MINISTRY OF INDUSTRY

BANGKOK, THAILAND

DEPARTMENT OF SCIENCE

14th RTEORI

From 1947 to 1948

INTRODUCTION

This is the Fourteenth Report of the Department of Science covering the work performed during the years 1947 and 1948. Since I took over this office, four overdue reports Nos. 10 to 13 have been issued. The Fifteenth Report covering the work performed in 1949 and 1950 is expected to be pablished in 1951.

The Report is intended to make public results of scientific investigations and routine work of the Department and also to show the progress made by the Department in its aim to help develop the country scientifically.

Only certain of the more interesting resnlts are included; however those interested in other aspects or topics not published in the Report, may submit enquiries to the Department which will try its best to give satisfaction.

Dr. Charng Ratanarat

Director-General

Department of Science
Ministry of Industry
December 1950.

SCHOOL OF PRACTICAL CHEMISTRY

Director

Assistant Director

Dr. Charng Ratanarat, Dr. phil nat.
(magna cum laude)
Pue Rochanapurananda, B.S. (Chem.), Dip. Ind. Chem.

Senior Chemist
Assistant Chemist
Assistant Chemist

Sangar Sharasuvarna, C.D.A. (Hons.)
Mrs. Pathum Therawatana, B.Sc.
Miss Kamolawan Krishnachuda,
Dip. Chem.

DIIISION OF CHEMISTRY

Senior Chemist

Chemist
Chemist
Assistant Chemist

Chemist
Assistant Chemist
Assistant Chemist

Opium Dross Control Section

Surin Milindalekha, Dip. Pharm.
Miss Rungtavan Bunnag, B.S.
(Pharm.)
Chamnong Pugglanandana
Chinda Bunyamit, Dip. Chem.

Water Analysis Section

Chemist

Assistant Chemist
Assistant Chemist
Luang Vichien Dhatukarn, L.ès Sc., I.C.

Forensic Chemistry Section

Prem Banijpol, B.Sc.
Bumpen Savavasu, B.Sc.
Kchit Sankhavasi, Dip. Chem.
Metallurgy Section
Vongse Naewbanij, A.A.
Sompule Suyasinto, Dip. Chem.
Lert Sahassananda, Dip. Chem.

Assistant Chemist
Assistant Chemist

Asistant Ohomist
Pravat Isarankura Na Ayudhya, Dip. Ed.
Miss Sam-Ang Singhadeja, B.Sc.
Mrs. Tiraporn Vongsratana, Dip.

Chem.

Fuel Section

Banbota Sudhikam, B.S. (Chem.)
Chong Bunnag

General Analysis Section

Chemist
Assistant Chemist
Assistant Chemist

Assistant Chemist
Assistant Chemist

Miss Priya Chandravekin, B.Sc.
Chalad Virayodhin
Charungchantana Phalajivin, B.S. (Pharm.)
Sangob Bunyakiatti, B.S. (Pharm.)
Tekaryu Jinanavin, Dip. Chem.

DIVISION OF INDUSTRIAL CHEMISTRY

Senior Chemist	Yos Bunnag, B.Sc., M.Sc., A.R.C.S.,
D.I.C.	
Chemist	
Chemist	Mrs. Anu Osathanonda, B.S. (Bot.)
Assistant Chemist	Mrs. Snith Subsaeng, B.Sc.
	Boonyiam Meesuk, B.A. (1st. class
Assistant Chemist	Hons.), M.A., Dip. Chem. Eng.
	Riddhi Subhanka, B.Sc, B. Chem.
Assistant Chemist	Eng., M.S. (Chem. Eng.)
Assistant Chemist	Mrs. Vilai Devakul

Ceramics Section

Manoon Prachankadee, Sc.B. Chem. Mrs. Bunlom Tevayananda, B.Sc.

Food Section
Cheenist
Chemist
Assistant Chemist
Assistant Chemist
Assistant Chemist
Assistant Chemist
Mrs. Phannipa Paenpatana, B.Sc.
M.L. Anong Nila-Ubol, B.Sc.

Miss Ratsamiepen Siribaed Bisuddhi, B.S.E.
Mrs. Virada Thisyamondala
Puan Proysuwana, Dip. Chem
Nimit Verabandha, Dip. Chem.
Alcohol and Alcoholic Beverages Section

Assistant Chemist
Assistant Chemist
Assistant Chemist

Miss Viengvibha Kanakakara, B.Sc. Narong Eum-Udom, Dip. Chem.
Chamras Snkrangsan, Dip. Chem.
Chemist
Assistant Chemist
Assistant Chemist
Assistant Chemist
Assistant Chemist

Ores and Rocks Section

Assistant Chemist
Assistant Chemist
Assistant Chemist

Mrs. Sakuntala Bhodhiprasat, B.Sc.
Miss Viyada Bunyaryun, B.Sc.
Klow Dejdamrong, Dip. Chem.
Miss Poonsab Paulpuntin, Dip.
Chem.
Udom Sookkham, Dip. Chem.

DIVISION OF INDUSTRIAL RESEARCH

Senior Chemist

Assistant Chemist
Assistant Chemist

Nara Boon-Long, B.Sc., M.Sc.

Physics Section

Lau Lauhabandhu, Dip. Ed.
Miss Suradee Bupavesa, B.Sc.

Testing Strength of Materials Section
Assistant
Vacant
Workshop Section
Chemist
Assistant Chemist
Assistant Chemist

Parl Na Pombejra, B.Sc.
Vichira Sakoramonkala, Dip. Chem.
Yotaka Hinsheranandana, Dip.
Chem.

Investigation of Industrial Processes Section

Chemist

Chemist

Chemist
Assistant Chemist
Assistant Chemist
Assistant Chemist

Assistant Chemist

Mrs. Rabieb Prachankadee, B.Sc., M.Sc,

Choo-Sakr Vijierajote, Dip. Ed.. B.S. (Ind. Chem.)

Mrs. Nidnoi Sucharitakul, B. Sc.
Amara Prachankadee
Sasi Boonyamanop, B.Sc.
Miss Supis Dabbhavimala, B.Sc., Dip. Ed.
Miss Chirada Chunanonda, Dip.
Chem.

STAFF CHANGES AND MOVEMENTS

Appointments

1. Riddhi Subhanka, B.Sc., B. Chem. Eng., M.S. (Chem. Eng.)

May 19, 1947
Assistant Chemist
Division of Industrial Chemistry
2. Boonyiam Meesuk, M.S. (1st. Class Hons.), M.A., Dip. Chem. Eng.

November 24, 1947
Assistant Chemist
Division of Industrial Chemistry
3. Miss Sumalee Namankalakul, B.Sc.

October 4, 1948
Assistant Chemist
Stores Section
Office of the Secretary of the Department
4. Miss Supis Dabbhavimala, B.Sc., Dip. Ed.

October 1, 1948
Investigation of Industrial Processes
Section
Division of Industrial Research

Death

Samroeng Vimuktanandana, B.S. (Chem.)
March 2,1948
Chemist
Water Analysis Section
Division of Chemistry

Officials who went to study abroad

Parl Na Pombejra, B.Sc.
May 26, 1947
Chemist
Workshop Section
Division of Industrial Research went to study at his own expenses on the Technology of distillation at Joseph E. Seagram \& Son Inc. and Chemical Engineering at Wisconsin University, U.S.A.; approval by the Civil Commission.

