การตกค้างของซัลเฟอร์ไดออกไซด์ในน้ำตาลปี๊บและ น้ำตาลปืกที่ผลิตจากน้ำตาลมะพร้าวที่จำหน่ายในตลาด ของกรุงเทพมหานครและสมุทรสงคราม

เวณิกา เบ็ญจพงษ์ ${ }^{1}$ อรอนงค์ มหัคฆพงศ์ ${ }^{2}$ ทรงศักดิ์ ศรีอนุชาต ${ }^{1}$

บท คัดย่อ

การศึกษานี้เป็นการสำรวจการตกค้างของสารฟอกขาวกลุ่มของสารซัลไฟต์ในรูปของ ซัลเฟอร์ไดออกไซด์ $\left(\mathrm{SO}_{2}\right)$ ในน้ำตาลปี๊บและน้ำตาลปีกที่ผลิตจากน้ำตาลมะพร้าวจากตลาดของ กรุงเทพมหานครและสมุทรสงคราม โดยเก็บตัวอย่างน้ำตาลมะพร้าวที่วางจำหน่ายในตลาด กรุงเทพมหานครและสมุทรสงคราม มาวิเคราะห์โดยวิธี Optimized Monier-Williams พบว่าค่า เฉลี่ยของปริมาณ SO_{2} ในน้ำตาลมะพร้าวที่จำหน่ายในตลาดของกรุงเทพมหานคร (367.76 มก./ กก.) มีค่าสูงกว่าน้ำตาลมะพร้าวที่จำหน่ายในตลาดของสมุทรสงคราม (105.00 มก./กก.) อย่าง มีนัยสำคัญทางสถิติที่ $p<0.05$ และ ปริมาณ SO_{2} ในน้ำตาลปึกที่เก็บจากตลาดในกรุงเทพมหานคร (463.83 มก./กก.) มีค่าสูงกว่าน้ำตาสปึกที่เก็บจากตลาดในสมุทรสงคราม (56.26 มก./กก.) อย่าง มีนัยสำคัญทางสถิติที่ $p<0.05$ เช่นกัน แต่ปริมาณ SO_{2} ในน้ำตาลปี๊บที่เก็บจากตลาดในกรุงเทพ มหานคร (271.69 มก./กก.) ไม่แตกต่างจากน้ำตาลปี้บที่เก็บจากตลาดในสมุทรสงคราม (348.71 มก./กก.) อย่างมีนัยสำคัญทางสถิติ และพบว่าร้อยละ 56 ของน้ำตาลมะพร้าวที่จำหน่ายใน กรุงเทพมหานคร มี SO_{2} ตกค้างสูงกว่าที่กระทรวงสาธารณสูขกำหนด แต่น้ำตาลมะพร้าวที่ จำหน่ายในสมุทรสงครามพบเกินมาตรฐานเพียงร้อยละ 31 ดังนั้นน้ำตาลมะพร้าวที่วางจำหน่ายใน ตลาดกรุงเทพมหานครในขณะนั้น มีการใช้สารฟอกขาวกลุ่มสารซัลไฟต์ทั้งจำนวนตัวอย่างและ ปริมาณที่ใช้สูงกว่าในแหล่งผลิต คือ สมุทรสงคราม สาเหตุอาจเกิดเนื่องจากความจำเป็นในการ ชะลอการเปลี่ยนสีระหว่างการขนส่งและเก็บรักษา ขณะที่ในแหล่งผลิตสามารถผลิตและจำหน่าย ได้เร็วความจำเป็นในการใช้สารฟอกขาวจึงน้อยกว่า ดังจะเห็นได้จากความสัมพันธ์ของความเข้ม ของสีกับปริมาณการตกค้างของ SO_{2} ในน้ำตาล การซื้อน้ำตาลมะพร้าวจากตลาดของกรุงเทพมหานครผู้บริโภคจะมีความเสี่ยงต่อการได้รับ SO_{2} จากการบริโภคน้ำตาลมะพร้าว $(1.52 \%$ ของ ค่า $A D I)$ สูงกว่าการซื้อน้ำตาลมะพร้าวจากตลาดในสมุทรสงคราม $(0.46 \%$ ของค่า $A D I)$ อย่างไร ก็ตามควรมีการศึกษาการได้รับ SO_{2} จากอาหารทั้งหมดที่คนไทยบริโภคด้วย วารสารโภชนาการ 2547;39(3):44-56

