P. Whitlock, Jr., *Biochemistry*, 16 (1977) 3256–3262.
- 284 G. C. L. Tait and W. J. Harris, Eur. J. Biochem., 75 (1977) 357-364.
- 285 E. C. Wang and J. J. Furth, J. Biol. Chem., 252 (1977) 116-124.
- 286 C. J. Smyth and J. F. Fehrenbach, Acta Pathol. Microbiol. Scand., 82 (1974) 860-870.
- 287 K. Murai, M. Yamanaka, K. Akagi, M. Anai, T. Mukai and T. Omae, *Biochim. Biophys. Acta*, 517 (1978) 186–194.
- 288 R. Tournut, B. J. Allan and T. T. White, Clin. Chim. Acta, 88 (1978) 345-353.
- 289 N. Miani, A. Caniglia and V. Panetta, J. Neurochem., 27 (1976) 145-150.
- 290 S. O. Hoch and E. McVey, J. Biol. Chem., 252 (1977) 1881-1887.
- 291 K. W. Knopf, Eur. J. Biochem., 73 (1977) 33-38.
- 292 S. Yoshida, T. Kondo and T. Ando, Biochim. Biophys. Acta, 353 (1974) 463-474.
- 293 L. M. S. Chang, J. Biol. Chem., 252 (1977) 1873-1880.
- 294 A. Matsukage, E. W. Bohn and S. H. Wilson, Biochemistry, 14 (1975) 1006-1011.
- 295 M. Castroviejo, D. Tharaud, L. Tarrago-Litvak and S. Litvak, Biochem. J., 181 (1979) 183-191.
- 296 P. A. Fisher and D. Korn, J. Biol. Chem., 252 (1977) 6528 6535.
- 297 J. Waser, U. Hübscher, C. C. Kuenzle and S. Spadari, Eur. J. Biochem., 97 (1979) 361-368.
- 298 D. W. Mosbaugh, D. M. Stalker, G. S. Probst and R. R. Meyer, *Biochemistry*, 16 (1977) 1512-1517.
- 299 U. Hübscher, C. C. Kuenzle and S. Spadari, Eur. J. Biochem., 81 (1977) 249-258.
- 300 K. Murakami-Murofushi, H. Nagano and Y. Mano, J. Biochem., 80 (1976) 735-741.
- 301 J. C. Taylor and J. Tlougan, Anal. Biochem., 90 (1978) 481-487.
- 302 A. Gertler, Y. Weiss and Y. Burstein, *Biochemistry*, 16 (1977) 2709–2714.
- 303 J. P. Comstock and N. T. Van, Biochim. Biophys. Acta, 477 (1977) 199-220.
- 304 K. Motoyoshi, K. Iwasaki and Y. Kaziro, J. Biochem., 82 (1977) 145-155.
- 305 H. Grasmuk, R. D. Nolan and J. Drews, Eur. J. Biochem., 92 (1978) 479-490.
- 306 J. Molano, I. Polacheek, A. Duran and E. Cabib, J. Biol. Chem., 254 (1979) 4901-4907.
- 307 J. Umemoto, V. P. Bhavanandan and E. A. Davidson, J. Biol. Chem., 252 (1977) 8609-8614.
- 308 F. Cervone, A. Scala, M. Foresti, M. G. Cacace and C. Noviello, Biochim. Biophys. Acta, 482 (1977) 379–385.

- 309 H. I. Miller, L. A. Perkins and M. G. Rosenfeld, *Biochemistry*, 14 (1975) 1964–1970.
- 310 H. K. Sharma and M. Rothstein, *Biochemistry*, 17 (1978) 2869-2875.
- 311 H. Asaga and K. Konno, J. Biochem., 77 (1975) 867-877.
- 312 L. J. Porcelli, Jr., E. D. Small and J. M. Brewer, *Biochem. Biophys. Res. Commun.*, 82 (1978) 316–321.
- 313 S. Yamada, H. Igarashi and T. Terayama, Microbiol. Immunol., 21 (1977) 119-126.
- 314 H. Robern, Experientia, 30 (1974) 1087-1089.
- 315 J. M. Taylor, W. M. Mitchell and S. Cohen, J. Biol. Chem., 249 (1974) 2188–2194.
- 316 J. M. Taylor, W. M. Mitchell and S. Cohen, J. Biol. Chem., 249 (1974) 3198–3203.
- 317 M. Reyes Andonian and S. N. Vinogradov, Biochim. Biophys. Acta, 400 (1975) 244-254.
- 318 M. R. Andonian, A. S. Barrett and S. N. Vinogradov, Biochim. Biophys. Acta, 412 (1975) 202-213.
- 319 Y. Ikeda, K. Okamura, T. Arima and S. Fujii, Biochim. Biophys. Acta, 487 (1977) 189-203,
- 320 E. A. Alcaino, N. F. Baker, R. A. Fisk, Amer. J. Vet. Res., 37 (1976) 1153-1156.
- 321 P. M. Coates, Y. H. Edwards and D. A. Hopkinson, Eur. J. Biochem., 61 (1976) 331–335.
- 321a G. A. Puca, E. Nola, V. Sica and F. Bresciani, J. Biol. Chem., 252 (1977) 1358-1366.
- 322 K. E. Carlson, L. H. K. Sun and J. A. Katzenellenbogen, *Biochemistry*, 16 (1977) 4288–4293.
- 323 A. T. Bakalova-Ivanova and L. B. Dolapchiev, C.R. Acad. Bulg. Sci., 31 (1978) 1179–1185.
- 324 H. Suomela, Thromb. Res., 7 (1975) 101-112.
- 325 T. Konno, Y. Katsuno and H. Hirai, J. Immunol. Methods, 21 (1978) 325-334.
- 326 W. I. Wood, D. O. Peterson and K. Bloch, J. Biol. Chem., 253 (1978) 2650–2656.
- 327 N. Fournier, M. Geoffroy and J. Deshusses, Biochim. Biophys. Acta, 533 (1978) 457-464.
- 328 A. S. Khan, D. N. Deobagkar and J. R. Stephenson, J. Biol. Chem., 253 (1978) 8894-8901.
- 329 J. E. Dutton and L. J. Rogers, *Biochim. Biophys. Acta*, 537 (1978) 501-506.
- 330 C. Gozzer, G. Zanetti, M. Galliano, G. A. Sacchi, L. Minchiotti and B. Curti, Biochim. Biophys. Acta, 485 (1977) 278–290.
- 331 L. Vulimiri, M. C. Linder, H. N. Munro and N. Catsimpoolas, *Biochim. Biophys. Acta*, 491 (1977) 67-75.
- 332 P. Arosio, T. G. Adelman and J. W. Drysdale, J. Biol. Chem., 253 (1978) 4451-4458.
- 333 A. Bomford, M. Berger, Y. Lis and R. Williams, Biochem. Biophys. Res. Commun., 83 (1978) 334-341.
- 334 D. J. Lavoie, D. M. Marcus, S. Otsuka and I. Listowsky, *Biochim. Biophys. Acta*, 579 (1979) 359 366
- 335 Y. Akahonai, A. Yachi and T. Wada, Protides Biol. Fluids, Proc. Collog., 24 (1976) 663-666.
- 336 E. F. Zimmerman, D. Bowen, J. R. Wilson and M. M. Madappally, *Biochemistry*, 15 (1976) 5534-5542.
- 337 R. P. Allen and G. J. Mizejewski, *Biochim. Biophys. Acta*, 491 (1977) 242–252.
- 338 G. G. Kapadia, K. H. Kortright, S. Y. Lee, K. R. McIntire and T. A. Waldmann, *Prep. Biochem.*, 9 (1979) 109–132.
- 339 S. Yachnin, R. Hsu, R. L. Heinrikson and J. B. Miller, Biochim. Biophys. Acta, 493 (1977) 418-428.
- 340 D. C. Parmelec, M. A. Evenson and H. F. Deutsch, J. Biol. Chem., 253 (1978) 2114–2119.
- 341 J. W. Beierle, *Protides Biol. Fluids*, *Proc. Collog.*, 24 (1976) 383–389.
- 342 E. Schneider, H. W. Müller, K. Rittinghaus, V. Thiele, U. Schwulera and K. Dose, *Eur. J. Biochem.*, 97 (1979) 511–517.
- 343 M. Maruyama, G. Lodderstaedt and R. Schmitt, Biochim. Biophys. Acta. 535 (1978) 110-124.
- 344 D. W. Trent, J. Virol., 22 (1977) 608-618.
- 345 Y. Fukumori and T. Yamanaka, J. Biochem., 85 (1979) 1405–1414.
- 346 M. Rubinoff, C. Schreiber and S. Waxman, *FEBS Lett.*, 75 (1977) 244–248.
- 347 L. Uotila and M. Koivusalo, J. Biol. Chem., 249 (1974) 7653–7663.
- 348 T. Date, M. Inuzuka and M. Tomoeda, *Biochemistry*, 16 (1977) 5579-5584.
- 349 F. M. Raushel and W. W. Cleland, *Biochemistry*, 16 (1977) 2169-2174.
- 350 Y. Tashima, H. Mizunuma and M. Hasegawa, J. Biochem., 86 (1979) 1089–1099.
- 351 P. W. Mobley and R. P. Metzger, Arch. Biochem. Biophys., 186 (1978) 184-188.
- 352 G. Di Matteo, P. Durand, R. Gatti, A. Maresca, M. Orfeo, F. Urbano and G. Romeo, Biochim. Biophys. Acta, 429 (1976) 538–545.
- 353 J. A. Alhadeff, A. L. Miller, D. A. Wenger and J. S. O'Brien, Clin. Chim. Acta, 57 (1974) 307-313.
- 354 B. M. Turner, N. G. Beratis, V. S. Turner and K. Hirschorn, *Nature (London)*, 257 (1975) 391-392.
- 355 R. Thorpe and D. Robinson, FEBS Lett., 54 (1975) 89-92.