Special Duties

1. Dr. Charng Ratanarat
2. Yos Bunnag
3. Pue Rochanapurananda Member and Secretary of the Com. mittee for Investigation of the Department Personnel and to review the Department Regulations. Member and representative of the Department of the Infested Rice Export Committee.
Member and Secretary of the Committee for the Examination of Industrial Trainees, Tobacco Factory. Member of the Committee for Improvement of the Thai Paper Factory, Kanchanaburi.
Science Lecturer at MahamongkutRajavithayalai, Educational Institute.
Editor of the Industrial Magazine. Editor of the Thai Sience Bulletin.
4. Manoon Prachankadee
5. Boonyiam Meesuk
6. Riddhi Subhanka
7. Choo-Sakr Vijierajote
8. Chinda Bunyamit

Official Tours in the Country

1. Manoon Prachankadee
2. Manoon Prachankadee Vongse Naewbanij Tekaryu Jinanavin Sompule Suyasinto Kchit Sankavasi Nimit Verabandha
3. Vongse Naewbanij
4. Klow Dejdamrong

Special Lecturer in Ceramics in the Chemical Engineering Course, Faculty of Engineering, Chulalongkorn University.
Member of the Committee for Improvement of the Thai Paper Factory, Kanchanaburi.
Member of the Committee for Investigation and Improvement of Alcoholic Liquor Production Methods, Bangyeekhan Distillery.
Special Lectarer in Tanning in Chemical Engineering Course, Faculty of Engineering, Chulalongkorn Uviversity.
Lecturer in Animals Hides and Leather at the Military QuarterMaster School.
Was loaned to the Government Purchasing Bureau until September 9, 1948.
made a survey of raw materials for ceramics industry in Nakorn Naryok and Prachinburi during December 1-6, 1947.
made a survey of raw materials for the ceramics industry and localities of springs in Lampang, Chiengrai, Chiengmai, Lamphan, Maehongson, Prae, Nan, during March 31-May 19,1948.
accompanied the Director-General of Mines Department for special duty on Metals and Ores to the Southern provinces during March 13-23, 1947.
made a survey of the Mayow Oil sources with Captain Prayura Phinsawaddi R.N. representative of the Royal Navy, in Prae, Lampang, Chiengrai, Lamphun and Chiengmai during April 27-May 14, 1947.

GENERAL REVIEW

At present, the work of the Department can be devided into three general functions, namely :
(1) routine analysis of samples of goods sabmitted by other Governmental agencies and the pablic,
(2) promotion and improvement of national industrial works both privately owned and government owned, and
(3) study and research in scientific fields, concerning raw materials and chemical processes.
In the first category, the amount of work achieved depended solely on the volume of samples submitted by various agencies, and this increased greatly as the country progressed industrially. In the promotion and improvement of industrial plants, the Department gave technical assistance and advice to various companies with good results and also set up a separate service for certification of locally manufactured products to encourage the public to use good locally made products. Regarding research on chemical processez, not much has been done, work in this field being largely hindered by lack of space and insufficient appropriations to carry on such work. However at the present stage, a broad study of the raw materials available within the country has been made and when we move to our new site at Phya Thai we hope that this work will be continued.

The number of samples submitted during this period totalled 5,860 , being 2,464 in 1947 and 2,896 in 1948 , showing an increase of about 1000 samples over the last period.

The Library made a good start in recovering from the effects of the War. The numbers of books received have increased greatly, chiefly throngh the aid and kindness of the Rockefeller Foundation via the United States Information Service, and the American Book Center for War Devastated Libraries Inc. via the Ministry of Education. The number of readers who took advantage of the Library also increaed markedly.

In 1947 there were 17 graduates, and in 1918,13 graduates from the school of Practical Chemistry. The School will admit a new group of students in 1949.

The majority of the work in the Division of Chemistry was of routine nature. During this period the Opium Dross Section devised a method of testing by which the Government's opium could be distinguished from other opium. Some of the work in the Forensic Chemistry Section was transferred to the Division of Pharmacy, Medical Science Department, in accordance with the agreement made between the Ministry of Industry and the Ministry of Public Health. The analysis of blood stains and semen stains and the examination of fire-arms and and documents still remained with the Section, while the antlysis of medicine and medicinal plants was transferred. The fuel Section determined the calorific values of 22 samples of wood.

In the Division of Industrial Chemistry, the Ceramics Section made an extensive analysis of raw materials used in ceramics such as kaolin. sand, quartz, limestone, dolomite, felspar, and soapstone. The Food Section carried out studies on the preservation of rice from bugs, a quick process in the preparation of fish sauce, and the preservation of fruits. The Alcoholic Beverage Section made a study on fermentation and analysed samples of whiskey made locally.

In the Division of Industrial Research, several interesting topics were investigated such as the hydrogenation of oils, the preparation of glue for affixing excise stamps on cellophane, the determination of Vitamin C in various fruits, the preparation of barium sulphate or use in hospitals and the preparation of ammonia solution for use in the Department.

Furthermore, the Department helped train many other officials from various department, in different branches of practical science, and also during this period showed many visitors around the Department.

THE LIBRARY

During this period the Library possessed books and publica tions as listed below :

Items	No. of Volumes	No. of Volumes	
1. Scientific books	1947	1948	
2. Scientific publications	2709	2820	
3. Scientific journals	2500	2679	
	(bound volumes)	871	1044
4. Scientific journals		3205	2679
	(unbound volumes)	51	40
5.Scientific journals (newly received)			

In addition to journals procured by direct subscription, many other journals were donated by various foreign organizations : in 1947, 283 journals by the Rockefeller Foundation through the U.S. Information service, and 66 journals by the U.S. Government through the Ministry of Education ; in 1948, 1 journal by the French Legation, and 609 jouruals by the American Book Center for War Devastated Libraries Inc., through the Ministry of Education.

The Department published several publications for general distribution during this period namely : the Thai Science Bulletin, Department Report nos. 10, 11 and 12, and a pamphlet on "Lac". Regarding the Thai Science Bulletin, 193 copies were sent to various organizations in Europe, America, Australia and Asia, and 180 copies were distributed locally; altogether a total of 373 copies was circulated.

The Library appropriation for the year 1947 was 12,000 baht and for the year $1948,11,500$ baht. These were rather small sums from which after the subscriptions for the journals were paid, only a few new books could be purchased.

Persons not attached to the Department who made use of the Library during this period, totalled 676 persons, They were from the following various governmental and non-governmental organizations:

Faculty of Pharmacy, University of Medical Sciences,
Division of Pharmacy, Department of Medical Sciences,
Department of Industrial Promotion,
Department of Agriculture,
University of Agriculture,
Department of Royal Highways,
Department of Fishery,
Government Distillery,
Department of Public Health,
Pharmaceutical Factory,
Naval General Laboratory,
Faculty of Veterinary, University of Medical Sciences,
Thai Naval Signal Section
Military Supplies Department,
Department of Finance,

Military Arsenal Department,
Naval Docks Department,
San Saduag Co., Ltd.,
Thuai Thong Co., Ltd.,
Assia Co., Ltd.
The number of books loaned out during this period totalled 2,959 volumes.

THE CERTIFICATION OF LOCALLY MANUFACTURED PRODUCTS

During 1947-1948, 48 kinds of merchandise were sent in for approval, only 37 kinds were accepted for certification. The merchandise approved during 1947-1948 is shown below :

	1947						
Morchandise	Kinds	Certified	Not certified	Merchandise	Kinds	Certified	Not certified
 Cosmetics	16	13	3	Cosmetics	12	12	-
Distilled Water	2	2	-	1	Food	8	6
Soap	3	3	3	Distilled Water	2	1	2
Soap	1	1	-				

Of the merchandise approved, 22 kinds were sent in by alien companies and 15 kinds by Thai companies. From the preceding statistics, it was evident that the number of companies interested in sending their products for approval was far too few, and most of the products submitted were not essential items for everyday life.

Merchandise approved in 1947

1. Malisod Hair Curlset
2. Orchid Hair Curlset
3. Lavender Cream
4. Macherry Cream
5. Orchid Powder
6. Distilled Water of the Chemistry Union Laboratory
7. 1.77 Hair Tonic
8. Anna Cream
9. Anna Hair Tonic
10. 1.77 Baby Powder
11. Congka Hair Tonic
12. Congka Cream
13. Ramwong Powder
14. Ramwong Cream
15. Phyanag Distilled Water of the Thai Distilled Water Factory, Dhonburi

Merchandise approved in 1948

1. Liquid Cement of S. Dampitaksa
2. Malisod Hair Curlset
3. Orchid Hair Curlset
4. Lavender Cream
5. Macherry Cream
6. Orchid Powder
7. Distilled Water of the Chemistry Union Laboratory
8. D.N.T. Mosquito Incense of Nitespaij
9. Hair Tonic
10. Glutinons-rice Flour
11. Rice Flour, Dhonburi
12. Green Gram Flour
13. 1.77 Baby Powder
14. Arrowroot Flour, Dhonburi
15. "Todlod" Flour, Dhonburi
16. Pratuchai Fish-soy
17. Anita Cream
18. Congka Hair Tonic
19. Congka Cream
20. Ramwong Powder
21. Ramwong Cream
22. Chula Toilet Soap

THE SCHOOL OF PRACTICAL CHEMISTRY

After the temporary suspension of the school during the War, it was re-opened on November 1, 1945. There were no new admissions in 1946. The First Year stndents graduated to the Second Year Class and the Second Year students received a further three-months training in laboratory work. In September, 1947, 17 students graduated from the School.