คำสำคัญ: น้ำตามมะพร้าว, สารฟอกขาว, สารซัลไฟต์

[^0]
คำ น ำ

การผลิตน้ำตาลมะพร้าวเป็นอุตสาหกรรม พื้นบ้านที่มีการผลิตในหลายจังหวัดโดยนำน้ำตาลสด จากจั่นมะพร้าวมาเคี่ยวจนได้น้ำตาลแห้ง เทใสีปี๊บ เรียก น้ำตาลปี๊บ หยอดใส่พิมพ์ เรียก น้ำตาลปีก แต่ปัจจุบันการผลิตมีการเปลี่ยยรูปแบบไป มีการ ใช้สารฟอกขาวในการผลิตเพื่อชะลอการเปลี่ยนสี ของน้ำตาล ที่พบส่วนใหมู่เป็นกลุ่มของสาวซัสไฟต์ มีการผสมน้ำตาลทรายเพื่อคงรูปน้ำตาลไม่ให้เยิ้ม เหลว และมีการผลิตน้ำตาลหลอมขึ้น โดยนำ น้ำตาลสด ผสมน้ำตาลทราย แบะแซ กากน้ำตาล สารฟอกขาว และสี มาแข่งขัน ทำให้ผู้ผลิต น้ำตาลมะพร้าวแท้หลายรายเลิกอาชีพไป การใช้ สารพอกขาวในการผลิตน้ำตาลนั้นกระทรวง สาธารณสุขมีการอนุญาตให้ใช้ คือ กลุ่มของสาร ซัสไฟต์ที่อนุฉูขตให้ใส่ในอาหาร") ได้แก่ ซัดเฟอร์ไตออกไซด์ $\left(\mathrm{SO}_{2}\right)$ โซเดียม-โปแทสเซียมซัลไฟต์ โซเดียม-โปแทสเซียมไบซัลไฟต์ และโศเดียม โปแฟสเซียมเมตาไบซัสไฟต์ โดยอนุญาตให้ใช้สาร ฟอกขาวกลุ่มนี้ในการผลิตน้ำตาลมะพร้าวในระดับ ที่มีปริมาณการตกค้างของ SO_{2} ไม่เกิน 40 มก./ กก. อาหาร ${ }^{(2)}$ แต่จากการสำรวจของสำนักงาน คณแกรรมการอาหารและยา ใน พ.ศ. 2528 ที่จัจหวัด สมุทรสงคราม ${ }^{(3)}$ พบว่า 92% ของสารฟอกขาวที่ ใช้ผลิตน้ำตาลมะพร้าว คือ "โซเดียมไฮโโดรซัสไฟต์" ซึ่งเป็นสารที่ไม่อนุญาตให้ใส่ในอาหาร เนื่องจาก มีความเป็นพิษสูง ถ้าบริโภคในปริมาณมากจะทำให้ เกิดการอักเสบที่ลำคอและระบบทางเดินอาหาร ปวดท้อง คลื่นไส้ อาเจียน การไหลเวียนโลหิด ถ้มเหลว ระบบหายใจล้มเหลว หมดสติ และอาจ เสียชีวิตไได้ นอกจากทำให้เกิดความระคายเคือง ต่อระบบทางเดินอาหารเมื่อไดับัใในปริมาณมากแล้ว