- 356 J. A. Alhadeff, A. L. Miller, H. Wenaas, T. Vedvick and J. S. O'Brien, J. Biol. Chem., 250 (1975) 7106-7113.
- 357 J. A. Alhadeff, *Protides Biol. Fluids*, *Proc. Collog.*, 24 (1976) 113-117.
- 358 J. A. Alhadeff and A. J. Janowsky, Clin. Chim. Acta, 82 (1978) 133-140.
- 359 J. A. Alhadeff and J. A. Janowsky, J. Neurochem., 28 (1977) 423-427.
- 360 J. Butterworth and J. G. Guy, Clin. Chim. Acta, 92 (1979) 109-116.
- 361 D. Kessel, V. Ratanatharathorn and T. H. Chou, Cancer Res., 39 (1979) 3377-3380.
- 362 A. Donald, D. Sibley, D. E. Lyons and A. S. Dahms, J. Biol. Chem., 254 (1979) 2132–2137.
- 363 H. B. Markus, J. W. Wu, F. S. Boches, T. A. Tedesco, W. J. Mellman and R. G. Kallen, J. Biol. Chem., 252 (1977) 5363-5369.
- 364 F. Schapira, C. Gregori and J. Banroques, Biochem. Biophys. Res. Commun., 80 (1978) 291–297.
- 365 F. Schapira, C. Gregori, J. Banroques, M. Vidailhet, S. Despoisses and C. Vigneron, Hum. Genet., 46 (1979) 89–96.
- 366 K. J. Dean and C. C. Sweeley, J. Biol. Chem., 254 (1979) 9994-10000.
- 367 R. Salvayre, A. Maret, A. Negre and L. Douste-Blazy, Eur. J. Biochem., 100 (1979) 377–383.
- 368 K. Schmid and R. Schmitt, Eur. J. Biochem., 67 (1976) 95-104.
- 369 K. Kiguchi, Y. Eto and K. Aoki, Clin. Chim. Acta, 85 (1978) 151-157.
- 370 S. Chatterjee, L. F. Velicer and C. C. Sweeley, J. Biol. Chem., 250 (1975) 4972–4979.
- 371 J. T. Lo, K. Mukerji, Y. C. Awasthi, E. Hanada, K. Suzuki and S. K. Srivastava, J. Biol. Chem., 254 (1974) 6710–6715.
- 372 J. W. Callahan and J. Gerrie, *Biochim. Biophys. Acta*, 391 (1975) 141–153.
- 373 F. Widmer and J. L. Leuba, Eur. J. Biochem., 100 (1979) 559-567.
- 374 M. Akasaki, M. Suzuki, I. Funakoshi and I. Yamashina, J. Biochem., 81 (1976) 1195-1200.
- 375 N. A. Zagustina and A. S. Tikhomirova, *Biokhimiya*, 41 (1976) 1061–1066.
- P. Comi, B. Giglioni, S. Ottolenghi, A. M. Gianni, G. Ricco, U. Mazza, G. Saglio, C. Camaschella,
 P. G. Pich, E. Gianazza and P. G. Righetti, *Biochem. Biophys. Res. Commun.*, 87 (1979) 1–8.
- 377 B. Schlesier, R. Manteuffel, A. Rudolph and J. Behlke, Biochem. Physiol. Pflanz., 173 (1978) 420–428.
- 378 J. M. Conlon, R. F. Murphy and K. D. Buchanan, *Biochim. Biophys. Acta*, 577 (1979) 229–240.
- 379 K. Horikoshi and Y. Atsukawa, Biochim. Biophys. Acta, 384 (1975) 477-483.
- 380 L. E. R. Berghem, L. G. Pettersson and U. B. Axiö-Fredriksson, Eur. J. Biochem., 61 (1976) 621–630.
- 381 U. Hakansson, L. Fägerstam, G. Pettersson and L. Andersson, Biochim. Biophys. Acta, 524 (1978) 385–392.
- 382 D. Linder, G. Kurz, H. Bender and K. Wallenfels, Eur. J. Biochem., 70 (1976) 291-303.
- 383 T. Takahashi, Y. Tsuchida and M. Irie, J. Biochem., 84 (1978) 1183-1194.
- 384 I. M. Gracheva, T. A. Luschik, Y. A. Tyrsin and E. E. Pinchukova, *Biokhimiya*, 42 (1977) 1603-1609.
- 385 O. Wrange, J. Carlstedt-Duke and J. A. Gustafsson, J. Biol. Chem., 254 (1979) 9284–9290.
- 386 O. Wrange, Biochim. Biophys. Acta, 582 (1979) 346-357.
- 387 T. Miyagi and S. Tsuiki, *Biochim. Biophys. Acta*, 358 (1974) 144-158.
- 388 R. B. Needleman, H. J. Federoff, T. R. Eccleshall, B. Buchferer and J. Marmur, *Biochemistry*, 17 (1978) 4657–4661.
- 389 A. K. Grover, D. D. Macmurchie and R. J. Cushley, Biochim. Biophys. Acta, 482 (1977) 98-108.
- 390 R. L. De Gussem, G. M. Aerts, M. Claeyssens and C. K. Bruyne, *Biochim. Biophys. Acta*, 525 (1978) 142–153.
- 391 V. Deshpande, K. E. Eriksson and B. Pettersson, Eur. J. Biochem., 90 (1978) 191-198.
- 392 S. Marcinowski and H. Grisebach, Eur. J. Biochem., 87 (1978) 37-44.
- 393 W. Hösel, E. Surholt and E. Brogmann, Eur. J. Biochem., 84 (1978) 487-492.
- 394 J. H. Glaser, K. J. Roozen, F. E. Brot and W. S. Sly, Arch. Biochem. Biophys., 166 (1975) 536-542.
- 395 A. J. Lusis and K. Paigen, J. Biol. Chem., 253 (1978) 7336-7345.
- 396 J. W. Owens, K. L. Gammon and P. D. Stahl, Arch. Biochem. Biophys., 166 (1975) 258–272.
- 397 R. K. Keller and O. Touster, J. Biol. Chem., 250 (1975) 4765-4769.
- 398 H. Tsuji, N. Hattori, T. Yamamoto and K. Kato, J. Biochem., 82 (1977) 619-636.
- 399 T. Diez and J. A. Cabezas, Eur. J. Biochem., 93 (1979) 301–311.
- 400 J. M. Blindermann, M. Maitre, L. Ossola and P. Mandel, Eur. J. Biochem., 86 (1978) 143–152.
- 401 R. L. Nelson, M. S. Povey, D. A. Hopkinson and H. Harris, *Biochem. Genet.*, 15 (1977) 87–94.

- 402 K. Kawajiri, T. Harano and T. Omura, J. Biochem., 82 (1977) 1417–1423.
- 403 K. Kimura, A. Miyakawa, T. Imai and T. Sasakawa, J. Biochem., 81 (1977) 467-476.
- 404 1. Barash, H. Mor and T. Sadon, Plant Cell Physiol., 17 (1976) 493-500.
- 405 T. Abe, O. Takenaka and Y. Inada, Biochim. Biophys. Acta, 358 (1974) 113-116.
- J. A. Kleinschmidt and D. Kleiner, Eur. J. Biochem., 89 (1978) 51-60. 406
- 407 R. A. Darrow and R. R. Knotts, Biochem. Biophys. Res. Commun., 78 (1977) 554-560.
- 408 N. Taniguchi and A. Meister, J. Biol. Chem., 253 (1978) 1799–1806.
- 409 K. Yasumoto, K. Iwami, T. Fushiki and H. Mitsuda, J. Biochem., 84 (1978) 1227-1236.
- S. S. Tate and J. Orlando, J. Biol. Chem., 254 (1979) 5573-5575.
- 411 Y. C. Awasthi, D. D. Dao, A. K. Lal and S. K. Srivastava, Biochem. J., 177 (1979) 471-476,
- J. Lopez-Barea and C. Y. Lee, Eur. J. Biochem., 98 (1979) 487-499. 412
- 413 1. Carlberg and B. Mannervik, Biochim. Biophys. Acta, 484 (1977) 268-274.
- 414 T. Hayakawa, R. A. Lemahieu and S. Udenfriend, Arch. Biochem. Biophys., 162 (1974) 223-230.
- 415 W. H. Habig, M. J. Pabst and W. B. Jakoby, J. Biol. Chem., 249 (1974) 7130-7139.
- 416 W. B. Rathbun, S. S. Sethna and G. E. van Buskirk, Exp. Eye Res., 24 (1977) 145-158.
- 417 L. Uotila, Biochim. Biophys. Acta, 580 (1979) 277–288.
- 418 C. J. Marcus, W. H. Habig and W. B. Jakoby, Arch. Biochem. Biophys., 188 (1978) 287-293.
- 419 P. J. Marangos and S. M. Constantinides, J. Biol. Chem., 249 (1974) 951–958.
- 420 M. J. Ostro and T. P. Fondy, J. Biol. Chem., 252 (1977) 5575–5583.
- 421 J. R. Edgar and R. M. Bell, J. Biol. Chem., 253 (1978) 6348-6353.
- 422 C. Y. Lee, D. Charles and D. Bronson, J. Biol. Chem., 254 (1979) 6375-6381.
- 423 G. B. Johnson, Genetics, 83 (1976) 149-167.

410

- 424 K. Sato, T. Sato, H. P. Morris and S. Weinhouse, Isozymes, 3 (1975) 951–967.
- 425 D. Proux, M. Vibert, M. C. Meienhofer and J. C. Dreyfus, Clin. Chim. Acta, 57 (1974) 211-216.
- 426 R. E. Miller, E. A. Miller, B. Fredholm, J. B. Yellin, R. D. Eichner, S. E. Mayer and D. Steinberg, Biochemistry, 14 (1975) 2481-2487.
- 427 J. W. Lawler, H. S. Slayter and J. E. Coligan, J. Biol. Chem., 253 (1978) 8609-8616.
- 428 G. N. Than, D. G. Szabò, N. J. Karg and I. F. Csaba, Protides Biol. Fluids, Proc. Collog., 24 (1976) 223-228.
- 429 A. V. N. Amerongen, A. P. Vreugdenhil and P. A. Roukema, Biochim. Biophys. Acta, 495 (1977) 324 - 335.
- 430 A. V. N. Amerongen, M. E. G. Aarsman, A. P. Vreugdenhil and P. A. Roukema, Biochim. Biophys. Acta, 534 (1978) 26-37.
- 431 T. R. Oegema, Jr. and G. W. Jourdian, Arch. Biochem. Biophys., 160 (1974) 26-39.
- 432 J. M. Dalrymple, S. Schlesinger and P. K. Russell, Virology, 69 (1976) 93–103.
- 433 N. Jacobsen and P. Arneberg, Comp. Biochem. Physiol., 54B (1976) 423-425.
- 434 H. Hatanaka, Y. Ogawa and F. Egami, J. Biochem., 79 (1976) 27-34. 435
- E. Marmstal, A. C. Aronsson and B. Mannervik, Biochem. J., 183 (1979) 23–30. 436 D. R. Idler, L. S. Bazar and S. J. Hwang, *Endocr. Res. Commun.*, 2 (1975) 215–235.
- 437 H. Kerchet and J. Duval, Biochemie, 57 (1975) 85-90.
- 438 M. H. Qazi, G. Mukherjee, K. Javidi, A. Pala and E. Diczfalusy, Eur. J. Biochem., 47 (1974) 219 223.
- 439 N. A. Nwokoro, H. C. Chen and A. Chrambach, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 38 (1979) 462 - 462.
- 440 W. W. Ward and M. J. Cormier, J. Biol. Chem., 254 (1979) 781-788.
- 441 L. J. DeFilippi and D. E. Hultquist, J. Biol. Chem., 253 (1978) 2946-2953.
- 442 H. Van Baelen, R. Bouillon and P. De Moor, J. Biol. Chem., 253 (1978) 6344-6345.
- 443 M. Thymann, Referate 8. Int. Tagung Ges. Forensische Blutgruppenkunde e.V., (1979) 429-436.
- J. Constans, M. Viau, G. Pison and A. Langaney, Jap. J. Hum. Genet., 23 (1978) 111-117.
- 445 B. C. W. Hummel, G. M. Brown, P. Hwang and H. G. Friesen, Endocrinology, 97 (1975) 855-864.
- 446 M. J. Waters and H. G. Friesen, J. Biol. Chem., 254 (1979) 6815-6825.
- 447 J. D. Bergstrom and A. L. Bieber, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 36 (1977) 723–723.
- 448 J. N. Bausch and R. D. Poretz, Biochemistry, 16 (1977) 5790-5795.
- 449 G. Cheung, A. Haratz, M. Katar, R. Skrokov and R. D. Poretz, Biochemistry, 18 (1979) 1646–1650.
- 450 J. Markl, R. Schmid, S. Czichos-Tied and B. Linzen, Hoppe-Seyler's Z. Physiol. Chem., 357 (1976)
- 451 P. E. Tuchschmid, P. A. Kunz and K. J. Wilson, Eur. J. Biochem., 88 (1978) 387–394.