In 1948, there was only one class held, namely the Second Year Class, and no new admissions were accepted. Thirteen students of this class graduated in March, 1948. Those who failed in the final examination remained in the Second Year Class, commencing on December 30, 1948.

An amendment to the school's regulations was effected in 1948, in order to improve the status of the Department's personnel. Department officials who are graduates of Mathayom 6, or the Preuniversity examination or its equivalent, and have been in the service for not less than 5 years, or those who have completed the course of the school but failed in the final examination, have the right to take the final examination of the school whenever such an examination is held, and to receive its certificate, if sucessful.

DIVISION OF CHEMISTRY

The following is a record of some of the moreinteresting work, done by the Division of Chemistry.

opium

In 1947 there were 368 samples of opium submitted for analysis, comprising 63 samples of raw opium, 214 samples of cooked opium, 41 samples of mixed cooked opium, 4 samples of opium dross, and 46 samples of suspected harmful habit-forming drugs.

In 1948, 402 samples of opium were submitted for analysis: 43 samples of raw opium, 190 samples of cooked opium, 92 samples of mixed cooked opium, 11 sampless of opium dross, and 66 sampless of suspected harmful habit-forming drugs. Most of the sampless were sent in by the Excise Department. In addition this section devised a means to test whether opium, was official or not, the method of which cannot be revealed here.
Forensic Chemistry

Items	1947				1948		
	Number of Samples	Findings Positive	Findings Negative	Number Of	Findings Samples	Findings Pegitive	
Nire-arms and Ammunition	18	15	3	23	16	7	
Blood Stains	58	23	35	62	20	42	
Poison	23	7	16	1	1	-	
Narcotic	9	8	1	1	1	-	
Explosive	1	1	-	1	1	-	
Miscellaneous	1	-	-	2	-	-	

[^0]In the third and fourth cases, mercury was found in oldfashioned pills used for treating yaws. One case took place in Nakhonsawan. On examination, a pill weighing 0.393 gm . was found to contain 0.088 gm . of mercury compound, or 22.36%. The other cases happened in Nakhonrajsima, a pill of 0.049 gm , contained 0.012 gm . of mercury compound, or 25.77%. The symptoms in both cases were similar : pain in stomach, swelling of mouth and gullet, burning of tongue and loss of teeth. It was believed that the poisoning in both of these cases was not intentional but rather out of ignorance.

In the fifth case, salt of nitrite was found in epsom salt. Epsom salt was bought from a local drug store in Suphanburi; after taking the medicine for laxative purpose, four persons died immediately. On analysis of the sample drug, $17.3^{\circ} \%_{0}$ of sodium nitrite was found.

In one case, a man in Rajburi died about ll hours after taking Khangphised whiskey of the Government Distillery. On examining the viscera of the deceased person, no general poison was found. A sample of the whiskey was also received for analysis but the finding was negative. The whiskey was also fed to rats for biological testing, but the rats did not die and did not show any abnormal signs, accordingly it was concluded that the victim died through other reasons.

In August of 1947, the Department received two samples of arrows suspected to carry a poisonous substance in the arrow-heads, from the investigation-officers of Srisaked. On ascount of the insufficiency of the amount of substance for chemical analysis, the Department asked the Division of Pharmacy to conduct biological testing. As a result, curare, a very strong plant poison, was found in both samples.

Drugs and Medicinal Plants

Originally the Department was also responsible for the analysis service of drugs and medicinal plants. But after the transfer of the Pharmacy Division to the Ministry of Public Health, it was considered appropriate to drop this service owing to lack of personnel and equipment. Consequently, this service was officially transferred to
the Department of Medical Science, Ministry of Public Mealth as of 1948. However, the examination and analysis of fire-arms, blood stains, semen stains, and documents still remained with the Department. This change was also reported to the Ministry of Interior in order that various provincial officers be notified.

Torches

In March, 1948, a case of fire was reportel in the Chakrawad precinct. The police susp ected that it was intentional. On examination by the Department's officials, it wats found that the store-room contained about 10,000 bundles of torches tied together. These torches were made of tibrons materials soaked in Yang oil, an unsaturated hydrocarbon. The oil was similar to linsed, being also a drying oil. In a warm and poorly ventilated room, spontancous combustion could occur, as easily as rags soaked with linsed oil. It wat thas advised that in order to avoid fire, the store-room should be kept clean and well ventilated.

Milk

The following table shows the analysis of milk and milk food during this period.

Items	Number of Samples		Remarks
	1947	1948	
Customs from Private Companins	55 1	49 1	Foreign Milk
Fresh Milk	3	1	
Powdered Milk			
from Department of Customs	48	44	
from Department of Public Health	1	-	under standard
Milk Food from Department of Customs	1	-	
Cream		4	
Total	201	196	

It will be noticed that most local milk is not up to standard which is due primarily to the primitive and unsanitary conditions of the milking processes. If more care is taken in keeping the locality and containers clean, the quality could be improved somewhat.
Fuels
The analysis of fuels during this period is shown below.

Items	Number of Samples	
	1947	1948
Fuel oils	99	24
Lubricants	49	12
Solid fuels (Coal, Coke, Charcoal, Wood, Torch)	33	31
Shale	6	-
Total	187	67

The analysis of a sample of coal (BK. $49 K$) submitted by the Department of Mines is show: below.

Location of the sonres is the border of Snrathani, Nakhonsrithamaraj and Krabi.

Specific gravity (0) $97^{\circ} \mathrm{C}$	1.5378
Calorific value (colories/aramme)	
A. As receivel	4321
B. Moisture free	5124
Moisture	15.7\%
Fixed carbon	33.0%
Volatile matter	41.2\%
Sulphur	6.3%
Ash	10.3%

Other samples of coal are :

Items	Tom Wen ans, Trang 131. 915	Hom Amphor Moung, Krabi BI. 910	$\begin{gathered} \text { From Hucy Yod } \\ \text { Tiang } \\ \text { 1II. } 920 \end{gathered}$
Specific gravity (a) $30^{\circ} \mathrm{C}$.	1.1876	1.9929	1.3144
Calorific Value (calories/gramme)			
A. As received	:7.9.	4731	4853
B. Moistur free	575	59	6000
\% Moisture	16.82	19.79	19.12
\% Fixed carbon	29.32	24.51	21.87
\% Volatile matter	42.52	47.07	48.87
\% Suiphur	5.3 .5	3.11	2.16
\% Ash	11.34	8.63	10.14

Calorific Value of Fire-Wood

The Fuel Section analysed 22 samples of fire-wood as shown below.

Lab． Nos．	Thai Names	Botanical Names	Moisture 0%	calories per gramme	
				Calculated from Samples （as re－ ceived）	Calculated from Dried samples
E．H． 118	Mnisab	Plonde paniculata	8.78	4877	$33+6$
B．H．119	Mai Kiaton	Sandoricum indicum，＇ar	9.65	4512	49.4
B．H． 120	Xat Farang	Psilium guajava，Jinn．	10.81	109\％	4813
B．H．121	Mai Tongtance	Shoren eonehinchin asi＊	$\therefore 8$.	401	517
S．H．1：2	Mat Ebwang	Sommlium tomen 6am	10.6%	兵 113	4.38
B．IT．12\％	Mai Ioudisa	Ziayphu：jujuba，Limb．	11.11	419.9	¢ 10
B．H．121	Mrai Tengrang	Shoreo obtusa，Wall．	11．37	thel	5×1
B．H．12．	Arai Yang	Dipterocatpes alatras．Ticeb．	\because N0	43^{3}	4011
B．H． $1 \times n$	Mas Sak	Toctuna grantis，Lien．	8.49	46.98	20：1
B．H．1：7	Nat Mhantimu	Mumelea oriearalis，Jia n．	31．7\％	425	47
B．H．1：	\iai Praboo	Iterounlus maicmentus，Du\％	3．05	1． 2	ड1：
B．F．12：	Mai Sibayg	Anisoptera cutisit，\％r．	11.10	4.80	5111
B．H．10，	Mai Lmehi	Nophobum lithi ©nal	1209	420	＋6， 28
13．1．13：	Whi hatin（Pimai）	Aracia simmensis	16.56	させで	4792
B．H．132	Mai Maprang	Bonta bumanics dinin．	11.11	1126	4936
B．H．13：	，ai Smpau	Chatuenrpus castanppis	3.57	4118	1880
B．H．131	Mai Maphui	Baccaurea sapica，Nitell．Ara．	10.56	418	4674
B．IH． 657	Mai Bhodhi	Ficus religiosa．Linn．	9.86	453	5051
B．H． 658	Kai Manlcoe （Maidam）	Dyosphyres mollis，Griff．	6．4\％	4871	5205
B．H． 659	Mai Sontale	Casuarina egussetifolia，Blume．	8.39	4579	4987
B．H． 660	Mai Hangnokyoong	Poincina regia，Rafin．	8.92	4091	4492
B．H．661	Mai Payoong	Dabergia cochinchinensis，Pierre．	8.17	4694	5112