สารซัสไฟต์ยังสามารถก่อให้เกิตอาการแพ้อย่าง รุนแรงในกลุ่มคนที่ไวต่อการแพ้ โดยเฉพาะผู้ที่ เป็นโรคภูมิแพ้หรือโรคหอบหืด จะทำให้เกิด อาการเกี่ยวกับระบบทางเดินหายใจ (การอุดตัน ของหลอดลมและหลอดลมอักเสบ) อาจทำให้ซ์อก หมดสติ และเสียชีวิตได้ แม้ได้รับในปริมาณน้อย โดยมีายงานการเกิดภาวะการแพ้ในผู้บริโภคสลัด ที่พ่นด้วยยฮซเดียมไบซัลไฟต์ 10 มก. และพบว่า กลุ่มเด็กที่เป็นโรคหอบหืดจะมีความไวต่อการแพ้ สารซัลไฟต์สูงกว่าผู่ใหฆู ${ }^{(47)}$ หลายประเทศจึงมี การกำหนดให้มีการแสดงฉลากในอาหารที่มีการใช้ สารซัลไฟต์เป็นวัตตุเจือปนอาหาร ในประเทศไทย มีการกำหนดปริมาณการใช้สารกลุ่มนี้ในอาหาร หลายประเภท แต่ยังพบว่ามีการนำสารซัลไฟต์ไป ใช้ในอาหารอย่างไม่เหมาะสมทั้งชนิดและปริมาณ ดังมีรายงานการพบผู้ป่วยจากการบริโภคอาหาร ซึ่งมีการใช้เครื่องปรุงรสจากน้ำตาลและกะปีที่ ใช้โซเดียมไฮโดรซัลไฟต์เป็นสารฟอกขาว โดย พ.ศ. 2528 มีรายงานว่ากลุ่มครูและนักเรียนที่ บริโภคข้าวคลุกกะปิซึ่งมีโซเดียมไฮโดรซัลไฟต์ เจือบนอยู่ มีอาการ คลื่นไส้ อาเจียน และปวดท้อง กลุ่มตู้ัับการฝึกหลักสูตรจู่โจมเกิดอาการเจ็บป่วย และมีผู้เสียชีวิต จากการรับประทานอาหารที่มี โซเดียมไฮโดรซัลไฟต์ผสมไนน้ำตาลปึกและเครื่อง ปรุงรสอื่น ${ }^{(8)}$ นอกจากพบการใช้สารฟอกขาว ผิดชนิดแล้วยังพบการ่ใช้ในปริมาณสูงเกินมาตรฐาน ดังการศึกษาของกรมวิทยาศาสตร์การแพทย์ ใน พ.ศ. 2544 ที่สมุทรสงคราม่(9) พบว่า 50% ของ น้ำตาลมะพร้าวที่ผลิต มีปริมาณ SO_{2} เกินมาตรฐาน ตามประกาศของกระทรวงสาธารณสุข

ในการศึกษานี้มีวัตถุประสงค์ เพื่อทราบถึง สถานการณ์การใช้สารฟอกขาวกลุ่มของสารซัลไฟต์ ในน้ำตาลมะะร้าว และนำข้อมูลมาใช้ในการประเมิน

ความเสี่ยงต่อการได้รับ SO_{2} จากการบริโภค น้ำตาลมะพร้าว ตังนั้นจึงจำเป็้นต้องมีการศึกษา ปริมาณการตกค้างของ SO_{2} ในน้ำตาลปี๋บและ น้ำตาลปึกซึ่งผลิตจากน้ำตาลมเพร้าวที่วางจำหน่าย ในตลาดใหญู่ของผู้บริโภค คือ กรุงเทพมหานคร และในแหล่งผลิตสำคัญ คือ จังหวัดสมุทรสงคราม และประเมินการได้รับ SO_{2} จากการบริโภคน้ำตาล มะพร้าวในชุมชนเหล่านี้ เพื่อก่อให้เกิดความ ตระหนักถึงความจำเป็นในการปรับปรุงการผลิต น้ำตาลมะพร้าวให้ได้ผลิตภัแฑ์ที่มีคุณภาพและ ปลอดภัยต่อการบริโภค

วิธีการวิจัย

1. การวิเคราะห์ปริมาณสารซัลไฟต์ในน้ำตาลปี๊บ และน้ำตาลปีก

เก็บตัวอย่างน้ำตาลปี๊บและน้ำตาลปี่กซึ่ง ผลิตจากน้ำตาลมะพร้าวที่จำหน่ายในกรุงเทพมหานคร 6 ตลาด จาก 6 เขต ได้แก่ เทเวศร์ บางแค ราษฎร์รูรณะ คลองเตย ลาดพร้าว และ หลักสี่ ตลาดละ 12 ตัวอย่าง และน้ำตาลที่วาง จำหน่ายในตลาดสมุทรสงคราม 3 ตลาด จาก 3 อำเภอ ได้แก่ อำเภอเมือง อำเภออัมพวา และ อำเภอบางคนที ตลาดละ 12 ตัวอย่าง วิเคราะห์ หาปริมาณสารซัลไฟต์ในรูปของ SO_{2} โดยวิธี Optimized Monier-Williams ${ }^{(10)}$
2. การประเมินการได้รับ SO_{2} จากการบริโภค น้ำตาลมะพร้าว