- 452 E. J. Wood, A. Anastasi, W. H. Bannister and J. V. Bannister, *Biochem. Soc. Trans.*, 4 (1976) 304–306
- 453 R. E. Weber and J. F. Bol, Comp. Biochem. Physiol., 53B (1976) 23-30.
- 454 R. E. Weber and W. Heidemann, Comp. Biochem. Physiol., 57A (1977) 151-155.
- 455 R. E. Weber, B. Sullivan, J. Bonaventura and C. Bonaventura, Comp. Biochem. Physiol., 58B (1977) 183–187.
- 456 P. A. Mied and D. A. Powers, J. Biol. Chem., 253 (1978) 3521-3528.
- 457 G. Steffens, G. Buse and A. Wollmer, Eur. J. Biochem., 72 (1977) 201–206.
- 458 T. Boussios and J. F. Bertles, J. Cell Sci., 16 (1974) 677-686.
- 459 D. A. Sikkema, N. C. Wu and R. M. Zucker, *Biochim. Biophys. Acta*, 493 (1977) 393–399.
- 460 L. M. Kraus, H. M. Jernigan, Jr., R. N. Haire and B. E. Hedlund, *Biochim. Biophys. Acta*, 491 (1977) 497–502.
- 461 R. A. Stinson, J. Lab. Clin. Med., 90 (1977) 623-631.
- 462 M. C. Garel, W. Hassan, M. T. Coquelet, M. Goossens and J. Rosa, *Biochim. Biophys. Acta*, 420 (1976) 97–104.
- 463 T. Omori-Satoh and S. Sadahiro, Biochim. Biophys. Acta, 580 (1979) 392-404.
- 464 W. Dobryszycka and E. Krawczyk, Comp. Biochem. Physiol., 62B (1979) 111-113.
- 465 J. Osada and W. Dobryszycka, *Biochim. Biophys. Acta*, 412 (1975) 306-316.
- 466 M. Rogard and M. Waks, Eur. J. Biochem., 77 (1977) 367-373.
- 467 R. E. Howarth, S. K. Sarkar, A. C. Fesser and G. W. Schnarr, J. Agr. Food Chem., 25 (1977) 175– 180.
- 468 J. G. Hoggett and G. L. Kellett, Eur. J. Biochem., 66 (1976) 65-77.
- 469 S. S. Supowit and B. G. Harris, *Biochim. Biophys. Acta*, 422 (1976) 48-59.
- 470 G. Fornaini, M. Dachà, M. Magnani and V. Stocchi, Bull. Mol. Biol. Med., 4 (1979) 37-46.
- 471 P. R. Oeltgen, L. C. Bergmann, W. A. Spurrier and S. B. Jones, *Prep. Biochem.*, 8 (1978) 171–180.
- 472 H. S. Sodhi, G. S. Sundaram and S. L. MacKenzie, Scand. J. Clin. Lab. Invest., 33 (1974) 71-72.
- 473 A. Savany and L. Cronenberger, Biochim. Biophys. Acta, 526 (1978) 247-258.
- 474 S. M. Kane, C. Vugrincic, D. S. Finbloom and D. W. E. Smith, *Biochemistry*, 17 (1978) 1509–1514.
- 475 R. F. Sprouse, Infect. Immun., 15 (1977) 263-271.
- 476 C. C. Epstein and P. Datta, Eur. J. Biochem., 82 (1978) 453-461.
- 477 C. Secchi, M. Cagnasso, G. Resmi and P. A. Biondi, J. Chromatogr., 145 (1978) 257-264.
- 478 U. J. Lewis, J. T. Dunn, L. F. Bonewald, B. K. Seavey and W. P. Vanderlaan, J. Biol. Chem., 253 (1978) 2679–2687.
- 479 P. M. Van Damme, M. D. Robertson and E. Diczfalusy, Mol. Cell. Endocrinol., 9 (1977) 69-79.
- 480 K. Wakabayashi, Endocrinol. Jap., 21 (1977) 473-485.
- 481 K. J. Welinder, Eur. J. Biochem., 96 (1979) 483-502.
- 482 M. Yamada, E. Hasegawa and M. Kanamori, J. Biochem., 81 (1977) 485-494.
- 483 T. Yagi, K. Kimura, H. Daidoji, F. Sakai, S. Tamura and H. Inokuchi, J. Biochem., 79 (1976) 661-671.
- 484 P. H. Gitlitz and A. I. Krasna, *Biochemistry*, 14 (1975) 2561–2566.
- 485 M. W. W. Adams and D. O. Hall, Biochem. J., 183 (1979) 11 22.
- 486 J. Mulder and M. A. T. Verhaar, Int. Res. Comm. Syst., (1973) 451-453.
- 487 K. Schneider and H. G. Schlegel, Biochim. Biophys. Acta, 452 (1976) 66-80.
- 488 H. Singh and G. Kalnitsky, J. Biol. Chem., 253 (1978) 4319 4326.
- 489 Z. H. Beg, J. A. Stonik and H. B. Brewer, Jr., FEBS Lett., 80 (1977) 123-128.
- 490 D. A. Kleinsek and J. W. Porter, J. Biol. Chem., 254 (1979) 7591-7599.
- 491 B. Lindblad, G. Lindstedt, S. Lindstedt and M. Rundgren, J. Biol. Chem., 252 (1977) 5073-5084.
- 492 M. Rundgren, J. Biol. Chem., 252 (1977) 5085-5093.
- 493 S. Lindstedt, B. Odelhög and M. Rundgren, Biochemistry, 16 (1977) 3369-3375.
- 494 S. Hasnain and D. G. Williamson, Can. J. Biochem., 52 (1974) 120-125.
- 495 R. M. Schultz, E. V. Groman and L. L. Engel, J. Biol. Chem., 252 (1977) 3775-3783.
- 496 G. G. Johnson, L. R. Eisenberg and B. R. Migeon, Science, 203 (1979) 174-176.
- 497 A. S. Olsen and G. Milman, J. Biol. Chem., 249 (1974) 4030-4037.
- 498 R. Schmidt, H. Wiegand and U. Reichert, Eur. J. Biochem., 93 (1979) 355-361.
- 499 G. Milman, E. Lee, G. S. Ghangas, J. R. McLaughlin and M. George, Jr., *Proc. Nat. Acad. Sci. U.S.*, 73 (1976) 4589–4593.
- 500 A. S. Olsen and G. Milman, *Biochemistry*, 16 (1977) 2501–2507.

- 501 J. Lifter and Y. S. Choi, J. Immunol. Methods, 23 (1978) 297-302.
- 502 K. F. Mitchell, F. Karush and D. O. Morgan, *Immunochemistry*, 14 (1977) 233-236.
- 503 K. F. Mitchell, F. Karush and D. O. Morgan, *Immunochemistry*, 14 (1977) 161-164.
- 504 C. B. Srikant, K. McCorkle and R. H. Unger, J. Biol. Chem., 252 (1977) 1847–1851.
- 505 J. M. Conlon, D. Rouiller, G. Boden and R. H. Unger, FEBS Lett., 105 (1979) 23-30.
- 506 N. Mendelsohn, R. R. Eger, H. E. Broxmeyer and M. A. S. Moore, *Biochim. Biophys. Acta*, 533 (1978) 238–247.
- 507 F. Koller and O. Hoffmann-Ostenhof, Hoppe-Seyler's Z. Physiol. Chem., 357 (1976) 1465-1468.
- 508 M. Dorson, A. Barde and P. de Kinkelin, Ann. Microbiol., 126B (1975) 485-489.
- 509 M. Kawakita, B. Cabrer, H. Taira, M. Rebello, E. Slattery, H. Weideli and P. Lengyel, J. Biol. Chem., 253 (1978) 598-602.
- 510 E. A. Havell, Y. K. Yip and J. Vilcek, Arch. Virol., 55 (1977) 121-129.
- 511 E. A. Havell, S. Yamazaki and J. Vilcek, J. Biol. Chem., 252 (1977) 4425-4427.
- 512 P. J. Bridgen, C. B. Anfinsen, L. Corley, S. Bose, K. C. Zoon and U. T. Rüegg, *J. Biol. Chem.*, 252 (1977) 6585–6587.
- 513 W. J. Colonna, F. R. Cano and J. O. Lampen, *Biochim. Biophys. Acta*, 386 (1975) 293-300.
- 514 S. Pollack and F. D. Lasky, Biochem. Biophys. Res. Commun., 70 (1976) 533-540.
- 515 F. J. Ruzika and H. Beinert, J. Biol. Chem., 253 (1978) 2514-2517.
- 516 J. W. Halliday, L. V. McKeering and L. W. Powell, Cancer Res., 36 (1976) 4486-4490.
- 517 Y. Akahonai, A. Takahashi, A. Yachi and T. Wada, in W. Fishman and S. Sell (Editors), *Onco-Developmental Gene Expression*, Academic Press, New York, 1976, pp. 763–770.
- 518 K. Ishitani, I. Listowsky, J. Hazard and J. W. Drysdale, J. Biol. Chem., 250 (1975) 5446-5449.
- 519 C. Hase, D. Coustaut and Y. Moschetto, Bull. Soc. Pharm. Lille, 33 (1977) 41-49.
- 520 F. M. Miesowicz and K. Bloch, J. Biol. Chem., 254 (1979) 5868-5877.
- 521 E. Hackenthal, R. Hackenthal and U. Hilgenfeldt, Biochim. Biophys. Acta, 522 (1978) 561-573.
- 522 E. Silva, C. R. Diniz and M. Mares-Guia, *Biochemistry*, 13 (1974) 4303–4309.
- 523 Y. Hojima, M. Yamashita, N. Ochi, C. Moriwaki and H. Moriya, J. Biochem., 81 (1977) 599-610.
- 524 Y. Fukuoka, Y. Hojima, S. Miyaura and C. Moriwaki, J. Biochem., 85 (1979) 549-557.
- 525 M. Zuber and E. Sache, *Biochemistry*, 13 (1974) 3098–3104.
- 526 V. Hial, C. R. Diniz and M. Mares-Guia, *Biochemistry*, 13 (1974) 4311–4316.
- 527 Y. Matsuda, K. Miyazaki, H. Moriya, Y. Fujimoto, Y. Hojima and C. Moriwaki, J. Biochem., 80 (1976) 671–679.
- 528 O. O. M. Yoi, K. F. Austen and J. Spragg, *Biochem. Pharmacol.*, 26 (1977) 1893–1900.
- 529 R. Geiger, K. Mann and T. Bettels, J. Clin. Chem. Clin. Biochem., 15 (1977) 479-483.
- 530 Y. Hojima, M. Isobe and H. Moriya, J. Biochem., 81 (1977) 37-46.
- 531 F. Le Goffic and A. Martel, in S. Mitsuhashi, L. Rosival and V. Kremery (Editors), *Drug-inactivating Enzymes and Antibiotic Resistance*, Avicenum, Prague, 1975, pp. 165–175.
- 532 J. R. Ogez, W. F. Tivol and W. F. Benisek, J. Biol. Chem., 252 (1977) 6151-6155.
- 533 J. C. Londesborough and U. Hamberg, *Biochem. J.*, 145 (1975) 401–403.
- 534 T. Nakayasu and S. Nagasawa, J. Biochem., 85 (1979) 249–258.
- 535 T. Noguchi and R. Kido, Hoppe-Seyler's Z. Physiol. Chem., 357 (1976) 649-656.
- 536 R. L. Charnas, J. Fisher and J. R. Knowles, *Biochemistry*, 17 (1978) 2185–2189.
- 537 M. Barthelemy, M. Guionie and R. Laria, Antimicrob. Agents Chemother., 13 (1978) 695-698.
- 538 R. Labia and M. Barthelemy, C.R. Acad. Sci., Ser. D, 284 (1977) 1729-1732.
- 539 R. Labia, M. Barthélémy and J. M. Masson, C.R. Acad. Sci., Ser. D, 283 (1976) 1597-1600.
- 540 J. Giudicelli, A. M. Rigat and P. Sudaka, C.R. Soc. Biol. Nice, (1975) 372-376.
- 541 A. V. Emes, M. J. Gallimore, A. W. Hodson and A. L. Latner, *Biochem. J.*, 143 (1974) 453-460.
- 542 T. W. Moon, W. C. Hulbert, T. Mustafa and F. D. Mettrick, Comp. Biochem. Physiol., 56B (1977) 249-254.
- 543 R. Hensel, U. Mayr, H. Fujiki and O. Kandler, Eur. J. Biochem., 80 (1977) 83-92.
- 544 S. K. Brahma and P. T. Van der Saag, Differentiation, 6 (1976) 187-190.
- 545 M. Futai and H. Kimura, *J. Biol. Chem.*, 252 (1977) 5820–5827.
- 546 T. W. Hurley, S. Handwerger and R. E. Fellows, Biochemistry, 16 (1977) 5598-5603.
- 547 M. Chatterjee, E. M. Laga, C. C. Merril and H. N. Munro, *Biochim. Biophys. Acta*, 493 (1977) 332-339.
- 548 K. K. Mäkinen, J. Tenoyou and W. H. Bowen, Acta Chem. Scand., B32 (1978) 387–390.
- 549 S. Olsnes, K. Refsnes, T. B. Christensen and A. Pihl, Biochim. Biophys. Acta, 405 (1975) 1–10.