Vegetable Oils

In 1947, the Division of Chemistry analysed 149 samples of vegetable oils and in 1948, 35 samples. Most of these samples were coconut oil; a few castor oil samples and one dehydrated castor oil were made locally. The analysis of the dehydrated castor oil (Lab. No. BK. 518) was as follows :

Iodine value (Wijs)	110.1
Acid value (mg. $\mathrm{KOH} / \mathrm{gm})$.	12.8
Specific gravity at $25^{\circ} \mathrm{C}$.	0.953

Metals

The analyses of matals during 1947 and 1948 were as follows:

Items		Namber of Samples	
		1947	1948
Tin		285	84
Lead		12	20
Iron		13	15
Antimony, Copper, Zinc, Silver		31	13
Alloy		11	4
Alloy for making coins		22	20
	Total	374	156

Comparing the number of samples with that of the previous period, it is seen that a much smaller number was submitted during this period, especially tin samples.

Water

The water analysis data were as follows:

		Number of Samples	
	Source	Num City Water Works Chao Phya River Sea Water Miscellaneous	
		1947	1948
	Total	24	226
		223	529

The following table contains the analyses of water from various provinces. They are expressed as parts per 100,000; hardness is expressed as parts of CaCO_{3} per 100,000 . Oxygen consumed was determined at a temperature of $100^{\circ} \mathrm{C}$., maintained for 10 minutes.
22

Average Analyses of Provincial City Water 1947									
	Bangkok							$\begin{aligned} & \vec{Z} \\ & \text { N} \\ & 0 \\ & 0 \end{aligned}$	
	City water supply canal	No. 3 Filter House	Pipe water Dept. of Science						
pH value	6.9	6.9	6.9	7.1	7.1	7.2	7.5	7.5	7.0
Electrical Conductivity	126	131	136	970	110	305	413	490	140
Total Solids	18.9	11.4	11.7	151.9	12.2	24.4	33.8	38.6	15.2
Suspended Solid.	6.1	nil	nil	30.2	ni1	21.	$n \mathrm{I}$	nil	2.5
Dissolved Solids	13.8	11.1	11.7	81.7	12.2	$\because 1.2$	33.8	:8.6	12.7
Total Hardness	5. 4	5.5	5.6	17.1	8.1	12.7	26.1	83.3	7.1
Temporary Hadness	4.5	3.7	3.9	8.0	6.5	12.2	25.10	$3{ }^{3} .7$	5.8
Permanent Hardness	0.8	1.8	1.7	3.1	1.2	0.5	1.1	1.6	1.3
Chlorides, expressed as Chlorine	0.8	0.8	10.8	34.5	(1) ${ }^{\text {a }}$	4.1	2.5	0.6	0.7
Chlorides, expressed as Sodium Chloride	$1: 3$	1.3	1.3	50.9	0.5	6.8	4.1	1.0	1.2
Oxrgen Consumed	0.50	0.25	0.24	0.29	0.12	0.38	13.01	1.07	0.21
Saline Ammonia	11.005	0.002	0.002	0.016	0.08	11.007	1,04	0.001	0.002
Albuminoid Ammonia	0.027	0.014	0.013	0.020	0.011	0.014	0.ti) 4	0.005	0.013
Nitrates, expressed as Nitrogen	11.028	0.019	0.0170	$\left\|\begin{array}{c} 0.624 \\ 8 \\ 8 \end{array}\right\|$	0.018	0.023	1014	(1.0) 15	0.012
Nitrites			nil		nil	nil	nil	nil	nil
Loss on Ignition	8.5	2.2	2.1	1.9	1.2	2.5	0.8	1.0	1.9
I'on	0.02	nil	nil	10.9	${ }_{\text {traces }}$	nil	nil	nil	0.02

Average Analyses of Provincial City Water

	Bangkok				Nakon Rajsina		药	$\begin{aligned} & \text { B } \\ & \text { 淢 } \end{aligned}$	
	City water sipply canal	No. 3 Filter House	Pipe water Dept. of science						
pH value	7.1	7.0	7.0	7.1	7.2	7.5	7.4	$7.1)$	7.4
Electrical Conductivity	160	158	169	184	456	3.3	433	148	393
Total Solids	$21 . .5$	13.4	14.2	15.0	36.2	33.8	37.4	14.9	30.2
Suspended Solids	1.5. 1	nil	nil	-	0.3	nil	nil	1.3	nil
Dissolved Solids	1.54	13.4	14.2	12.4	35.9	35.8	37.4	13.6	30.4
Total Hardness	7.7	7.2	7.7	6.3	14.2	27.10	31.7	7.1	21.4
Temporary Hardness	7.4	6.3	6.5	6.2	13.4	26.1	30.3	7.0	21.4
Permanent Hardness	0.3	0.9	1.2	0.1	0.8	0.9	0.4	$0 . t$	nil
Chlorides, expressed as Chlorine	1.3	1.3	1.4	0.2	8.5	2.3	0.6	0.8	0.6
Chlorides, expressed as Sodium Chloride	2.1	2.1	2.3	0.3	14.0	3.8	1.0	1.3	1.0
Oxygen Consumed	0.38	0.21	0.17	0.18	0.33	0.06	0.09	0.21	0.05
Saline Ammonia	0.007	0.004	0.003	0.004	0.004	0.002	0.002	0.004	0.005
Albuminoid Ammonia	0.021	0.010	0.008	0.015	0.021	0.005	0.006	0.011	0.007
Nitrates, expressed as Nitrogen	0.013	0.010	0.011	0.013	0.013	0.005	0.012	0.014	0.005
Nitrites	nil	minute traces							
Loss on Ignition	3.1	1.9	1.8	1.8	2.2	0.9	1.4	1.9	0.7
Iron	0.2	nil	minute	0.03	-	nil	nil	0.01	nil
Sodium Carbonate	nil	nil	traces	0.5	-	-	-	0.5	6.1

24

The results of the analyses show that, compared with water of other provinces, Bangkok City Water is the purest and most wholesome. Nakon Sawan and Ayuthya water is slightly soft and turbid due to insufficient sedimentation and coagulation. Water from Lopburi, Nakon Pathom and Samudsakon, is hard, good for drinking but not good for some industrial purposes. Those of Nakon Rajsima and Pitsanulok are slightly hard, containing salts of iron and some nitrates and chlorides, consequently they are corrosive to iron.

DIVISION OF INDUSTRIAL CHEMISTRY

During the War years, work was not alloted to different divisions but rather performed jointly owing to shortage of men and equipment. Now since the situation has eased up a little, each division can again function individually.

Ceramics

The Ceramics Section made surveys of many sources of raw materials for the production of ceramics. the analyses of which are shown in the following pages:

Chemical

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lab. No. \& Items \& Loss
on
Igni-
tion
$\%$ \& $$
\begin{gathered}
\mathrm{SiO}_{2} \\
\%
\end{gathered}
$$ \& $$
\left(\begin{array}{c}
\mathrm{Al}_{2} \mathrm{O}_{3} \\
\\
\%
\end{array}\right.
$$ \& $$
\left\lvert\, \begin{gathered}
\mathrm{Fe}_{2} \mathrm{O}_{3} \\
\\
\%
\end{gathered}\right.
$$ \& CaO
$\%$ \& MgO

$\%$ \& | Free |
| :--- |
| Silica |
| $\%$ | \& \[

$$
\begin{gathered}
\mathrm{K}_{2} \mathrm{O} \\
\%
\end{gathered}
$$
\] \& CO_{2}

\hline BF. 7 A \& Kaolin \& 4.28 \& 68.42 \& 23.10 \& 1.95 \& 0.90 \& 0.28 \& - \& - \& -

\hline B \& " \& 3.75 \& 68.82 \& 22.50 \& 1.90 \& 1.20 \& 0.51 \& - \& - \& -

\hline C \& " \& 3.07 \& 75.51 \& 17.65 \& 2.05 \& 0.80 \& 0.42 \& - \& - \& -

\hline D \& , \& 3.02 \& 76.62 \& 14.70 \& 2.20 \& 2.30 \& 0.51 \& - \& - \& -

\hline BF. 8 \& " \& 9.20 \& 60.02 \& 25.85 \& 2.70 \& 1.10 \& 0.58 \& 26.00 \& - \& -