นำข้อมูลปริมาณ SO_{2} ที่พบในน้ำตาล มะพร้าวจากการวิจัยนี้ และข้อมูลการสำรวจการ บริโภคอาหารของกรมอนามัย(11) ซึ่งพบว่า ค่า เฉลี่ยการบริโภคน้ำตาลมะพร้าวของคนไทยคือ
1.81 ± 6.38 กรัม/คน/วัน โดยพบว่าเขตเมืองมีการ บริโคคเฉลี่ย 1.74 ± 5.62 กรัม/คน/วัน มาใช้เป็น ค่าเฉลี่ยปริมาแการบริโภคน้ำตาลมะพร้าวของคน กรุงเทพย และพบว่าเขตชนบทมีการบริโภคเฉลี่ย 1.83 ± 6.58 กรัม/คนวัน มาใช้เป็นค่าเฉลี่ยปริมาณ การบริโภคน้ำตาลมะพร้าวของคนสมุทรสงคราม ในสูตรการคำนวแดังนี้

$$
1=\frac{S \times C}{b w}
$$

! = ค่าเฉฉี่ยปริมาณ $\mathrm{SO}_{\text {ว }}$ ที่ได้รับจากการ บริโกคน้ำตาลมะพร้าว (มก./กก.น้ำหนักตัววัน)
$\mathrm{S}=$ ค่าฉฉลี่ยปริมาณ SO_{2} ที่พบในน้ำตาล มะพร้าว (มก./กก.)
$C=$ ค่าเฉลี่ยปริมาณการบริโภคน้ำตาล มะพร้าวของคนไทย (กก./คนวัน)
$\mathrm{bw}=$ ค่าฉฉลี่ยน้ำหนักตัวของคนไทย $(60$ กп.)

3. การศึกษาความเข้มของสีกับปริมาณ SO_{2} ที่พบ ในน้ำตาลมะพร้าว

นำต้วอย่างน้ำตาลมะพร้าวมาทดสอบความ เข้มของสีโดยเปรียบเทียบกับสีใน Munsell book of color เมื่อเปรียบเทียบกับสีใน Munsell book of color แล้ว ทำการบันทึกความเข้มของสี โดย แบ่งกลุ่มสเเป็น 3 กลุ่ม ดังนี้

กลุ่มที่ $1=$ กลุ่มสีเหลืองอ่อน ประกอบ ด้วยสี
$2.5 \mathrm{Y} 9 / 4,2.5 \mathrm{Y} 8.5 / 6,2.5 \mathrm{Y} 8 / 6,2.5 \mathrm{Y} 8 / 4$, $2.5 \mathrm{Y} 7 / 6$ และ $2.5 \mathrm{Y} 7 / 4$

กลุ่มที่ $2=$ กลุ่มสีน้ำตาลเหลือง (สีเหลือง จนถึงสีเหลืองน้ำตาล) ประกอบด้วยสี
$2.5 \mathrm{Y} 6 / 8-2.5 \mathrm{Y} 5 / 8$ และ $10 \mathrm{YR} 6 / 6-10 Y R 5 / 6$

กลุ่มที่ $3=$ กลุ่มสีน้ำตาลเข้ม (สีน้ำตาล จนถึงสีน้ำตาลเข้ม) ประกอบด้วยสี
7.5YR4/6, 10YR4/6-10YR4/4 และ $2.5 \mathrm{Y} 4 / 6-2.5 \mathrm{Y} 4 / 4$