- 550 C. H. Wel, C. Koh, P. Pfuderer and J. R. Einstein, J. Biol. Chem., 250 (1975) 4790-4795.
- 551 J. Petryniak, M. E. A. Pereira and E. A. Kabat, Arch. Biochem. Biophys., 178 (1977) 118-134.
- 552 I. S. Trowbridge, J. Biol. Chem., 249 (1974) 6004-6012.
- 553 H. Rüdiger, Eur. J. Biochem., 72 (1977) 317 -322.
- 554 V. Horejsì and J. Kocourek, *Biochim. Biophys. Acta*, 538 (1978) 299-315.
- 555 T. P. Nowak, D. Kobiler, L. E. Roel and S. H. Barondes, J. Biol. Chem., 252 (1977) 6026-6030.
- 556 J. Partridge, L. Shannon and D. Gumpf, Biochim. Biophys. Acta, 451 (1976) 470-483.
- 557 A. Pusztai and J. C. Stewart, *Biochim. Biophys. Acta*, 536 (1978) 38–49.
- 558 C. E. Hayes and J. I. Goldstein, J. Biol. Chem., 249 (1974) 1904-1914.
- 559 P. Lehtovaara, Finn. Chem. Lett., 3 (1977) 82–83.
- 560 W. H. Fuchsman and C. A. Appleby, *Biochim. Biophys. Acta*, 579 (1979) 314-324.
- 561 P. Lehtovaara and N. Ellfolk, Acta Chem. Scand., B29 (1975) 56-60.
- 562 A. O. S. Chiu and Y. Suyama, Arch. Biochem. Biophys., 171 (1975) 43-54.
- 563 M. M. Bhargava, I. Listowsky and I. M. Arias, J. Biol. Chem., 253 (1979) 4116-4119.
- Listowsky, K. Kamisaka, K. Ishitani and I. M. Arias, in I. M. Arias and W. B. Jakoby (Editors).
 Glutathione: Metabolism and Function, Raven Press, New York, 1976, pp. 233–240.
- 565 N. M. Bass, R. E. Kirsch, S. A. Tuff, I. Marks and S. J. Saunders, *Biochim. Biophys. Acta*, 492 (1977) 163-175.
- 566 R. J. Cogdell, J. G. Lindsay, W. Macdonald and P. G. Reid, Biochem. Soc. Trans., 7 (1979) 184-187.
- 567 A. N. Roche and M. Monsigny, *Biochim. Biophys. Acta*, 371 (1974) 242–254.
- 568 S. Kurooka and T. Kitamura, J. Biochem., 84 (1978) 1459-1466.
- 569 W. Nieuwenhuizen, F. C. Reman, I. A. M. Vermeer and T. Vermond, Biochim. Biophys. Acta, 431 (1976) 288-296.
- 570 P. Belfrage, B. Jergil, P. Stralfors and H. Tornqvist, FEBS Lett., 75 (1977) 259-263.
- 571 E. V. Dyatlovitskaya, N. G. Timofeeva and L. D. Bergelson, Eur. J. Biochem., 82 (1978) 463-471.
- 572 A. Bensadoun, C. Ehnholm, D. Steinberg and W. V. Brown, J. Biol. Chem., 249 (1974) 2220-2227.
- 573 J. Augustin, H. Freeze, P. Tejada and W. V. Brown, J. Biol. Chem., 253 (1978) 2912-2920.
- 574 S. G. Sundaram, M. K. M. Shakir and S. Margolis, Anal. Biochem., 88 (1978) 425-433.
- 575 A. Pagnan, R. J. Havel, J. P. Kane and L. Kotite, J. Lipid Res., 18 (1977) 613-620.
- 576 R. J. Havel, L. Kotite and P. J. Kane, Biochem. Med., 21 (1979) 121-128.
- 577 G. Camejo, H. Acquatella, F. Lalaguna, E. Avila, E. Hirschbaut and A. Guinand, Protides Biol. Fluids, Proc. Collog., 25 (1977) 151-158.
- 578 S. M. Rapoport, T. Schewe, R. Wiesner, W. Halangk, P. Ludwig, M. Höhne, C. Tannert, C. Hiebsch and D. Klatt, Eur. J. Biochem., 96 (1979) 545–561.
- 579 H. Charbonneau and J. M. Cormier, J. Biol. Chem., 254 (1979) 769-780.
- 580 D. M. Robertson, M. P. Van Damme and E. Diczfalusy, Mol. Cell Endocrinol., 9 (1977) 45-56.
- 581 J. A. Weare and L. E. Reichert, Jr., J. Biol. Chem., 254 (1979) 6964-6971.
- 582 L. B. Lachman, G. T. Blyden, M. Hacker and R. E. Handschumacher, Cell Immunol., 27 (1976) 354-354.
- 583 L. D. Sabo, E. A. Boeker, B. Byers, H. Waron and E. H. Fischer, *Biochemistry*, 13 (1974) 662-666.
- 584 J. G. N. De Jong, H. Van Den Bosch, D. Rijken and L. L. M. Van Deenen, *Biochim. Biophys. Acta*, 369 (1974) 50-63.
- 585 J. M. Fernandez-Sousa, J. G. Gavilanes, A. M. Municio, A. Perez-Aranda and R. Rodriguez, Eur. J. Biochem., 72 (1977) 25-33.
- 586 E. Vahtera and U. Hamberg, Biochem. J., 171 (1978) 767-770.
- 587 A. Rosén, K. Ek and P. Aman, J. Immunol. Methods, 28 (1979) 1-11.
- 588 W. B. Im, C. K. Chiang and R. Montgomery, J. Biol. Chem., 253 (1978) 3259-3264.
- 589 T. Yamashita, N. Naoi, K. Watanabe, T. Takeuchi and H. Umezawa, J. Antibiot., 29 (1976) 415-423.
- 590 W. B. Im, C. K. Chiang, D. D. Vandre and R. Montgomery, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 36 (1977) 670-670.
- 591 E. Hägele, J. Neeff and D. Mecke, Eur. J. Biochem., 83 (1978) 67-76.
- 592 F. Wada, N. Numata, Y. Eguchi and Y. Sakamoto, Biochim. Biophys. Acta, 410 (1975) 237-242.
- 593 M. Anasy, Biochem. Genet., 16 (1978) 121-127.
- 594 C. J. R. Hartmann, M. P. Boulay and A. G. Drouet, Physiol. Veg., 15 (1977) 567-574.
- 595 Y. S. Kim, P. E. Kolattukudy and A. Boos, Arch. Biochim. Biophys., 196 (1979) 543-551.
- 596 K. Ptashne, H. W. Hsueh and F. E. Stockdale, *Biochemistry*, 18 (1979) 3533-3538.

- 597 B. G. Winchester, N. S. Van-De-Water and R. D. Jolly, *Biochem. J.*, 157 (1976) 183-188.
- 598 D. P. R. Tulsiani, D. J. Opheim and O. Touster, J. Biol. Chem., 252 (1977) 3227-3233.
- 599 E. Paus, Eur. J. Biochem., 73 (1977) 155-161.
- 600 S. Bouquelet, G. Spik and J. Montreuil, Biochim. Biophys. Acta, 522 (1978) 521-530.
- 601 M. A. Khilji and G. S. Bailey, Biochim. Biophys. Acta, 527 (1978) 282-288.
- 602 S. Kurooka and Y. Yoshimura, J. Biochem., 74 (1973) 785-795.
- 603 R. Vaasjoki and J. K. Miettinen, in S. S. Brown (Editor), *Clinical Chemistry and Chemical Toxicology of Metals*, Elsevier/North-Holland, Amsterdam, 1977, pp. 71-74.
- 604 P. Coggon, L. J. Romanczyk, Jr. and G. W. Sanderson, J. Agr. Food. Chem., 25 (1977) 278–283.
- 605 M. Nordberg and G. F. Nordberg, Environ. Health Perspect., 12 (1975) 103-108.
- 606 K. B. Andersen, Eur. J. Biochem., 96 (1979) 109–118.
- 607 R. A. Rubin and P. Modrich, J. Biol. Chem., 252 (1977) 7265-7272.
- 608 E. Durban, S. Nochumson, S. Kim and W. K. Paik, J. Biol. Chem., 253 (1978) 1427-1435,
- 609 A. W. Bernheimer and L. S. Avigad, *Biochim. Biophys. Acta*, 541 (1978) 96-106.
- 610 B. Akerström and I. Berggard, Eur. J. Biochem., 101 (1979) 215-223.
- 611 R. Cigen, J. A. Ziffer, B. Berggard, B. A. Cunningham and I. Berggard, *Biochemistry*, 17 (1978) 947-952.
- 612 P. W. Hall, E. S. Ricanati and C. V. Vacca, Clin. Chim. Acta, 77 (1977) 37-42.
- 613 O. Vesterberg and L. Hansen, Biochem. Biophys. Res. Commun., 80 (1978) 519-525.
- 614 M. A. Winkler and B. G. Sanders, *Immunochemistry*, 14 (1977) 615-619.
- 615 B. K. Seon and D. Pressman, Biochemistry, 17 (1978) 2815-2820.
- 616 J. Krejci, J. Pekarek, L. Rozprimova, J. Svejcar and J. Johanovsky, *Immunology*, 31 (1976) 283-286.
- 617 H. G. Remold and A. D. Mednis, J. Immunol., 118 (1977) 2015–2019.
- 618 N. N. Voitenok, N. V. Varivotskaya, P. P. Murzenok and N. D. Potemkina, *Byull. Eksp. Biol. Med.*, 82 (1976) 963–965.
- 619 A. M. Mendzheritskij, I. B. Vovchenko and K. B. Sherstnev, *Biokhimiva*, 44 (1979) 177–180.
- 620 J. G. Fosmire and W. D. Brown, Comp. Biochem. Physiol., 55B (1976) 293-299.
- 621 T. Itoh, H. Satoh and S. Adachi, Comp. Biochem. Physiol., 55B (1976) 559-561.
- 622 R. E. Weber, E. A. Hemmingsen and K. Johansen, Comp. Biochem. Physiol., 49B (1974) 197-214.
- 623 K. Yagi and H. Kuwayama, J. Biochem., 81 (1977) 977-988.
- 624 D. L. Cameron and A. T. Tu, Biochemistry, 16 (1977) 2546-2551.
- 625 K. Pihakaski and T. H. Iversen, J. Exp. Bot., 27 (1976) 242-258.
- 626 M. Yamaguchi and H. Fujisawa, J. Biol. Chem., 253 (1978) 8848-8853.
- 627 A. Hiwatashi, Y. Ichikawa, N. Maruya, T. Yamano and K. Aki, *Biochemistry*, 15 (1976) 3082-3087.
- 628 T. Yubisui, T. Matsuki, M. Takeshita and Y. Yoneama, J. Biochem., 85 (1979) 719-728.
- 629 T. S. A. Samy, *Biochemistry*, 16 (1977) 5573–5578.
- 630 T. S. A. Samy, J. M. Hu, J. Meienhofer, H. Lazarus and R. K. Johnson, J. Nat. Cancer Inst., 58 (1977) 1765–1770.
- 631 H. Maeda and K. Kuromizu, J. Biochem., 81 (1977) 25-35.
- 632 T. A. Beerman, R. Poon and I. H. Goldberg, Biochim. Biophys. Acta, 475 (1977) 294-306.
- 633 S. Furukawa, K. Hayashi, Biochim. Biophys. Acta, 533 (1978) 383-395.
- 634 S. Furukawa and K. Hayashi, J. Biochem., 80 (1976) 1001-1009.
- 635 L. D. Goldstein, C. P. Reynolds and J. R. Perez-Polo, Neurochem. Res., 3 (1978) 175-183.
- 636 P. Wang, S. W. Tanenbaum and M. Flashner, Biochim. Biophys. Acta, 523 (1978) 170-180.
- 637 N. P. Groome and G. Belyavin, *Anal. Biochem.*, 63 (1975) 249-254.
- 638 S. G. Sharoyan, A. A. Shaljian, R. M. Nalbandyan and H. C. Buniatian, *Biochim. Biophys. Acta*, 493 (1977) 478–487.
- 639 M. J. Brownstein, A. G. Robinson and H. Gainer, *Nature (London)*, 269 (1977) 259-260.
- 640 M. R. Hanley, V. A. Eterovic, S. P. Hawkes, A. J. Hebert and E. L. Bennett, *Biochemistry*, 16 (1977) 5840–5845.
- 641 A. T. Tu, T. S. Lin and A. L. Bieber, *Biochemistry*, 14 (1975) 3408-3413.
- 642 M. Ovadia, E. Kochva and B. Moav, Biochim. Biophys. Acta, 491 (1977) 370-386.
- 643 R. D. Oswald and J. A. Freeman, J. Biol. Chem., 254 (1979) 3419-3426.
- 644 S. Seki-Chiba and M. Ishimoto, J. Biochem., 82 (1977) 1663–1671.
- 645 S. Seki, M. Hagiwara, K. Kudo and M. Ishimoto, J. Biochem., 85 (1979) 833-838.
- 646 D. Kleiner and C. H. Chen, Arch. Microbiol., 98 (1974) 93-100.
- 647 P. C. Hallenbeck, P. J. Kostel and J. R. Benemann, Eur. J. Biochem., 98 (1979) 275–284.