\hline BF. 9 \& Quartz \& 0.22 \& 91.64 \& 5.50 \& 0.60 \& 1.00 \& 0.29 \& - \& - \& -

\hline BF. 10 \& White sand \& 13.71 \& 55.36 \& 1.97 \& 0.38 \& 27.70 \& 0.83 \& - \& - \& -

\hline BF. 11 \& Quartz \& 0.39 \& 93.67 \& 2.90 \& 1.20 \& 1.20 \& 0.45 \& - \& - \& -

\hline BF. 12 \& Shell \& 23.13 \& 6.23 \& 1.30 \& 0.30 \& 67.05 \& 1.66 \& - \& - \& -

\hline BF. 13 \& Granite \& 1.13 \& 68.25 \& 22.25 \& 2.80 \& 3.10 \& 1.95 \& - \& - \& -

\hline BF. 14 \& Lime- \& 15.28 \& 19.36 \& 4.05 \& 1.70 \& 48.50 \& 11.02 \& - \& - \& -

\hline BF. 15 \& Dolomite \& 14.99 \& 6.30 \& 3.70 \& 1.60 \& 50.30 \& 22.66 \& - \& - \& -

\hline BF. 16A \& Feldspar \& 0.34 \& 66.30 \& 21.90 \& 0.70 \& 1.20 \& 0.90 \& - \& 8.30 \& -

\hline B \& " \& 1.21 \& 66.84 \& 22.05 \& 0.80 \& 1.30 \& 1.08 \& - \& 6.40 \& -

\hline
\end{tabular}

Analysis

$\begin{gathered} \hline \mathrm{Na}_{2} \mathrm{O} \\ + \\ \mathrm{K}_{2} \mathrm{O} \\ \\ \\ \% \end{gathered}$	$\left\lvert\, \begin{gathered}\mathrm{Mn}_{3} \mathrm{O}_{4} \\ \\ \%\end{gathered}\right.$	FeO $\%$	Total chloride \%	$\begin{gathered} \text { Total } \\ \text { sul- } \\ \text { phate } \\ \\ \% \end{gathered}$	Vola- tile mat- ter $\%$	Moisture $\%$	Locality	Province	$\begin{aligned} & \text { Suitable } \\ & \text { for } \\ & \text { making } \end{aligned}$
-	-	-	-	-	-	-	Tambon Had-yao	Jolburi	Earthen ware
-	-	-	-	-	-	-	Had-So	,	"
-	-	-	-	-	-	-	Katumprong	"	"
-	-	-	-	-	-	-	Sattaheep	"	"
-	-	-	-	-	-	-	$\begin{aligned} & \text { Bangla- } \\ & \text { mung, } \\ & \text { Satta- } \\ & \text { heep } \end{aligned}$	"	,
-	-	-	-	-	-	-	Kaobejr Sattaheep	"	Porcelain
-	-	-	-	-	-	-	Sea Beach, Sattaheep	"	Earthen ware
-	-	-	-	-	-	-	Kao- Sammuk	"	"
-	-	-	-	-	-	-	"	"	Enamel
-	-	-	-	-	-	-	Ang- Sila	"	Stoneware
-	-	-	-	-	-	-	Sichang	"	-
-	-	-	-	-	-	-	"	,	-
-	- -			$\left.\right\|_{-} ^{-}$	$\left.\right\|_{-} ^{-}$		Kao- Prabart 99	"	Glaze -

Chemical

Lab. No.	Items	$\left\lvert\, \begin{gathered} \text { Loss } \\ \text { on } \\ \text { Igni- } \\ \text { tion } \\ \%_{0} \end{gathered}\right.$	$\begin{gathered} \mathrm{SiO}_{2} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Al}_{3} \mathrm{O}_{3} \\ \\ \% \end{gathered}$	$\left(\begin{array}{c} \mathrm{Fe}_{2} \mathrm{O}_{2} \\ \\ \%_{0} \end{array}\right.$	$\begin{gathered} \mathrm{CaO} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{MgO} \\ \% \end{gathered}$	Free Silica 0	$\mathrm{K}_{2} \mathrm{O}$ 0 0	CO_{2} $\%$
BH. 911	Kaolin- liked subs- tance	13.42	46.84	35.80	0.07	1.10	1.99	-	-	
BH. 912 A	Kaolin	11.27	51.50	32.00	2.10	1.65	1.15	-	-	-
B	"	12.23	46.41	35.75	2.30	1.00	13.23	-	-	-
BH. 913	"	11.05	52.05	30.30	2.85	1.90	1.39	-	-	-
BH. 914	Quart- zite	4.12	83.62	6.95	1.70	1.90	1.68	-	-	-
BG. 784	Kaolin	4.12	69.74	22.50	1.90	0.80	0.68	-	-	-
Bf. 78.5	"	6.53	68.58	20.10	3.50	0.60	0.61	-	-	-
BG. 786	"	2.75	73.57	20.70	1.30	1.40	0.22	-	-	-
BJ. 973	Dolomite	-	0.82	0.25	1.30	32.70	18.65	-	-	

Analysis

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\mathrm{Na}_{2} \mathrm{O}

+

\mathrm{K}_{2} \mathrm{O}

\%_{0}
\end{gathered}
\] \& $\mathrm{Mn}_{3} \mathrm{O}_{4}$

$\%$ \& FeO

$\%$ \& \[
$$
\begin{aligned}
& \text { Total } \\
& \text { chlo- } \\
& \text { ride } \\
& \\
& \%
\end{aligned}
$$

\] \& \[

\left|$$
\begin{array}{c}
\text { Total } \\
\text { sul- } \\
\text { phate } \\
\\
\%
\end{array}
$$\right|

\] \& \[

$$
\begin{gathered}
\text { Vola- } \\
\text { tile } \\
\text { mat- } \\
\text { ter } \\
\% \%
\end{gathered}
$$
\] \& Mois-

ture

$\%$ \& Locality \& Province \& $$
\begin{aligned}
& \text { Suitable } \\
& \text { for } \\
& \text { making }
\end{aligned}
$$

\hline - \& - \& - \& - \& - \& - \& \& | Kao |
| :--- |
| Changok | \& Nakon Nayok \& Refractory

\hline - \& - \& - \& - \& - \& - \& \& Tambon Nongyai \& Prachinburi \& Earthen ware or Refractory

\hline - \& - \& - \& - \& - \& - \& - \& " \& " \& "

\hline - \& - \& - \& - \& - \& - \& \& Tambon Parkplee \& ', \& "

\hline - \& - \& - \& - \& - \& - \& \& $$
|\mathrm{Kao} \mathrm{E}-\mathrm{To}|
$$ \& " \& Earthen ware

\hline - \& - \& - \& - \& - \& - \& - \& | Kao |
| :--- |
| Phadang, |
| Amphur |
| Tamai | \& Chandaburi \& "

\hline - \& - \& - \& - \& - \& - \& - \& Tambon Panglad, Amphur Tamai \& " \& Earthen ware or Refractory

\hline - \& - \& - \& - \& - \& - \& \& | Tambon |
| :--- |
| jBan-na, |
| Amphur |
| Grang | \& Ra-yong \& Porcelain

\hline - \& - \& \& $-$ \& $-$ \& $-$ \& \& $$
\left|\begin{array}{c}
\text { Tambon } \\
\text { Tabo- } \\
\text { tonglang, } \\
\text { Sichang }
\end{array}\right|
$$ \& Jolburi \& "

\hline
\end{tabular}

Chemical

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lab. No. \& Items \& $$
\begin{gathered}
\text { Loss } \\
\text { on } \\
\text { Igni- } \\
\text { tion } \\
\%
\end{gathered}
$$ \& $$
\begin{gathered}
\mathrm{SiO}_{2} \\
\\
\%
\end{gathered}
$$ \& $\mathrm{Al}_{2} \mathrm{O}_{3}$

$\%$ \& $\mathrm{Fe}_{2} \mathrm{O}_{3}$

$\%$ \& CaO

$$
\%
$$ \& \[

$$
\begin{gathered}
\mathrm{MgO} \\
\%
\end{gathered}
$$
\] \& Free

Silica

$\%$ \& $\mathrm{K}_{2} \mathrm{O}$
$\%$ \& CO_{2}
$\%$

\hline BF. 633 \& Quartz sand \& 0.40 \& 94.61 \& 3.50 \& 0.50 \& 0.40 \& 0.51 \& - \& - \& -