ผลการศึกษา

1. การวิเคราะห์ปริมาณสารซัลไฟต์ในน้ำตาลปี๊บ และน้ำตาลปึก

การวิเคราะห์ปริมาณสารซัลไฟต์ในรูปของ SO_{2} ในน้ำตาลมะพร้าวที่วางจำหน่ายในตลาด กรุงเทพมหานคร 12 ตลาด (72 ตัวอย่าง) พบว่า ค่าเฉลี่ยของ SO_{2} ในน้ำตาลมะพร้าวมีค่าเท่ากับ 367.76 ± 506.58 มก./กก. (ND-1,837.60 มก./กก.) และร้อยละ 55.6 ของน้ำตาลมะพร้าว มีปริมาณ SO_{2} ตกค้างเกินมาตรฐาน $(51.96-1,837.60$ มก./

กก.) ดังแสดงในตารางที่ 1 โดยน้ำตาลมะพร้าว จากตลาดหลักสี่มีจำนวนตัวอย่างที่ไม่ผ่านเกณฑ์ มาตรฐานสูงสุด คือร้อยละ 75.0 ขณะที่น้ำตาล มะพร้าวจากตลาตบางแคมีจำนวนตัวอย่างที่ไม่ ผ่านเกณฑ์มาตรฐานต่ำสุด คือร้อยละ 33.3 และ พบว่าค่าเฉลี่ยของ SO_{2} ในน้ำตาลมะพร้าวที่เก็บ จากตลาด ราษฎร์บูรณะ หลักสี่ ลาดพร้าว บางแค คลองเตย และ เทเวศร์ มีค่าสูงเกินมาตรฐาน

การวิเคราะห์ปริมาณสารซัลไฟต์ในรูปของ SO_{2} ในน้ำตาลมะพร้าวที่วางจำหน่ายในตลาด สมุทรสงคราม 3 ตลาด (36 ตัวอย่าง) พบว่า ค่าเฉลี่ยของ SO_{2} ในน้ำตาลมะพร้าวมีค่าเท่ากับ 105.00 ± 209.15 มก./กก. (ND-870.45 มก./กก.) และร้อยละ 30.6 ของน้ำตาลมะพร้าว มีปริมาณ SO_{2} ตกค้างเกินมาตรฐาน (43.95-870.45 มก./ กก.) ดังแสดงในตารางที่ 1 โดยน้ำตาลมะพร้าว จากตลาดอำเภอเมืองมีจำนวนตัวอย่างไม่ผ่าน

ดารางที่ 1 ปริมาณซัลเพอร์ไดออกไซด์ที่พบในน้ำตาลมะพร้าวที่จำหน่ายในตลาดของกรุงเทพมหานครและสมุทรสงคราม

ปริมาณ ซัลเฟอร์ไดออกไซด์	น้ำตาลมะพร้าวที่จำหน่ายในกรุงเทพมหานคร			น้ำตาลมะพร้าวที่จําหน่ายในสมุทรสงคราม		
	จำนวน ตัวอย่าง	ร้อยละ	ซัลเฟอร์ไดออกไซต์ (มก./กก.) Mean \pm SD (Range)	จำนวน ตัวอย่าง	ร้อยละ	ซัลเฟอร์ไดออกไซด์ (มก./กก.) Mean \pm SD (Range)
ไม่พบ (Not detected)	19	26.4	ND*	21	58.3	ND*
พบในมาตรฐาน (≤ 40 มก./กก.)	13	18.1	$\begin{aligned} & 10.05 \pm 10.25 \\ & (1.74-38.59) \end{aligned}$	4	11.1	$\begin{gathered} 27.16 \pm 8.32 \\ (14.93-33.58) \end{gathered}$
สูงกว่ามาตรฐาน	40	55.6	678.71 ± 573.35	11	30.6	333.78 ± 216.86
(>40 มก./กก.)			(51.96-1,837.60)			(43.95-870.45)
ค่าเฉลี่ย	72		367.76 ± 506.58	36		105.00 ± 209.15
			($\mathrm{ND}^{*}-1,837.60$)			($\mathrm{ND}^{*-870.45 \text {) }}$