- 648 H. S. Lee, A. R. Schulz and R. W. Fuller, Arch. Biochem. Biophys., 185 (1978) 222-227.
- 649 G. W. Rushizky, V. A. Shaternikov, J. H. Mozejko and H. A. Sober, *Biochemistry*, 14 (1975) 4221–4227.
- 650 T. Uozumi, K. Ishino, T. Beppu and K. Arima, J. Biol. Chem., 251 (1976) 2808-2813.
- 651 G. W. Koszalka and T. A. Krenitsky, J. Biol. Chem., 254 (1979) 8185–8193.
- 652 T. Ishibashi, S. Gasa, I. Ohkubo and A. Makita, Biochim. Biophys. Acta, 525 (1978) 265-274.
- 653 G. Ghangas and G. H. Reem, J. Biol. Chem., 254 (1979) 4233–4240.
- 654 S. Kit, W. C. Leung, D. Trkula and D. R. Dubbs, Arch. Biochem. Biophys., 169 (1975) 66–76.
- 655 H. G. Bernstein and H. Luppa, *Histochemistry*, 56 (1978) 341-343.
- 656 I. H. Fox and P. J. Marchant, Can. J. Biochem., 54 (1976) 462-469.
- 657 M. Grieshaber, E. Kroning and R. Koormann, Hoppe-Seyler's Z. Physiol. Chem., 359 (1978) 133-136.
- 658 J. R. Pasqualini and C. Cosquer-Clavreul, Experientia, 34 (1978) 268-269.
- 659 A. I. Coffer and R. J. B. King, Biochem. Soc. Trans., 2 (1974) 1269-1272.
- 660 C. J. Lusty, R. L. Jilka and E. H. Nietsch, J. Biol. Chem., 254 (1979) 10030–10036.
- 661 F. Kalousek, B. François and L. E. Rosenberg, J. Biol. Chem., 253 (1978) 3939–3944.
- 662 D. L. Pierson, S. L. Cox and B. E. Gilbert, J. Biol. Chem., 252 (1977) 6464-6469.
- 663 F. Ibuki and M. Kanamori, Sci. Rep. Kvoto Pref. Univ. Agr., 29 (1977) 95 100.
- 664 D. J. Creighton and I. A. Rose, *J. Biol. Chem.*, 251 (1976) 69–72.
- 665 D. L. Simpson, S. D. Rosen and S. H. Barondes, Biochim. Biophys. Acta, 412 (1975) 109-119.
- 666 A. Kervabon, B. Albert and A. H. Etémadi, Biochimie, 59 (1977) 23-32.
- 667 R. Kalervo Airas, E. A. Hietanen and V. T. Nurmikko, *Biochem. J.*, 157 (1976) 409–413.
- 668 R. A. Rosenberg, S. A. Muzaffar and T. M. Murray, Clin. Res., 25 (1977) 684-684.
- 669 H. E. Blum, P. Lehky, L. Kohler, E. A. Stein and E. H. Fischer, J. Biol. Chem., 252 (1977) 2834-2838.
- 670 C. Gosselin-Rey and C. Gerday, Biochim. Biophys. Acta, 492 (1977) 53-63.
- 671 J. I. Closset and C. Gerday, Comp. Biochem. Physiol., 55B (1976) 537–542.
- 672 H. Delincée, J. Food Chem., 2 (1978) 71-85.
- 673 S. Ishii and K. Kiho, *Phytopathology*, 66 (1976) 1077-1081.
- 674 L. A. Bentle and H. A. Lardy, J. Biol. Chem., 252 (1977) 1431–1440.
- 675 P. G. Righetti, B. M. Molinari and G. Molinari, J. Dairy Res., 44 (1977) 69-72.
- 676 M. Sugiura, Y. Ito, K. Hirano and S. Sawaki, Biochim. Biophys. Acta, 481 (1977) 578-585.
- 677 M. D. Mazau, C.R. Acad. Sci., Ser. D, 283 (1976) 777-780.
- 678 G. Krüger and E. Pfeil, Arch. Microbiol., 109 (1976) 175-179.
- 679 C. R. Curtis, R. K. Howell and D. F. Kremer, Environ. Pollut., 11 (1976) 189-194.
- 680 H. Delincée and B. J. Radola, Eur. J. Biochem., 52 (1975) 321-330.
- 681 R. D. Sekura and W. B. Jakoby, J. Biol. Chem., 254 (1979) 5658-5663.
- 682 H. Nakata, T. Yamauchi and H. Fujisawa, J. Biol. Chem., 254 (1979) 1829-1833.
- 683 A. Tourian, Biochem. Biophys. Res. Commun., 68 (1976) 51-55.
- 684 J. Acton and S. Gupta, Proc. Aust. Biochem. Soc., 10 (1977) 20-20.
- 685 Y. Minatogawa, T. Noguchi and R. Kido, Hoppe-Seyler's Z. Physiol. Chem., 358 (1977) 59-67.
- 686 J. Vater and H. Kleinkauf, *Biochim. Biophys. Acta*, 429 (1976) 1062-1072.
- 687 T. C. Tseng, Bot. Bull. Acad. Sin., 17 (1976) 111-125.
- 688 G. M. Helmkamp, Jr., S. A. Nelemans and K. W. A. Wirtz, *Biochim. Biophys. Acta*, 424 (1976) 168–182.
- 689 H. Shinshi, K. Kato, M. Miwa, T. Matsushima, M. Noguchi and T. Sugimura, Biochim. Biophys. Acta, 495 (1977) 71–76.
- 690 P. R. Flanagan and S. H. Zbarsky, Biochim. Biophys. Acta, 480 (1977) 204-218.
- 691 K. Kakii and Y. Yoshida, J. Biochem., 81 (1977) 1691-1697.
- 692 S. Kanaya and H. Yoshida, J. Biochem., 85 (1979) 791-797.
- 693 W. A. Simon and H. W. Hofer, *Biochim. Biophys. Acta*, 481 (1977) 450-462.
- 694 G. C. Ross, Proc. Anal. Div. Chem. Soc., 14 (1977) 76-79.
- 695 B. E. Tilley, R. W. Gracy and S. G. Welch, J. Biol. Chem., 249 (1974) 4571–4579.
- 696 G. A. Grant, L. M. Keefer and R. A. Bradshaw, J. Biol. Chem., 253 (1978) 2724-2726.
- 697 G. A. Grant and R. A. Bradshaw, J. Biol. Chem., 253 (1978) 2727-2731.
- 698 R. A. Stinson, *Biochemistry*, 13 (1974) 4523–4528.
- 699 R. A. Stinson, *Biochem. J.*, 167 (1977) 65–75.

- 700 M. Ali and Y. S. Brownstone, *Biochim. Biophys. Acta*, 445 (1976) 74-88.
- 701 L. F. Hass, R. H. Sheibley, W. K. Kappel and K. B. Miller, *Biochem. Biophys. Res. Commun.*, 72 (1976) 976–981.
- 702 K. Watanabe and E. Freese, Abstr. Annu. Meet. Amer. Soc. Microbiol., 77 (1977) 165-165.
- 703 J. T. Christeller and N. E. Tolbert, J. Biol. Chem., 253 (1978) 1780–1785.
- 704 C. H. Tsai and L. M. Henderson, J. Biol. Chem., 249 (1974) 5784-5789.
- A. Evenberg, H. Meyer, H. M. Verheji and G. H. De Haas, *Biochim. Biophys. Acta*, 491 (1977) 265– 274.
- 706 G. A. Boffa, M. C. Boffa and J. J. Winchenne, *Biochim. Biophys. Acta*, 429 (1976) 828-838.
- 707 M. Nishjima, S. Nakaike, Y. Tamori and S. Nojima, Eur. J. Biochem., 73 (1977) 115-124.
- 708 R. S. Garutskas, A. A. Glemzha and V. V. Kulene, *Biokhimiya*, 42 (1977) 1910–1918.
- 709 S. Imamura and Y. Horiuti, J. Biochem., 85 (1979) 79-95.
- 710 M. Heller, N. Mozes, I. Peri and E. Maes, Biochim. Biophys. Acta, 369 (1974) 397-410.
- 711 C. Lutton and D. B. Zilversmit, *Biochim. Biophys. Acta*, 441 (1976) 370–379.
- 712 L. W. Johnson and D. B. Zilversmit, Biochim. Biophys. Acta, 375 (1975) 165-175.
- 713 P. E. DiCorleto, J. B. Warach and D. B. Zilversmit, J. Biol. Chem., 254 (1979) 7795–7802.
- 714 G. M. Helmkamp, Jr., M. S. Harvey, K. W. Wirtz and L. L. M. Van Deenen, J. Biol. Chem., 249 (1974) 6382–6389.
- 715 B. Bloj and D. B. Zilversmit, J. Biol. Chem., 252 (1977) 1613–1619.
- 716 M. Jonsson, S. Fredriksson, M. Jontell and A. Linde, J. Chromatogr., 157 (1978) 235-242.
- 717 E. Miller, B. Fredholm, R. E. Miller, D. Steinberg and S. E. Mayer, *Biochemistry*, 14 (1975) 2470–2476.
- 718 D. Gratecos, T. C. Detwiler, S. Hurd and E. H. Fischer, *Biochemistry*, 16 (1977) 4812–4817.
- 719 R. Rangel-Aldao, J. W. Kupiec and O. M. Rosen, J. Biol. Chem., 254 (1979) 2499-2508.
- 720 A. G. Tomaselli, R. H. Schirmer and L. H. Noda, Eur. J. Biochem., 93 (1979) 257-262.
- 721 A. N. Glazer and C. S. Hixson, J. Biol. Chem., 250 (1975) 5487–5495.
- 722 E. Mörschel and W. Wehrmeyer, Arch. Microbiol., 113 (1977) 83-89.
- 723 E. Köst-Reyes and H. P. Köst, Eur. J. Biochem., 102 (1979) 83-91.
- 724 B. Ersson, *Biochim, Biophys. Acta*, 494 (1977) 51–60.
- 725 C. Entlicher and J. Kocourek, Biochim. Biophys. Acta, 393 (1975) 165-169.
- 726 D. Every, J. Gen. Microbiol., 115 (1979) 309-316.
- 727 G. E. Siefring, Jr. and J. F. Castellino, J. Biol. Chem., 249 (1974) 7742–7746.
- 728 G. Markus, J. L. Evers and G. H. Hobika, J. Biol. Chem., 253 (1978) 733-739.
- 729 J. E. Fräki, B. M. Djusund and V. K. Hopsu-Havu, Arch. Dermatol. Res., 261 (1978) 259-266.
- 730 B. R. Binder, J. Spragg and K. F. Austen, J. Biol. Chem., 254 (1979) 1998–2003.
- 731 M. C. Wu, G. K. Arimura and A. A. Yunis, *Biochemistry*, 16 (1977) 1908–1913.
- 732 A. Karinuma, H. Sugino, N. Moriya and M. Isono, J. Biol. Chem., 253 (1978) 1529-1537.
- 733 Z. Avnur, I. Nathan, A. Dvilansky and A. Livne, Isr. J. Med. Sci., 13 (1977) 264-271.
- 734 S. Niewiarowski, P. James, B. Rucinski, K. G. Varma, F. Kueppers and D. A. Walz, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 38 (1979) 1206–1206.
- 735 A. Hamann, J. Gen. Virol., 38 (1978) 567–570.
- 736 E. Hölttä, Biochemistry, 16 (1977) 91–96.
- 737 A. Pellicer, J. Salas and M. L. Salas, *Biochim. Biophys. Acta*, 519 (1978) 149–162.
- 738 T. Kristensen and J. Holtlund, Eur. J. Biochem., 88 (1978) 495-501.
- 739 C. Tsopanakis, E. Leeson, A. Tsopanakis and S. Shall, Eur. J. Biochem., 90 (1978) 337-345.
- 740 F. Hishinuma, K. Hirai and K. Sakaguchi, Eur. J. Biochem., 77 (1977) 575–583.
- 741 S. J. Tonn, G. E. Gogel and P. A. Loach, *Biochemistry*, 16 (1977) 877-881.
- 742 J. C. Chuat, J. Gen. Virol., 38 (1977) 169-173.
- 743 P. Thomas, H. Delincée and J. F. Diehl, Anal. Biochem., 88 (1978) 138-148.
- 744 R. O. Poyton and E. McKemmie, J. Biol. Chem., 254 (1979) 6763-6771.
- 745 Y. Watanabe, N. Hamada, M. Morita and Y. Tsujisaka, Arch. Biochem. Biophys., 174 (1976) 575-581.
- 746 H. Tokunaga, M. Tokunaga and T. Nakae, Eur. J. Biochem., 95 (1979) 433-439.
- 747 T. Yoshimoto, R. C. Orlowski and R. Walter, *Biochemistry*, 16 (1977) 2942–2949.
- 748 T. Yoshimoto and R. Walter, *Biochim. Biophys. Acta*, 485 (1977) 391–401.
- 749 B. C. Reed and H. C. Rilling, *Biochemistry*, 14 (1975) 50–56.
- 750 K. Pollow, R. Sinnecker, M. Schmidt-Gollwitzer, E. Boquoi and B. Pollow, *J. Mol. Med.*, 2 (1977) 69–82.