\hline BH. 620 \& Kaolin \& 4.28 \& 68.42 \& 23.10 \& 1.95 \& 0.90 \& 0.28 \& - \& - \& -

\hline BH. 621 \& Kaolin \& 4.12 \& 69.74 \& 22.50 \& 1.90 \& 0.80 \& 0.68 \& 16.00 \& - \& -

\hline BH. 622 \& Kaolin \& 9.20 \& 60.02 \& 25.85 \& 2.70 \& 1.10 \& 0.58 \& 66.00 \& - \& -

\hline BH. 623 \& White marble \& 41.74 \& 1.13 \& nil \& traces \& 56.0 \& 0.87 \& - \& - \& -

\hline BH. 624 \& Feldspar mixed Quartz \& 0.82 \& 66.29 \& 19.22 \& 0.77 \& 1.01 \& - \& - \& 11.75 \& -

\hline BH. 625 \& Quartzite \& 0.78 \& 93.26 \& 4.25 \& 1.42 \& 0.65 \& - \& - \& - \& -

\hline BH. 626 \& Siliceous Sinter \& 20.83 \& 5.39 \& nil \& traces \& 32.4 \& 0.83 \& - \& - \& -

\hline BH. 627 \& Manganese \& 14.6 \& 11.9 \& - \& 33.5 \& - \& - \& - \& - \& -

\hline
\end{tabular}

Analysis

$\begin{gathered} \mathrm{Na}_{2} \mathrm{O} \\ + \\ \mathrm{K}_{2} \mathrm{O} \\ \% \end{gathered}$	${ }^{\mathrm{Mn}_{3} \mathrm{O}_{4}}$	Fe 0 $\%$	Total chloride $\%$	Total sulphate $0 / 0$	Volatile matter $\%$	$\begin{gathered} \text { Mois- } \\ \text { ture } \\ \\ \% \end{gathered}$	Locality	Province	$\begin{gathered} \text { Suita- } \\ \text { ble } \\ \text { for } \\ \text { making } \end{gathered}$
-	-	-	-	-	-	-	Tambon Bo-phud, Amphur Samai	SuradiDhani	-
1.07	-	-	-	-	-	-	Tambon Had-So, Sattaheep	Jolburi	-
0.26	-	-	-	-	-	-	Tambon Ta-Mai, Sattaheep	$"$	-
0.55	-	-	-	-	-	-	Tambon Na Klua, Amphur Banglamung	"	-
-	-	-	-	-	-	-	Kao- Phun	Kanjanaburi	-
-	-	-	-	-	-	-	Tambon Bangbuaban	$\begin{gathered} \text { Chieng- } \\ \text { mai } \end{gathered}$	-
-	-	-	-	-	-	-	Sri- Raja	Jolburi	-
traces	-	-	-	-	-	-	Amphur Chaiya	SuradiDhani	-
-	29.6	-	-	-	-	-	$\left\|\begin{array}{l} \text { Amphur } \\ \text { Grang } \end{array}\right\|$	Rayong	1 -

Chemical

Lab. No.	Items	Loss on Ignition $\%$	$\begin{gathered} \mathrm{SiO}_{2} \\ \% \\ \% \end{gathered}$	$\left(\begin{array}{c} \mathrm{Al}_{2} \mathrm{O}_{3} \\ \\ \% \end{array}\right.$	$\left\|\begin{array}{c} \mathrm{Fe}_{2} \mathrm{O}_{3} \\ \\ \% \end{array}\right\|$	$\begin{aligned} & \mathrm{CaO} \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{MgO} \\ \% \end{gathered}$	Free Silica $\%$	$\mathrm{K}_{2} \mathrm{O}$ $\%$	CO_{2}
BH. 628	Manga- nese	13.0	11.7	-	26.0	-	-	-	-	-
BH. 629	Quartz	0.22	91.64	5.50	0.60	100	0.29	-	nil	-
BH. 766	Feldspar	1.21	66.84	22.05	0.81	1.30	1.08	-	6.40	-
BI. 479	Garnet	nil	41.2	18.0	-	1.8	5.5	-	traces	-
BI. 480	Spinel	nil	2.8	56.2	-	nil	17.9	-	nil	-
BI. 481	Feldspar	0.82	63.58	25.8	traces	traces	nil	-	9.7	
BI. 482	Calcite	42.4	traces	nil	traces	57.56	nil	-	-	-
BI. 483	Calcite	43.4	nil	nil	traces	57.5	nil	-	-	-
BI. 484	Ash- Firewood	-	-	-	-	\checkmark	-	-	25.63	27.6
BI. 777	Quartz sand	0.24	98.8	traces	traces	traces	traces	-	-	-
BI. 778	Corundum	0.58	3.75	48.58	2.02	6.44	2.40	--	-	-
BI. 779	Quartz	0.23	95.60	2.13	2.02	traces,	traces	-	-	-

Analys's

$\begin{gathered} \mathrm{Na}_{2} \mathrm{O} \\ + \\ \mathrm{K}_{2} \mathrm{O} \\ \%_{0} \end{gathered}$	${ }^{\mathrm{Mn}_{3} \mathrm{O}_{4}}$	$\begin{gathered} \mathrm{FeO} \\ \% \end{gathered}$	Total chloride $\%$	$\left\|\begin{array}{c} \text { Total } \\ \text { sul- } \\ \text { phate } \\ \% \\ \% \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Vola- } \\ \text { tile } \\ \text { mat- } \\ \text { ter } \\ \% \end{gathered}\right.$	Mois ture $\%$	Locality	Province	Suitable for making
-	33.4	-	-	-	-	-	Koh Cram	Rayong	-
-	-	-	-	-	-	-	Kaobejr, Sattaheep	Jolburi	-
-	-	-	-	-	-	-	-	Jolburi	-
-	-	33.3	-	-	-	-	Amphur Grang	Rayong	-
-	-	23.0	-	-	-	-	Amphur Bo-ploi	Kanchanaburi	-
-	-	-	-	-	-	-	Tambon Tadee	Nakorn Sridham araja	-
-	-	-	-	-	-	-	Kao-Kao	Lopburi	-
-	-	-	-	-	-	-	Kao Tubquai	Lopburi	-
-	-	-	4.44	5.76	42.1	-	-	-	-
-	-	-	-	-	-	-	Amphur Muang	Chandaburi	-
-	-	-	-	-	-	-	Tambon Bang- gaja, Amphur Muang	"	-
-	-1	$-$	${ }^{-}$	-	-	-	Tambon Nongbau, Amphur Muang	"	-

Chemical

Lab. No.	Items	$\begin{gathered} \text { Loss } \\ \text { on } \\ \text { Igni- } \\ \text { tion } \\ \% \end{gathered}$	$\left(\begin{array}{c} \mathrm{SiO}_{2} \\ 0 / \%_{0} \end{array}\right.$	$\left[\begin{array}{c} \mathrm{Al}_{2} \mathrm{O}_{3} \\ \\ \% \end{array}\right.$	$\left[\begin{array}{c} \mathrm{Fe}_{2} \mathrm{O}_{3} \\ \\ \% \end{array}\right.$	CaO $\%$	$\begin{gathered} \mathrm{MgO} \\ \% \end{gathered}$	Free Silica $\%$	$\begin{gathered} \mathrm{K}_{2} \mathrm{O} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{CO}_{2} \\ \% \end{gathered}$
BJ. 268	Kaolin (fine)	9.42	50.62	35.10	0.90	2.10	1.01	-	-	-
BJ. 269	Kaolin (coarse)	8.72	51.27	34.80	1.00	2.30	0.94	-	-	-
BJ. 272	Kaolin (fine)	13.33	45.06	37.25	1.20	2.05	1.09	-	-	-
BJ. 273	$\begin{aligned} & \text { Kaolin } \\ & \text { (coarse) } \end{aligned}$	11.33	45.15	39.10	1.20	2.30	0.91	-	-	-
BJ. 270	Sand from Kaolin	7.10	59.58	28.70	1.00	2.00	0.80	-	-	-
BJ. 271	Sand from Kaolin	2.82	85.94	8.10	1.30	1.30	0.54	-	-	-
BJ. 274	White sand (under ground 5 metres deep)	0.39	91.21	3.15	1.60	280	1.45	\square^{-}	-	${ }^{-}$