หมายเหดุ : * ND $=$ Not detectedหมายถึง มีค่าน้อยจนไม่สามารถวิเคราะห์ได้

เกณฑ์มาตรฐานสูงสุด คือ ร้อยละ 41.7 ขณะที่ น้ำตาลมะพร้าวจากตลาดอำเภออัมพวามีจำนวน ตัวอย่างไม่ผ่านเกณฑ์มาตรฐานต่ำสุด คือ ร้อยละ 16.7 และพบว่าค่าเฉลี่ยของ SO_{2} ในน้ำตาลมะพร้าว ที่เก็บจากตลาดอำเภอเมือง อำเภอบางคนฑี และ อำเภออัมพวา มีค่าสูงเกินมาตรฐาน

เมื่อเปรียบเทียบระหว่าง 2 จังหวัด (ตาราง ที่ 2) พบว่าปริมาณการตกค้างของ SO_{2} ในน้ำตาล มะพร้าวที่เก็บจากตลาดกรุงเทพมหานครมีคาสูง กว่าน้ำตาลมะพร้าวที่เก็บจากตลาดสมุทรสงคราม อย่างมีนัยสำคัญทางสถิติที่ $p<0.05$ โดยพบว่า ปริมาณ SO_{2} ในน้ำตาลปื๊บที่เก็บจากตลาดใน กรุงเทพมหานคร (271.69 มก./กก.) ไม่มีความ แตกต่างจากน้ำตาลปี๊บที่เก็บจากตลาดใน สมุทรสงคราม (348.71 มก./กก.) อย่างมีนัย สำคัญทางสถิติ แต่ปริมาณ SO_{2} ในน้ำตาลปึกที่ เก็บจากตลาดในกรุงเทพมหานคร (463.83 มก./

กก.) มีค่าสูงกว่าน้ำตาลปึกที่เก็บจากตลาดใน สมุทรสงคราม (56.26 มก./กก.) อย่างมีนัยสำคัญ ทางสถิตีที่ $p<0.05$ และน้ำตาลปี๊บที่เก็บจากตลาด ในกรุงเทพมหานครและสมุทรสงคราม 42 ตัวอย่าง พบร้อยละ 61.9 มี SO_{2} ตกค้างสูงกว่ามาตรฐาน ขณะที่น้ำตาลปึกที่เก็บจากตลาดในกรุงเทพมหานคร และสมุทรสงคราม 66 ตัวอย่าง พบร้อยละ 30.4 มี SO_{2} ตกค้างสูงกว่ามาตรฐาน

2. การประเมินการได้รับ SO_{2} จากการบริโภค น้ำตาลมะพร้าว

การคำนวณการได้รับ SO_{2} จากการบริโภค น้ำตาลมะพร้าวของคนกรุงเทพมหานคร และคน สมุทรสงคราม (ตารางที่ 3) พบว่า ปริมาณการ ได้รับ SO_{2} จากการบริโภคน้ำตาลมะพร้าวของคน กรุงเทพมหานคร มีค่าเฉลี่ยเท่ากับ 0.0107 มก./ กก. น้ำหนักตัว/วัน ซึ่งต่ำกว่าค่า ADI (Acceptable

ตารางที่ 2 ปริมาณซัสเฟอร์ไตออกใซด์ที่พบในน้ำตาลปี๊บและน้ำตาลปึกที่ผลิตจากน้ำตาลมะพร้าวที่จำหน่ายไนตลาด ของกรุงเทพมหานครและสมุทรสงคราม

ชนิดน้ำตาล	น้ำตาลมะพร้าวที่จำหน่ายในกรุงเทพมหานคร			น้ำตาลมะพร้าวที่จำหน่ายในสมุทรสงคราม		
	จำนวน ตัวอย่าง	ร้อยละ ที่เกิน มาตรฐาน	ซัลเฟอร์ไดออกไซด์ (มก./กก.) Mean \pm SD (Range)	จำนวน ตัวอย่าง	ร้อยละ ที่เกิน มาตรฐาน	ซัลเฟอร์ไดออกไซด์ (มก./กก.) Mean \pm SD (Range)
น้ำตาลปืบ	36	58.3	$271.69+296.27^{\text {a }}$	6	83.3	$348.71 \pm 330.98{ }^{\text {a }}$
			($\mathrm{ND}^{*}-1,224.63$)			(30.06-870.45)
น้ำตาสปึก	36	52.8	$463.83 \pm 643.28^{\text {a }}$	30	16.7	$56.26 \pm 138.41^{\text {b }}$
			($\mathrm{ND}^{*}-1,837.60$)			($\mathrm{ND}^{*}-593.78$)
น้ำตาลมะพร้าว	72	55.6	$367.76 \pm 506.58{ }^{\text {a }}$	36	30.6	$105.00 \pm 209.15^{\text {b }}$
			(D $^{*}-1,837.60$)			(DD*-870.45) $^{\text {a }}$