- 751 P. A. Boyd and T. C. Spelberg, Biochemistry, 18 (1979) 3679-3684.
- 752 H. Nishigori and D. Toft, J. Biol. Chem., 254 (1979) 9155-9160.
- 753 J. A. Gustafsson, N. Einhorn, G. Elfström, B. Nordenskjöld and O. Wrange, in W. L. McGuire (Editor), Progesterone Receptors in Normal and Neoplastic Tissues, Raven Press, New York, 1977, pp. 299–311.
- 754 P. Rathnam, L. Cederqvist and B. B. Saxena, Biochim. Biophys. Acta, 492 (1977) 186-193.
- 755 M. Ben-David and A. Chrambach, Endocr. Res. Commun., 1 (1974) 193-210.
- 756 A. F. Akrawi and G. S. Bailey, *Biochim. Biophys. Acta*, 422 (1976) 170–178.
- 757 R. A. Berg, N. L. Kedersha and N. A. Guzman, J. Biol. Chem., 254 (1979) 3111-3118.
- 758 G. J. Roth, N. Stanford, J. W. Jacobs and P. W. Majerus, *Biochemistry*, 16 (1977) 4244-4249.
- 759 W. Heyns, B. Peeters, J. Mous, W. Rombauts and P. De Moor, Eur. J. Biochem., 89 (1978) 181–186.
- 760 K. D. Hasche, W. Schaeg, H. Blobel and J. Brückler, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hvg., Abt. 1, Orig., Reihe A, 238 (1977) 300–309.
- 761 H. Delincée, *J. Food Chem.*, 2 (1978) 49–69.
- 762 D. V. Shepard and K. G. Moore, Eur. J. Biochem., 91 (1978) 263-268.
- 763 P. J. Du Toit, Biochim. Biophys. Acta, 429 (1976) 895-911.
- 764 M. Järvinen, Acta Chem. Scand., B30 (1976) 933-940.
- 765 D. L. R. Hwang, K. T. D. Lin, W. K. Yang and D. E. Foard, *Biochim. Biophys. Acta*, 495 (1977) 369–382.
- 766 V. V. Mosolov, N. V. Fedurkina and T. A. Valueva, Biochim. Biophys. Acta, 522 (1978) 187-194.
- 767 B. A. Dale, Biochim. Biophys. Acta, 491 (1977) 193-204.
- 768 J. Hosoda and H. Moise, J. Biol. Chem., 253 (1978) 7547-7555.
- 769 M. E. Christensen, A. L. Beyer, B. Walker and W. M. LeStourgeon, Biochem. Biophys. Res. Commun., 74 (1977) 621–629.
- 770 I. Novak-Hofer and P. A. Siegenthaler, Biochim. Biophys. Acta, 468 (1977) 461-471.
- 771 R. Lindmark, J. Movitz and J. Sjöquist, Eur. J. Biochem., 74 (1977) 623-628.
- 772 H. W. Lee, S. Kim and W. K. Paik, *Biochemistry*, 16 (1977) 78-84.
- 773 T. Saheki, Y. Matsuda and H. Holzer, Eur. J. Biochem., 47 (1974) 325-332.
- 774 M. L. Rhoads, R. D. Romanowski, R. F. Doherty and K. K. Stewart, J. Biol. Chem., 253 (1978) 1639–1642.
- 775 A. Dubin, Eur. J. Biochem., 73 (1977) 429-435.
- 776 D. J. Etherington, P. B. Newman, R. H. Dainty and S. M. Partridge, *Biochim. Biophys. Acta*, 445 (1976) 739–752.
- 777 J. Weiss, P. Elsbach, I. Olsson and H. Odeberg, J. Biol. Chem., 253 (1978) 2664–2672.
- 778 J. C. Gray, S. D. Kung and S. G. Wildman, Arch. Biochem. Biophys., 185 (1978) 272-281.
- 779 M. Sommarin and B. Jergil, Eur. J. Biochem., 88 (1978) 49-60.
- 780 K. A. Peters, J. G. Demaille and E. H. Fischer, Biochemistry, 16 (1977) 5691-5696.
- 781 I. Uno, T. Ueda and P. Greengard, J. Biol. Chem., 252 (1977) 5164-5174.
- 782 A. Salokangas, K. Talmadge, E. Bechtel, U. Eppenberger and A. Chrambach, Eur. J. Biochem., 73 (1977) 401–409.
- 783 J. G. Demaille, K. A. Peters and E. H. Fischer, *Biochemistry*, 14 (1974) 3080–3085.
- 784 L. C. Huang and C. H. Huang, Biochemistry, 14 (1975) 18-22.
- 785 Y. Takai, H. Yamamura and Y. Nishizuka, J. Biol. Chem., 249 (1974) 530-535.
- 786 G. N. Gill, G. M. Walton and P. J. Sperry, J. Biol. Chem., 252 (1977) 6443-6449.
- 787 M. Shoji, N. L. Brackett, J. Tse, R. Shapira and J. F. Kuo, J. Biol. Chem., 253 (1978) 3427-3434.
- 788 R. D. Walter, Biochim. Biophys. Acta, 429 (1976) 137-146.
- 789 R. C. Marshall and R. J. Blagrove, J. Chromatogr., 172 (1979) 351-356.
- 790 M. Cunningham and E. H. Beachey, *J. Immunol.*, 115 (1975) 1002–1008.
- 791 A. Barrieux and M. G. Rosenfeld, J. Biol. Chem., 254 (1979) 8087-8090.
- 792 R. G. DiScipio and E. W. Davie, *Biochemistry*, 18 (1979) 899–904.
- 793 E. Paltauf, Eur. J. Biochem., 85 (1978) 263-270.
- 794 A. S. Tompa, K. M. Wilbur and J. H. Waite, Comp. Biochem. Physiol., 56B (1977) 279-283.
- 795 K. Hashimoto and B. Simizu, Arch. Virol., 60 (1979) 299-309.
- 796 J. Carlstedt-Duke, G. Elfström, M. Snochowski, B. Högberg and J. A. Gustafsson, *Toxicol. Lett.*, 2 (1978) 365–373.
- 797 M. Draper, M. B. Lees and D. S. Chan, J. Neurochem., 31 (1978) 1095-1099.
- 798 M. Draper, M. B. Lees and D. S. Chan, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 37 (1978) 1630-1630.

- 799 A. Delbrück and E. Henkel, Eur. J. Biochem., 99 (1979) 65-69.
- 800 P. K. Saini and I. H. Rosenberg, J. Biol. Chem., 249 (1974) 5431-5434.
- 801 K. C. Agarwal, P. R. Agarwal, J. D. Stoeckler and R. E. Parks, Jr., Biochemistry, 14 (1975) 79-85.
- 802 L. J. Gudas, V. I. Zannis, S. M. Clift, A. J. Ammann, G. E. J. Staal and D. W. Martin, Jr., J. Biol. Chem., 253 (1978) 8916–8924.
- 803 V. Zannis, D. Doyle and D. W. Martin, Jr., J. Biol. Chem., 253 (1978) 504-510.
- 804 M. H. Van Woert, L. C. Yip and M. E. Balis, N. Engl. J. Med., 296 (1977) 210-212.
- 805 N. Tominaga and T. Mori, J. Biochem., 81 (1977) 477-483.
- 806 V. N. Kasho and S. M. Avaeva, Int. J. Biochem., 9 (1978) 51-56.
- 807 J. Kwiatkowska, B. Torain and G. G. Glenner, J. Biol. Chem., 249 (1974) 7729-7736.
- 808 M. Kapoor, M. O'Brien and A. Braun, Can. J. Biochem., 54 (1976) 398-407.
- 809 A. E. Aust and C. H. Suelter, J. Biol. Chem., 253 (1978) 7508-7512.
- 810 J. M. Cardenas, E. G. Blachly, P. L. Ceccotti and R. D. Dyson, *Biochemistry*, 14 (1975) 2247–2251.
- 811 K. B. Storey and P. W. Hochachka, J. Biol. Chem., 249 (1974) 1423-1427.
- 812 E. A. Kohl and G. L. Cottam, *Biochim. Biophys. Acta*, 484 (1977) 49-58.
- 813 E. R. Hall, E. A. Kohl and G. L. Cottam, Biochem. Biophys. Res. Commun., 80 (1978) 586-592.
- 814 C. Guguen-Guillouzo, M. F. Szajnert, J. Marie, D. Delain and F. Schapira, *Biochemie*, 59 (1977) 65 71.
- 815 L. Berglund, O. Ljungstrom and L. Engström, J. Biol. Chem., 252 (1977) 6108-6111.
- 816 J. Marie, A. Kahn and P. Boivin, *Biochim. Biophys. Acta*, 438 (1976) 393-406.
- 817 T. A. O'Brien, H. L. Schrock, P. Russell, R. Blake, II and R. B. Gennis, *Biochim. Biophys. Acta*, 452 (1976) 13–29.
- 818 T. I. Morales and J. F. Woessner, Jr., J. Biol. Chem., 252 (1977) 4855-4860.
- 819 J. L. Barea and N. H. Giles, Biochim. Biophys. Acta, 524 (1978) 1-14.
- 820 D. F. Mann and R. U. Byerrum, J. Biol. Chem., 249 (1974) 6817-6823.
- 821 P. J. Jewess, B. S. Clarke and J. F. Donnellan, Croat. Chem. Acta, 47 (1975) 459-464.
- 822 P. G. C. Douch, Xenobiotica, 6 (1976) 531-536.
- 823 F. X. Galen, C. Devaux, T. Guyenne, J. Menard and P. Corvol, J. Biol. Chem., 254 (1979) 4848-4854
- 824 K. E. Lentz, F. E. Dorer, J. R. Kahn, M. Levine and L. T. Skeggs, Clin. Chim. Acta, 83 (1978) 249-257.
- 825 C. Devaux, J. Menard, P. Sicard and P. Corvol, Eur. J. Biochem., 64 (1976) 621-627.
- 826 T. Inagami and K. Murakami, J. Biol. Chem., 252 (1977) 2978-2983.
- 827 P. J. Sicard, G. Minlonier and M. Smagghe, Prep. Biochem., 8 (1978) 19-36.
- 828 M. P. Printz and R. T. Dworschack, Biochim. Biophys. Acta, 494 (1977) 162-171.
- 829 H. Kalsta and M. Kreula, Meijeritiet. Aikak., 34 (1976) 41–59.
- 830 P. J. De Koning and J. T. M. Draaisma, Neth. Milk Dairy J., 27 (1973) 368-375.
- 831 A. C. Ross, Y. I. Takahashi and D. W. S. Goodman, J. Biol. Chem., 253 (1978) 6591-6598.
- 832 C. V. Abraham and S. Bakerman, Sci. Tools, 24 (1977) 22-24.
- 833 C. V. Abraham and S. Bakerman, Clin. Chim. Acta, 76 (1977) 177-181.
- 834 J. J. Plantner and E. L. Kean, Fed. Proc., 5 (1977) 45-45.
- 835 S. A. Shukolyukov, E. P. Chizhevich, V. P. Korchagin, V. V. Osipov, V. A. Tyurin and Y. V. Fedosov, *Biokhimiya*, 41 (1976) 61-66.
- 836 H. Kühn and J. H. McDowell, Biophys. Struct. Mech., 3 (1977) 199-203.
- 837 C. M. Tsiapalis, J. W. Dorson and J. F. Bollum, J. Biol. Chem., 250 (1975) 4486-4496.
- 838 K. K. Reddi, Prep. Biochem., 7 (1977) 283-299.
- 839 K. K. Reddi, Fed. Proc., Fed. Amer. Soc. Exp. Biol., 36 (1977) 907-907.
- 840 N. Beopoulos, R. Esnault and J. F. Buri, *Biochim. Biophys. Acta*, 517 (1978) 216-227.
- 841 B. Baumgartner and P. Matile, Z. Pflanzenphysiol., 82 (1977) 371-374.
- 842 D. Pilly, A. Niemeyer, M. Schmidt and J. P. Bargetzi, J. Biol. Chem., 253 (1978) 437-445.
- 843 P. Blackburn, G. Wilson and S. Moore, J. Biri. Chem., 252 (1977) 5904–5910.
- 844 J. C. Gray, S. D. Kun, S. G. Wildman and S. J. Shen, *Nature (London)*, 252 (1974) 226-227.
- 845 A. Barrieux and M. G. Rosenfeld, J. Biol. Chem., 252 (1977) 392-398.
- 846 M. G. Rosenfeld and A. Barrieux, *Biochemistry*, 16 (1977) 514–520.
- 847 M. D. Rosa and P. B. Sigler, Eur. J. Biochem., 78 (1977) 141-151.
- 848 P. Schofield and K. R. Williams, J. Biol. Chem., 252 (1977) 5584–5588.
- 849 J. M. Buhler, F. Iborra, A. Sentenac and P. Fromageot, J. Biol. Chem., 251 (1976) 1712-1717.