Analysis

$\begin{gathered} \mathrm{Na}_{2} \mathrm{O} \\ \vdots \\ \mathrm{~K}_{2} \mathrm{O} \\ 0 \% \\ 0 \end{gathered}$	${ }_{(1)}^{M_{3} \mathrm{O}_{4}}$	Feo	Total chloride 0	Total sulphate \%	$\begin{gathered} \text { Vola- } \\ \text { tile } \\ \text { mat- } \\ \text { ter } \\ 0 / 0 \end{gathered}$	Mois- ture $0 / 0$	Locality	Province	$\begin{gathered} \text { Suita ble } \\ \text { for } \\ \text { making } \end{gathered}$
0.85	-	-	-	-	-	0.99	Amphur Nasan	Suradr- Dhani	-
0.97	-	-	-	-	-	5.85	"	"	-
nil	-	-	-	-	-	0.94	Amphur Sijol	Nakorn Sridhama raj	-
nil	-	-	-	-	-	1.09	"	"	-
-	-	-	-	-	-	1.33	Ampbur Nasan	Suradr-	-
-	-		-	-	-	0.27	Amphur Sijol		-
-	-	-	-	-	-	0.08	"	"	-

Rice
The Thai Rice Company Ltd. found that, on storage of rice after the milling process, the rice became infested after three or four months. Experiments with slaked lime as a preservative have been carried out. It was found that rice mixed with $50 / \%$ of lime could be stored for over four years without any infestation. The Company submitted the samples used in their experiments to the Department to determine whether the rice, thus preserved, was harmful to the human body.

As a result of its investigation, the Food Section reported that if the lime particles were first separated from the rice grains by blowing air though it, followed by three or four washings of rice as is the usual practice betore cooking, no harm would be incurred.

To study the problem further, the Section tested the rice preserved in the above manner on rats for a period of two months as follows. The treated unblown rice was washed twice and cooked without pouring out the water. This cooked rice in combination with ground peas together with lettuce, potato and cucumber was fed to the rats. After a period of two months, the rats fed on the above diet were found to be in just as good health as the other rats fed on ordinary rice.

Fish Sauce

The Food Section conducted an experiment to find a quick process for manufacture of fish sauce. In the usual method of manufacture, the enzyme hydrolysis or natural hydrolysis is employed which requires at least 8 months before completion. The Section employed acid hydrolysis using hydrochloric acid as a hydrolysing agent. After the hydrolysis of the fish meal was complete, the filtrate was neutralized by sodium carbonate; the process took about 15-20 hours to complete. The fish sauce thas obtained was comparable to commercial first grade sauce in flavour, but not in colour and odour.

The results of analysis of the prepared fish sauce is shown below :

Total solids	280		gm.	per
litre				
Salt free ash	1.88	gm.	",	,
Total nitrogen	12.39	gm.	",	",

Ammoniacal nitrogen	1.19	gm.	per	litre
Organic nitrogen	11.2	gm.	$"$	$"$
Formaldehyde nitrogen	0.896	gm.	$"$,	$"$
Phosphorus $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$	1.0	gm.	$"$	$"$
Sodium chloride	191.3	gm.	",	$"$
Calcium oxide	1.12	gm.	",	"

The prepared sauce was controlled so that it contained only 20% salt (as compared with commercial sauce which contains $27-29 \%$), thus lowering the percentage of total solids and salt free ash.

Preservation of Food

Various kinds of Thai iruit were canned to determine their keeping quality. Fruits used in the experiments were Pomelo, Rambutan, Katorn, Lamood and Lamyai.

The peeled Pomelo was cooked and put into a preserving jar, filling it up to half its contents. Three spoonfuls of sugar were added and more Pomelo was put in until the jar was full. Air was expelleh from the jar by boiling it in water for 5 minates. The cover was put on but its spring fastener was left unclamped. It was then cooked in a pressure cooker for 30 minutes at 15 pounds pressure, after which it was taken out and tightly closed. $25^{11} / 0-50 \%$ syrup can be used in place of suger if desired.

Kambutan, Katora, Lamood and Lamyai were preserved by three different methods:

1. The peeled fruit was put into a jar, boiling hot syrup poured over it up to the brim, and the jar was then closed tightly,
2. The fruit was precooked for 5 minutes, put in to a jar, the air expelled and then processed in a pressure cooker after which the jar was closed tightly.
3. The peeled fruit was put into a jar, filled with hot syrup, air-expelled, and processed in the regular water bath used for expelling the air.

Results showed that the lst method was best for preserving Rambutan, but the 3 rd method was also good. The 2nd and 3rd methods were good for Katorn and the 2nd method was recommended for Lamood while the 3rd method was best for Lamyai.

The recommended time for expelling the air and sterilization was as follows :

	Expelling air Minutes	Sterilization Minntes
Rambutan	10	30
Lamood	10	30
Katorn	15	$90-120$
Lamyai	15	$90-120$
Fermentation		

In their experiments on the culture of yeast, the Food Section produced its own yeast for making bread. Aspergillus oryzae and mucor or rice-bran were also produced for the saccharification of rice alcohol. Results obtained were promising.

Alcoholic Beverages

A great number of samples of alcoholic beverages were submitted by the Excise Department for analysis. These samples having been collected from various licensed manufacturers all over the country. Routine analysis comprised the determination of the percentage of alcohol, presence of poisouous subtances and harmful habit forming drugs,.

In many samples, the actual percentage of alcohol was lower than that labelled. But no poisonous substance was found in any of the sampIes. The quality of the samples was much inferior to the products of the Government Distillery.

The following is the analysis of the "Khang Phised" Blend made by the Government Distillery. which was rumoured to contain poisonous substance.

Sample No. BF. 177

Alcohol	$29.10 \quad \%$	
Acidity (as acetic acid)	0.016%	
Sugar :		
\quad Reducing sugar (as invert sugar)	traces	
\quad Sucrose	0.8419	gm. $/ 100 \mathrm{cc}$.
Ester (as ethyl acetate)	0.029	gm. $/ 100 \mathrm{cc}$.
Fusel oil	0.03	gm. $/ 100 \mathrm{cc}$.

| Solids | $1.0068 \mathrm{gm} . / 100 \mathrm{cc}$. |
| :--- | :--- | :--- |
| Ash | $0.004 \mathrm{gm} . / 100 \mathrm{cc}$. |
| Aldehyde | present |
| Furfural | absent |
| Caramel | present |
| Metallic poisons and alkaloids | absent |

From this analysis, it was evident that the liquor in question contained no poisonous subtances as rumoured.

Sea Water
Mr. Smak Buravas, a Member of the Government Industrial Investigation Committee, submitted samples of sea water and bittern for analysis, needed further research on sea water products. These samples were taken from the Salt Cooperatives at Tambon Khom Amphur Muang Simutr Sakorn.

Sea Water

	gm. per litre
Na	10.3
K	0.2
Ca	0.4
Mg	1.3
Cl'	19.0
$\mathrm{SO}_{4}{ }^{\prime \prime}$	2.7
$\mathrm{CO}_{3}{ }^{\prime \prime}$	nil
$\mathrm{HCO}_{3}{ }^{\prime}$	0.1
Br ${ }^{\text {' }}$	nil
NaCl (calculated from total Na)	26.3
KCl (calculated from K)	0.4
CaCl_{2} (calculated from Ca)	1.1
MgCl_{2} (calculated from total	
Mg \& Ca after deducting	
$\mathrm{NaCl}, \mathrm{KCl}$ and CaCl_{2})	2.9

Total soluble matter, dried at $180^{\circ} \mathrm{C}$. 35.0
Insoluble residue 5.2
Soluble Fe nil
Insoluble Fe 0.6
Bittern
Concentration $\quad 23.5^{\circ}$ Baumé

KCl
MgCl_{2}
MgSO_{4}
NaCl

10 grn. per litre
88 gm. ,, ,
60 gm. " "
180 gm. ", "

DIVISION OF INDUSTRIAL RESEARCH

Some of the more interesting subjects of research performed by the Division of Industrial Research are as follows :-

Hydrogenation of Oils

Experiments on hydrogenation of oil were performed in order to study property changes, problems involved in adapting process on large scale manufacture, and the feasibility of making solid oils. The oils studied were coconut oil, lard, olive oil, peanut oil, cotton seed oil, soybean oil, castor oil, sesame oil, krabau oil (hydnocarpus) and fish liver oil. Some of the changes in properties were : higher melting point, decrease in odour, retardation of rancidity and lower iodine value. The best catalyst, so far found, was nickel formate.