หมายเหตุ: *ND $=$ Not detected หมายถึง มีค่าน้อยจนไม่สามารถวิเคราะห์ได้
a, b หมายถึง ค่า Mean ในแถวเดียวกันที่แตกต่างกันอย่างมีนัยสำคัญทางสถิติ ที่ $\mathrm{p}<0.05$

Daily Intake) ของ SO_{2} คือ 0.7 มก./กก.น้ำหนัก ตัว/วัน ค่า ADI เป็นค่าที่บอกถึงปริมาณเฉลี่ย ที่คนได้รับสารชนิดนั้นต่อวัน แล้วไม่ก่อให้เกิด อันตราย หรือผลกระทบต่อสุขภาพ ในการได้รับ สารนั้นตลอคชั่วชีวิต โดยปริมาณการได้รับ SO_{2} จาก การบริโภคน้ำตาลมะพร้าวของคนกรุงเทพมหานคร มีค่าเพียงร้อยละ 1.52 ของ $A D I$ แต่มีค่าสูงกว่าที่ คนสมุทรสงครามได้รับ และพบว่า ปริมาณการ ได้รับ SO_{2} จากการบริโภคน้ำตาลมะพร้าวของคน สมุทรสงคราม มีค่าเฉลี่ยเท่ากับ 0.0032 มก. กกก. น้ำหนักตัว/วัน ซึ่งต่ำกว่าค่า $A D I$ มาก โดยมีค่า เพียงร้อยละ 0.46 ของ $A D I$

3. การศึกษาความเข้มของสีกับปริมาณ SO_{2} ที่พบ

 ในน้ำตาลมะพร้าวพบว่าปริมาณการตกค้างของ SO_{2} ในน้ำตาล มะพร้าวที่เก็บจากตลาดในกรุงเทพมหานคร มี ความสัมพันธ์กับความเข้มของสีของน้ำตาลมะพร้าว (ตารางที่ 4) โดยน้ำตาลมะพร้าวที่เก็บจากตลาดใน กรุงเทพมหานคร ที่มี SO_{2} ระหว่าง มีค่าน้อยจน ไม่สามารถวิเคราะห์ได้ (ND) ถึง 40 มก./กก. มีสี อยู่ในกลุ่มสีน้ำตาลเข้มเป็นส่วนใหญ่ (56.3%) น้ำตาลมะพร้าวที่มี $\mathrm{SO}_{\mathrm{O}^{2}}$ ระหว่าง $101-1,000$ มก./ กก. มีสีอยู่ในกลุ่มสีน้ำตาลเหลืองเป็นส่วนใหญ่ (73.1%) และน้ำตาลมะพร้าวที่มี SO_{2} ระหว่าง $1,001-$

ดารางที่ 3 ประมาแแการไต้รับซัสเฟอร์ไตออกไซต์จากการบริโภคน้ำตาลมะพร้าว

	ค่าเฉลี่ยปริมาณซัลเฟอร์ไดออกไซด์ ในน้ำตาลมะพร้าว (มก./กก.)	การได้รับซัลเฟอร์ไดออกไซด์ (SO_{2} intake)		\% intake/ADI
		มก./ศน/วัน	มก./กก./วัน	
ตลาดในกรุงเทพมหานคร				
เทเวศร์	191.94	0.33	0.0056	0.80
บางแค	230.49	0.40	0.0067	0.95
ราษฎร์บูรณะ	772.44	1.34	0.0224	3.20
คลองเตย	227.85	0.40	0.0066	0.94
ลาดพร้าว	378.37	0.66	0.0110	1.57
หลักสี่	405.48	0.71	0.0118	1.68
ค่าเฉลี่ย	367.76	0.64	0.0107	1.52
ตลาตในสมุทรสงคราม				
อำเภอเมือง	226.45	0.41	0.0069	0.99
อำเภออัมพวา	17.37	0.03	0.0005	0.08
อำเภอบางคนฑี	71.19	0.13	0.0022	0.31
ค่าเฉลี่ย	105.00	0.19	0.0032	0.46