- 850 S. W. May and J. Y. Kuo, J. Biol. Chem., 252 (1977) 2390–2395.
- 851 H. Ogawa and M. Fujioka, J. Biol. Chem., 253 (1978) 3666-3670.
- 852 S. H. Parry and P. Porter, *Immunology*, 34 (1978) 471–476.
- 853 Y. Banno, H. P. Morris and N. Katunuma, Eur. J. Biochem., 97 (1979) 11-21.
- 854 E. P. Fischer and K. S. Thomson, J. Biol. Chem., 254 (1979) 50-56.
- 855 T. Noguchi, Y. Takada and R. Kido, *Biochem. J.*, 161 (1977) 609-614.
- 856 J. A. Alhadeff, G. Cimino, A. Janowsky and J. S. O'Brien, *Biochim. Biophys. Acta*, 484 (1977) 307–321.
- 857 T. Stigbrand, A. Eriksson and L. E. Thornell, Biochim. Biophys. Acta, 577 (1979) 52-60.
- 858 T. Stigbrand, A. Eriksson and L. E. Thornell, Biochim. Biophys. Acta, 577 (1979) 52-60.
- 859 J. T. M. Neilson, Expt. Parasitol., 44 (1978) 225–232.
- 860 R. H. Chochinov, I. K. Mariz and W. H. Daughaday, Endocrinology, 100 (1977) 549-554.
- 861 C. J. Hsu, A. Lemay, Y. Eshdat and V. T. Marchesi, J. Supramol. Struct., 10 (1979) 227-239.
- 862 A. D. Roses, M. Herbstreith, B. Metcalf and S. H. Appel, J. Neurol. Sci., 30 (1976) 167-178.
- 863 H. Ohtake, J. Exp. Zool., 198 (1976) 313-322.
- 864 H. Ikezawa, M. Mori, T. T. Ohyabu and R. Taguchi, *Biochim. Biophys. Acta*, 528 (1978) 247–256.
- G. T. N. Besley, FEBS Lett., 80 (1977) 71–74.
 J. W. Callahan, M. Khalil and J. Gerrie, Biochem. Biophys. Res. Commun., 58 (1974) 381–386.
- 867 R. W. Coombs, J. A. Verpoorte and K. B. Easterbrook, *Biochim. Biophys. Acta*, 535 (1978) 370–387.
- 868 L. Uotila, J. Biol. Chem., 254 (1979) 7024-7030.
- 869 B. M. Bas, A. D. Muller and H. C. Hemker, Biochim. Biophys. Acta, 379 (1974) 164-171.
- 870 K. Kobayashi and C. D. Kochakian, J. Biol. Chem., 253 (1978) 3635-3642.
- 871 R. Irving and W. I. P. Mainwaring, *J. Steroid Biochem.*, 5 (1974) 711–716.
- 872 D. Revie and M. E. Dahmus, *Biochemistry*, 18 (1979) 1813–1819.
- 873 H. Mizukami, H. Nordlöv, S. L. Lee and A. I. Scott, *Biochemistry*, 18 (1979) 3760–3766.
- 874 L. Vitale and S. Gamulin, Int. J. Biochem., 6 (1975) 165-171.
- 875 R. E. Huber and R. D. Mathison, Can. J. Biochem., 54 (1976) 153-164.
- 876 L. J. Chen, R. J. Bolt and W. H. Admirand, *Biochim. Biophys. Acta*, 480 (1977) 219–227.
- 877 Y. Eto, U. Wiesmann and N. N. Herschkowitz, J. Biol. Chem., 249 (1974) 4955-4960.
- 878 J. B. Ferguson and K. Bloch, J. Biol. Chem., 252 (1977) 5381–5385.
- 879 J. M. Fernandez-Sousa and A. M. Michelson, Biochem. Biophys. Res. Commun., 73 (1976) 217-223.
- 880 H. P. Misra and I. Fridovich, J. Biol. Chem., 252 (1977) 6421-6423.
- 881 J. Lumsden and D. O. Hall, *Biochem. Biophys. Res. Commun.*, 58 (1974) 35-41.
- 882 O. S. Brusov and A. M. Gerasimov, Int. J. Biochem., 8 (1977) 343-346.
- 883 B. Surholt, Eur. J. Biochem., 93 (1979) 279-285.
- 884 L. Hübner, G. Müller, A. Schimpl and E. Wecker, *Immunochemistry*, 15 (1978) 33–39.
- 885 L. U. L. Tan, E. J. Drury and R. E. MacKenzie, J. Biol. Chem., 252 (1977) 1117-1122.
- 886 A. G. M. Pearson and J. A. Turner, *Nature (London)*, 258 (1975) 173–174.
- 887 W. Rosner and R. N. Smith, *Biochemistry*, 14 (1975) 4813–4818.
- 888 T. Nishimune and R. Hayashi, Bull. Yamaguchi Med. School, 20 (1973) 10-20.
- 889 C. C. Chen, B. L. B. McCall and E. C. Moore, *Prep. Biochem.*, 7 (1977) 165-177.
- 890 F. Brosstad, *Thromb. Res.*, 11 (1977) 119–130.
- 891 J. W. Fenton, II, M. J. Fasco, A. B. Stackrow, D. L. Aronson, A. M. Young and J. S. Finlayson, J. Biol. Chem., 252 (1977) 3587–3598.
- 892 M. S. Chen and W. H. Prusoff, J. Biol. Chem., 253 (1978) 1325–1327.
- 893 T. Haertlé, F. Wohlrab and W. Guschlbauer, Eur. J. Biochem., 102 (1979) 223-230.
- 894 K. H. Cook and E. C. Friedberg, *Biochemistry*, 17 (1978) 850-855.
- 895 T. L. K. Low, G. B. Thurman, M. McAdoo, J. McClure, L. J. Rossio, P. H. Naylor and A. L. Godstein, J. Biol. Chem., 254 (1979) 981-986.
- 896 B. R. Webster, B. C. W. Hummel, J. M. McKenzie, G. M. Brown and J. C. Paice, in M. Margoulies and F. C. Greenwood (Editors), Structure—Activity Relationships of Protein and Polypeptide Hormones, Elsevier-Excerpta Medica, Amsterdam, 1973, pp. 369–378.
- 897 J. H. Rupnow, W. L. Taylor and J. E. Dixon, *Biochemistry*, 18 (1979) 1206–1212.
- 898 R. Pflüger, W. Scharmann and H. Blobel, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., Abt. 1, Orig., Reihe A, 233 (1975) 236–244.
- 899 T. Sugahara, T. Takahashi, S. Yamaya and A. Ohsaka, Toxicon, 15 (1977) 81-87.
- 900 M. Watanabe and I. Kato, *Biochim. Biophys. Acta*, 535 (1978) 388-400.

- R. P. Wright, T. K. Chan, L. Honetschlager, D. E. Howell and G. V. Odell, *Toxicon*, 15 (1977) 197– 205.
- 902 G. Tixier and J. E. Alouf, Ann. Microbiol., 127B (1976) 509-524.
- 903 J. P. Arbuthnott and B. Billcliffe, J. Med. Microbiol., 9 (1976) 191-201.
- 904 R. Linder, A. W. Bernheimer and K. S. Kim, Biochim. Biophys. Acta, 467 (1977) 290-300.
- 905 J. B. Bjarnason and A. T. Tu, *Biochemistry*, 17 (1978) 3395–3404.
- 906 B. J. Visser, W. Spanjer, H. De Klonia, T. Piek and C. Van Der Meer, *Toxicon*, 14 (1976) 357–370.
- 907 P. M. Schlievert, K. M. Bettin and D. W. Watson, *Infect. Immun.*, 16 (1977) 673-679.
- 908 H. Schutt and K. Brand, Arch. Biochem. Biophys., 169 (1975) 287-297.
- 909 G. Marcoullis, E. M. Salonen and R. Gräsbeck, Biochim. Biophys. Acta, 534 (1978) 48-57.
- 910 J. Lindemans, J. Van Kapel and J. Abels, Biochim. Biophys. Acta, 579 (1979) 40-51.
- 911 P. Kühnl and W. Spielman, Hum. Genet., 50 (1979) 193-198.
- 912 P. Kühnl and W. Spielman, Referate 8. Int. Tagung Ges. Forensische Blutgruppenkunde e.V., (1979) 503-505.
- 913 H. G. van Hijk and W. L. van Noort, J. Clin. Chem. Clin. Biochem., 14 (1976) 475-478.
- 914 T. Abe, S. H. Chung, R. P. DiAugustine and J. E. Folk, *Biochemistry*, 16 (1977) 5495–5500.
- 915 M. Sugiura and T. Oikawa, *Biochim. Biophys. Acta*, 489 (1977) 262-268.
- 916 K. Toshima, Y. Nakaya, S. Matsumura and Y. Nishizuka, *Biochim. Biophys. Acta*, 487 (1977) 422-430.
- 917 J. L. Paznokas and A. Kaplan, *Biochim. Biophys. Acta*, 487 (1977) 405-421.
- 918 R. M. Snapka, T. H. Sawyer, R. A. Barton and R. W. Gracy, *Comp. Biochem. Physiol.*, 49B (1974) 733-741.
- 919 C. Fenner, R. Valentine, D. T. Mason and J. Wikman-Coffelt, Prep. Biochem., 5 (1975) 189–197.
- 920 M. Kanamori, F. Ibuki, M. Tashiro, M. Yamada and M. Miyoshi, J. Nutr. Sci. Vitaminol., 21 (1975) 421–428
- 921 Y. Minatogawa, T. Noguchi and R. Kido, J. Neurochem., 27 (1976) 1097-1101.
- 922 H. Feit, U. Neudeck and F. Baskin, J. Neurochem., 28 (1977) 697-706.
- 923 M. A. Alikhan, Comp. Biochem. Physiol., 54B (1976) 37-42.
- 924 B. G. Barisas and J. S. McGuire, J. Biol. Chem., 249 (1974) 3151-3156.
- 925 S. Allenmark and B. Servenius, J. Chromatogr., 153 (1978) 239-245.
- 926 T. Yamauchi and H. Fujisawa, J. Biol. Chem., 254 (1979) 503-507.
- 927 A. Hüttermann, M. Gebauer, I. Wessel and W. Hofman, *Biochim. Biophys. Acta*, 384 (1975) 493-500.
- 928 J. P. Gorski and C. B. Kasper, J. Biol. Chem., 252 (1977) 1336-1343.
- 929 P. Natalini, S. Ruggieri, I. Santarelli, A. Vita and G. Magni, J. Biol. Chem., 254 (1979) 1558-1563.
- 930 T. Noguchi, Y. Takeda and S. Fujiwara, J. Biol. Chem., 254 (1979) 5272-5275.
- 931 G. Magni, G. Pallotta, P. Natalini, S. Ruggieri, I. Santarelli and A. Vita, J. Biol. Chem., 253 (1978) 2501–2503.
- 932 M. E. Soberano, E. B. Ong, A. J. Johnson, M. Levy and G. Schoellmann, *Biochim. Biophys. Acta*, 445 (1976) 763–773.
- 933 U. R. Müller and G. L. Marchin, J. Biol. Chem., 252 (1977) 6646-6650.
- 934 B. Baumgartner and M. J. Chrispeels, Eur. J. Biochem., 77 (1977) 223-233.
- 935 G. Marcoullis and R. Gräsbeck, Scand. J. Clin. Lab. Invest., 35 (1975) 5 11.
- 936 R. Gräsbeck and G. Marcoullis, Scand. J. Clin. Lab. Invest., 35 (1975) 13-18.
- 937 U. H. Stenman, Scand. J. Haematol., 13 (1974) 129–134.
- 938 R. Bouillon, H. Van Baelen, W. Rombauts and P. de Moor, J. Biol. Chem., 253 (1978) 4426–4431.
- 939 G. Gellissen, E. Waje, E. Cohen, H. Emmerich, S. W. Applebaum and J. Flossdorf, J. Comp. Physiol., 108 (1976) 287-301.
- 940 T. Ohe and Y. Watanabe, J. Biochem., 86 (1979) 45-53.
- 941 I. V. Gorbacheva and N. A. Rodionova, Biochim. Biophys. Acta, 484 (1977) 79-93.
- 942 F. Deleyn, M. Claeyssens, J. Van Beeumen and C. K. De Bruyne, Can. J. Biochem., 56 (1978) 43-50.
- 943 P. G. Righetti, E. Gianazza, A. Viotti and C. Soave, *Planta*, 136 (1977) 115–123.
- 944 P. G. Righetti, E. Gianazza, F. Salamini, E. Galante, A. Viotti and C. Soave, in B. J. Radola and D. Graesslin (Editors), *Electrofocusing and Isotachophoresis*, De Gruyter, Berlin, 1977, pp. 199–211.
- 945 E. Gianazza, V. Viglienghi, P. G. Righetti, F. Salamini and C. Soave, *Phytochemistry*, 16 (1977) 315 317.
- 946 P. G. Righetti and T. Caravaggio, J. Chromatogr., 127 (1976) 1-28.