Cellophane Glue

The Division prepared a solution of glue to be applied to excise stamps on cigarette-packages, as requested by the Thai Tobacco Monopoly. The result was very satisfactory, because stamps thus applied with the prepared glue could not be removed without destruction of the stamps.

Vitamin C in Thai Fruits

A joint experiment was performed by the Division with the Food Section of the Division of Industrial Chemistry, to determine the quantity of vitamin C in certain Thai fruits.

Vitamip C was calculated in milligrams of ascorbic acid per 100 cc. of fruit juice.
Vitamin C in Thai Fruits

Vitamin C in Thai Fruits

44

Preparation of Barium Sulphate
The Division prepared 153.6 kilograms of Barium sulphate, 60 kilograms for Siriraj Hospital, and 93.6 kilograms for the Battery and Paint Division of the Royal Thai Naval Dockyards.

Liquid Ammonia
In addition to preparing liuqid ammonia for the use of the Department, the Division also prepared 112 litres of liquid ammonia for the Eaculty of Science of the Chulalongkorn University.

SCIENTIFIC LECTURES

To further scientific study and knowledge, the Department continued the scientific lecture program originated by Dr. Toa Labhanukrom. 5 lectures were delivered:-

1. Life on the Planets by M.L. Anong Nila-Ubol.
2. Columbium, Vital Metal by Vongse Naewbanij.
3. Cellulose Industry by Boonyiam Meesuk.
4. New Elements by Riddhi Subhanka.
5. Atomic Fission by Riddhi Subhanka.

VISITORS AND TRAINEES

Prof. Alexander Wolsky, Principal Scientific Officer of the Sonth-East Asia Regional Scientific Cooperation Office, UNESCO, whose office was in India, visited the Department on December 9, 1948. He said that his office would be glad to assist or cooperate with the Department in any way it could.

The Department helped train four different groups of officials from various Government agencies:

1. Two officers from the Signal Corps of the Military Inspector General Department, in the analysis of materials used in the manufacturer of flashlight batteries
2. Three officers from the Militar Supplyy Department in the analysis of food.
3. One official from the Government Distillery, in the analysis of sugar and molasses.
4. One official from the Tannery Organization, in the preparation of hide-glue.

ANALYSIS STATISTICS

(A) SOURCE CLASSIFICATION

From	Items	Number of Samples	
		1947	1948
Ministry of Defence	Drinking water, Industrial water	4	9
	Sea water	359	402
	Fuel oil	-	1
	Lubricants	-	7
	Charcoal and Coal	-	1.
	Blood stains	3	-
	Documents	1	-
	Internal organ	1	-
	Metals	1	7
	Ores	-	4
	Chemicals	1	4
	Food	1	-
	Earth, Rocks	24	24
	Miscellaneous	5	
		400	459
Ministry of Agriculture	Drinking water, Industrial water	-	1
	Chemicals	-	5
	Food	-	3
		-	9

46

From	Items	Number of Samples	
		1947	1948
Ministry of Communication	Fuel oil	1	-
	Lubricants	38	5
	Charcoal and Coal	12	12
	Fuels	-	2
	Metals	38	23
	Ore	1	-
	Chemicals	8	7
	Gum	1	-
		99	49
Ministry of Finance	Fule oils	71	7
	Lubricants	3	-
	Morphine or Opium dross suspects	34	58
	Other objects under suspect	1	-
	Metals	16	36
	Ores	9	13
	Chemicals	2	11
	Opium	299	293
	Opium dross	1	9
	Vegetable oil	1	1
	Alcoholic beverages	29	16
	Food	181	184

Form	Items	Number of Samples	
		1947	1948
	Pharmaceuticals	2	5
	Earth, Rock	1	1
	Fabrics, Textiles	6	11
	Fertilizer	-	1
	Tobacco	1	-
	Dyes	2	-
	Paints	-	6
	Food colour	1	-
	Colours	11	-
	Miscellaneous	3	7
Ministry of Economic Affairs		674	659
	Other objects under suspect	-	4
	Chemicals	-	2
	Tannin	-	1
Ministry of Interior	Drinking water, Industrial water	-	7
		127	162
-	Mineral water	-	2
	Blood stains	55	109
	Fire-arms \& Ammunition	27	31
	Morphine or Opium dross suspects	2	13

From	Items	Number of Samples	
		1947	1948
Ministry of Justice	Poison suspects	24	-
	Internal organ	1	-
	Other objects under suspect	44	42
	Chemicals	1	3
	Vegetable oils	-	9
	Gum, Para rubber	-	2
	Paint	-	2
	Document	281	375
		-	1
		-	1
Ministry of Public Health	Drinking water. Industrial water	29	58
	Blood stains	17	3
	Morphine or Opinm dross suspects	16	2
	Other objects under suspect	35	1
	Poison suspects	-	3
	Chemicals	10	-
	Non-alcoholic beverages	-	6
	Food	8	153
	Pharmaceutical	-	1
	Food colours	8	6
		123	233

From	Items	Number of Samples	
		1947	1948
Ministry of Industry	Drinking water, Industrial water	-	1
	Mineral water	6	-
	Charcoal and Coal	-	5
	Fuels	-	3
	Other objects under suspect	1	-
	Metal	1	-
	Ores	104	25
	Chemicals	20	47
	Alcoholic beverages	91	218
	Non-alcoholic beverages	4	-
	Food	2	7
	Earth, Rocks	29	29
	Shellac, Seed lac	1	-
	Soaps	3	-
	Tannin	-	2
	Merchandise for certification	22	26
	Miscellaneous	14	4
		298	367
Banks and Government Organizations	Charcoal and Coal	1	-
	Fuel	22	- ...
	Metal	-	1
	Gold	-	1

From	Items	Number of Samples	
		1947	1948
	Lubricants	11	1
	Charcoal and Coal	3	8
	Poison suspects	-	1
	Metals	293	87
	Valuable metals	2	-
	Ores	100	44
	Chemicals	26	31
	Opium	1	-
	Edible oils, Fats	124	32
	Vegetable oils	33	18
	Alcoholic beverages	2	-
	Non-alcoholic beverages	1	11
	Food	27	38
	Animal feed	3	2
	Pharmaceuticals	16	6
	Earth, Rocks	5	12
	Textile, Fabrics	1	4
	Damagedmerchandise	10	8
	Shellac, Seed lac	250	137
	Fertilizers	-	5
-	Gum, Para rubber	3	11
	Tobacco	1	-
	Food colour	-	1
	Soaps	-	6
	Tannin	2	2
	Miscellaneous	20	5
-		939	493
	Total	2,938	2,736

(B) KIND CLASISFICATION

Items	Number of Samples	
	1947	1948
Merchandise for certification	22	26
Water		
Drinking water, Industrial water	217	293
Mineral water	6	2
Sea water	359	412
Fuels		
Fuel oils	96	15
Lubricants	52	13
Charcoals and Coals	16	19
Miscellaneous	-	13
Other objects under suspect		
Blood stains	75	112
Fire-arms and Ammunition	27	31
Morphine or Opium dross suspects	53	73
Poison suspects	24	4
Semen stains	-	-
Document	1	1
Internal organ	3	-
Miscellaneous	81	47
Metal	352	154
Valuable metals	2	-
Gold	-	1
Ores	241	87
Chemicals	79	112
Opinms	300	293
Opium drose	1	9

Items	Number of Samples	
	1947	1948
Edible oils, Fats	124	32
Vegetable oils	34	28
Alcoholic beverages	122	234
Non-alcoholic beverages	5	17
Food	219	390
Animal feed	3	2
Pharmaceutical	18	12
Earth, Rocks	59	77
Textiles, Fabrics	7	15
Damaged merchandise	10	8
Shellac, Seed lac	251	137
Fertilizers	-	6
Gum, Para rubber	4	13
Tobacco	2	-
Dyes	2	-
Paints	-	8
Food colours	9	7
Colours	11	-
Soaps	3	6
Ink	-	1
Tannin	2	5
Miscellaneous	46	21
	2,938	2,736

[^0]: Accounts of some of the more interesting cases are given below :
 found
 Five fatal cases of poisoning were examined by this section. In 2 cases arsenic was found,
 In the first case, arsenic was found mixed with the lime eaten with betel-nut. The victim was a woman born in Songkla.

 In the second case, arsenic was found in Krong Kraeng pastries peddled by a woman in
 Dhonburi. Of the thirty persons who ate these only one girl, aged 6 , died.