- 947 E. Garfield, *Nature (London)*, 264 (1976) 609–615.
- 948 S. Fredriksson, *J. Chromatogr.*, 151 (1978) 347–355.
- 949 W. J. Gelsema and C. L. de Ligny, J. Chromatogr., 130 (1977) 41-50.
- 950 W. J. Gelsema, C. L. de Ligny and N. G. van der Veen, J. Chromatogr., 140 (1977) 149-155.
- 951 H. Delincée and B. J. Radola, Anal. Biochem., 90 (1978) 609-623.

CHROMATOGRAPHIC DATA

SUPPLEMENT TO CHROMATOGRAPHIC REVIEWS 1981

COORDINATING EDITOR:

J. GASPARIČ (Hradec Králové)

EDITORS:

Z. DEYL (Prague)
M. LEDERER (Switzerland)
K. MACEK (Prague)
J. JANÁK (Brno)

ELSEVIER SCIENTIFIC PUBLISHING COMPANY
AMSTERDAM

© ELSEVIER SCIENTIFIC PUBLISHING COMPANY 1981

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Scientific Publishing Company, P.O. Box 330, 1000 AH Amsterdam, The Netherlands.

STATISTICAL **TREATMENT** OF EXPERIMENTAL

By J.R. GREEN, Lecturer in Computational and Statistical Science, University of Liverpool, U.K. and D. MARGERISON, Senior Lecturer in Inorganic, Physical and Industrial Chemistry, University of Liverpool, U.K.

PHYSICAL SCIENCES DATA 2

This book first appeared in 1977. In 1978 a revised reprint was published and in response to demand, further reprints appeared in 1979 and 1980. Intended for researchers wishing to analyse experimental data, this work will also be useful to students of statistics. Statistical methods and concepts are explained and the ideas and reasoning behind statistical methodology clarified. Noteworthy features of the text are numerical worked examples to illustrate formal results, and the treatment of many practical topics which are often omitted from standard texts, for example testing for outliers, stabilization of variances and polynomial regression.

What the reviewers had to say:

"The index is detailed; "A lot of thought has the format is good: the presentation is clear; and no mathematics beyond calculus is assumed". -CHOICE

gone into this book and I like it very much. It deserves a place on every laboratory bookshelf".

-CHEMISTRY IN BRITAIN

1977. Reprinted 1978, 1979, 1980. xiv + 382 pagesUS \$39.25/Dfl.90.00 ISBN: 0-444-41725-7

P.O. Box 211, 1000 AE Amsterdam, The Netherlands. 52 Vanderbilt Ave., New York, NY 10017.

The Dutch guilder price is definitive. US\$ prices are subject to exchange rate fluctuations.

Biomolecular Information Theory

by SERAFIN FRAGA, K.M.S. SAXENA, and MANUEL TORRES, Department of Chemistry, University of Alberta.

Studies in Physical and Theoretical Chemistry 4

Advances in computer technology have led to unforeseeable possibilities in the theoretical study of biological processes. The purpose of the present work is to review, update and summarize the applicability of molecular recognition theory in quantum biology and quantum biochemistry. The book will be particularly valuable because of its comprehensive summary (in tabular form and in figures) of all the practical information required for the theoretical construction of biopolymers and the evaluation of their interactions.

ABBREVIATED CONTENTS: I. Introduction. II. Biomolecular Information. Chapters: 1. The Code and its Origins. III. Molecular Information Theory. 2. Recognition Processes. 3. Interaction Energies. 4. Computational Simulations. IV. Appendices: Coordinates. Transformation of Coordinates. Determination of Cartesian Coordinates. Spherical Harmonics. Basic Statistical Thermodynamical Formulas. Electric Fields and Moments. Density Distributions: Population Analysis and Properties. Bond-Energy Analysis. V. References. VI. Author Index. VII. Subject Index.

1978 x + 272 pages US \$61.00 / Dfl. 125.00 ISBN 0-444-41736-2

Tritium in Organic Chemistry

Isotopes in Organic Chemistry, Volume 4

edited by E. BUNCEL, Queen's University, Kingston, Ontario, Canada, and C.C. LEE, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

with a foreword by Lars Melander.

This series is rapidly gaining recognition as an indispensible work, of value to lecturers, students, and research workers alike.

ABBREVIATED CONTENTS: Chapters: 1. Tritium Nuclear Magnetic Resonance Spectroscopy (J.A. Elvidge, J.R. Jones, V.M.A. Chambers and E.A. Evans). 2. The Use of Tritium and Deuterium in Photochemical Electrophilic Aromatic Substitution (W.J. Spillane). 3. Reactions of Energetic Tritium Atoms with Organic Compounds (Y.-N Tang). 4. Stereospecific Synthesis of Tritium Labelled Organic Compounds Using Chemical and Biological Methods (D.W. Young). Subject Index.

1978 xvi + 300 pages US \$73.25 / Dfl. 150.00 ISBN 0-444-41741-9

P.O Box 211. 1000 AE Amsterdam The Netherlands

52 Vanderbilt Ave New York, N.Y. 10017

PUBLICATION SCHEDULE FOR 1981

Journal of Chromatography (incorporating Chromatographic Reviews) and Journal of Chromatography, Biomedical Applications

MONTH	N 1980	D 1980	J	F	м	A	м	J	j	A	s	0	z	D
journal of Chromatography			203 204 205/1 205/2	206/1 206/2 206/3	207/1 207/2 207/3	208/1 208/2 209/1	209/2 209/3 210/1	210/2 210/3 211/1	211/2 211/3 212/1 212/2	212/3 213/1 213/2	213/3 214/1 214/2	214/3 215 216	217 218 219/1	219/2 219/3
Chromatographic Reviews							220/1					220/2		220/3
Biomedical Applications	221/1	221/2	222/1	222/2	222/3	223/1	223/2	224/1	224/2	224/3	225/1	225/2	226/1	226/2

INFORMATION FOR AUTHORS

(Detailed Instructions to Authors were published in Vol. 209, No. 3, pp. 501-504. A free reprint can be obtained by application to the publisher)

Types of Contributions. The following types of papers are published in the Journal of Chromatography and the section on Biomedical Applications: Regular research papers (Full-length papers), Short communications and Notes. Short communications are preliminary announcements of important new developments and will, whenever possible, be published with maximum speed. Notes are usually descriptions of short investigations and reflect the same quality of research as Full-length papers, but should preferably not exceed four printed pages. For reviews, see page 2 of cover under Submission of Papers.

Submission. Every paper must be accompanied by a letter from the senior author, stating that he is submitting the paper for publication in the *Journal of Chromatography*. Please do not send a letter signed by the director of the institute or the professor unless he is one of the authors.

Manuscripts. Manuscripts should be typed in double spacing on consecutively numbered pages of uniform size. The manuscript should be preceded by a sheet of manuscript paper carrying the title of the paper and the name and full postal address of the person to whom the proofs are to be sent. Authors of papers in French or German are requested to supply an English translation of the title of the paper. As a rule, papers should be divided into sections, headed by a caption (e.g., Summary, Introduction, Experimental, Results, Discussion, etc.). All illustrations, photographs, tables, etc. should be on separate sheets.

Introduction. Every paper must have a concise introduction mentioning what has been done before on the topic described, and stating clearly what is new in the paper now submitted.

Summary. Full-length papers and Review articles should have a summary of 50–100 words which clearly and briefly indicates what is new, different and significant. In the case of French or German articles an additional summary in English, headed by an English translation of the title, should also be provided. (Short communications and Notes are published without a summary.)

Illustrations. The figures should be submitted in a form suitable for reproduction, drawn in Indian ink on drawing or tracing paper. Each illustration should have a legend, all the legends being typed (with double spacing) together on a separate sheet. If structures are given in the text, the original drawings should be supplied. Coloured illustrations are reproduced at the author's expense, the cost being determined by the number of pages and by the number of colours needed. The written permission of the author and publisher must be obtained for the use of any figure already published. Its source must be indicated in the legend.

References. References should be numbered in the order in which they are cited in the text, and listed in numerical sequence on a separate sheet at the end of the article. Please check a recent issue for the lay-out of the reference list. Abbreviations for the titles of journals should follow the system used by Chemical Abstracts. Articles not yet published should be given as "in press", "submitted for publication", "in preparation" or "personal communication".

Proofs. One set of proofs will be sent to the author to be carefully checked for printer's errors. Corrections must be restricted to instances in which the proof is at variance with the manuscript. "Extra corrections" will be inserted at the author's expense.

Reprints. Fifty reprints of Full-length papers, Short communications and Notes will be supplied free of charge. Additional reprints can be ordered by the authors. An order form containing price quotations will be sent to the authors together with the proofs of their article.

News. News releases of new products and developments, and information leaflets of meetings should be addressed to: The Editor of the News Section, Journal of Chromatography/Journal of Chromatography, Biomedical Applications, Elsevier Scientific Publishing Company, P.O. Box 330, 1000 AH Amsterdam, The Netherlands. Advertisements. Advertisement rates are available from the publisher on request. The Editors of the journal accept no responsibility for the contents of the advertisements.

Ionic Hydration in Chemistry and Biophysics

by B.E. CONWAY, Department of Chemistry, University of Ottawa, Ontario, Canada.

STUDIES IN PHYSICAL AND THEORETICAL CHEMISTRY 12

1981 xxx+774 pages Price: US \$131.75/ Dfl. 270.00 ISBN 0-444-41974-0

This monograph is a comprehensive coverage of all aspects of ionic hydration. Not only is the nature of the phenomenon described, but also its importance in electrochemistry, inorganic and physical chemistry, biophysics and biochemistry. The basic background of techniques and approaches (e.g. electrostatic theory) required for the study and interpretation of ionic hydration in chemistry is included.

CONTENTS: Chapters. 1. Introduction. 2. Properties of the

Water Molecule, 3. Properties of Liquid Water as a Solvent for lons, 4. Scales for Ionic Radii in Gases, Crystals and Solutions. 5. Ionic Solvation in the Gas Phase. 6. Methods for Study of Solvation of Ions. 7. Infrared Spectral Studies on Ionic Hydration. 8. Raman Spectral Studies on Ionic Hydration. 9. Studies of Ionic Solvation by Nuclear and Electron Magnetic Resonance. 10. Elements of Electrostatics for Problems in Ionic Solutions. 11. Relation between Energetics of Ion Hydration and Ionic Processes in Solution. 12. "Real" Solvation Energies: Surface Potential Effects, 13. Solvation Effects in Electrode Processes and Homogeneous Ionic Solutions, 14. Ionic Hydration and the Dielectric Behaviour of Solutions. 15. Calculation of Ionic Hydration Energies, 16, Hydration of Individual Cations and Anions: Specificity of Ion-Solvent Interactions. 17. Hydration of the Proton. 18. Hydration Effects in the Concentration Dependence of Thermodynamic Properties of Electrolyte Solutions. 19. lon-Pairing and Ionic Hydration. 20. Salting-Out and Salting-In by Electrolytes in Solution. 21. Steric and Stereochemical Effects in Solvation, 22, Entropies of lons in Solution, and Hydration Entropies. 23. Solute and Solvent Structure Factors in Hydration and the Entropies of lons in Solution. 24. Hydrophobic Interactions in Ionic Hydration. 25. Electrostriction and the Partial Molal Volumes and Compressibilities of lons. 26, H₂O-D₂O Solvent Isotope Effects in Ionic Hydration. 27. Dynamical Aspects of Ionic Solvation, 28, Solvation Effects in Conductance of Electrolytic Solutions. 29. Hydration Numbers, 30. Ionic Solvation in Terms of Lewis Acid-Base Interactions. 31. Solvation in Non-Aqueous media. 32. Hydration of Ions at Interfaces in Chemistry and Biology, and the Nature of Liquid Surfaces. 33. Hydrated Ions in Active Transport Processes at Cell Membranes. 34. Hydration of Polyions of Synthetic and Biological Origin. Subject Index.

ELSEVIER

P.O.Box 211, 1000 AE Amsterdam, The Netherlands.

52 Vanderbilt Ave. New York, N.Y. 10017.

The Dutch guilder price is definitive. US\$ prices are subject to exchange rate fluctuations.

-4 กา