ตารางที่ 4 ความเข้มของสีและปริมาแซัดเฟอร์ไดออกไซด์ในน้ำตาลมะพร้าวที่เก็บจากตลาดในกรุุงเทพมหานครและ สมุทรสงคราม

$\begin{gathered} \text { ปริมาณ } \\ \text { SO } \\ \text { (มก./กก.) } \end{gathered}$	กรุงเทพมหานคร				สมุทรสงคราม			
	จำนวน ตัวอย่าง	จำนวนตัวอย่าง (ร้อยละ)			จำนวน ตัวอย่าง	จำนวนตัวอย่าง (ร้อยละ)		
		เหลืองอ่อน	น้ำตาลเหลือง	น้ำตาลเข้ม		เหลืองอ่อน	น้ำตาลเหลือง	น้ำตาลเข้ม
ND-40	32	4 (12.5)	10 (31.3)	18 (56.3)	25	7 (28.0)	7 (28.0)	11 (44.0)
41-100	3	0 (0)	3 (100.0)	0 (0)	2	1 (50.0)	0 (0)	(50.0)
101-1000	26	5 (19.2)	19 (73.1)	2 (7.7)	9	1 (11.1)	7 (77.8)	1 (11.1)
1001-2000	11	7 (63.6)	3 (27.3)	1 (9.1)	0	0 (0)	0 (0)	0 (0)
รวม	72	16 (22.2)	35 (48.6)	21(29.2)	36	9 (25.0)	14 (38.9)	13 (36.1)

2,000 มก./กก. มีสีอยู่ในกลุ่มสีเหลืองอ่อนเป็น ส่วนใหญ่ (63.6%) ส่วนน้ำตาลมะพร้าวที่เก็บจาก ตลาดในสมุทรสงคราม (ตารางที่ 4) พบว่า น้ำตาล มะพร้าวที่มี SO_{2} ระหว่าง ND ถึง 40 มก./กก. มีสี อยู่ในกลุ่มสีน้ำตาลเข้มเป็นส่วนใหญ่ (44.0%) และน้ำตาลมะพร้าวที่มี SO_{2} ระหว่าง $101-1,000$ มก./กก. มีสีอยู่ในกลุ่มสีน้ำตาลเหลืองเป็นส่วนใหญ่ (77.8%) ไม่พบตัวอย่างน้ำตาลมะพร้าวที่มี SO_{2} $>1,000$ มก./กก.

การอภูปรายผล

การศึกษานี้พบว่าปริมาณ SO_{2} ในน้ำตาล มะพร้าวที่จำหน่ายในตลาดกรุงเทพมหานครและ สมุทรสงคราม มีค่าเฉลี่ยเท่ากับ 367.76 และ 105.00 มก./กก. ตามลำดับ โดยน้ำตาลมะพร้าวที่ จำหน่ายในตลาดกรุงเทพมหานคร มีปริมาณ SO_{2} สูงกว่าน้ำตาลมะพร้าวที่จำหน่ายในตลาด สมุทรสงคราม อย่างมีนัยสำคัญทางสถิติ และพบ ว่าน้ำตาลมะพร้าวที่จำหน่ายในตลาดกรุงเทพมหานคร ส่วนใหญ่ (55.6%) มี SO_{2} ตกค้างสูงกว่าที่กระทรวง

สาธารณสุขกำหนด แต่น้ำตาลมะพร้าวที่จำหน่าย ในตลาดสมุทรสงครามพบเกินมาตรฐานเพียง ร้อยละ 30.6 อย่างไรก็ตามมีการศึกษาก่อนหน้านี้ ในน้ำตาลมะพร้าวที่เก็บจากเตาเคี่ยวน้ำตาลใน สมุทรสงคราม พบว่าร้อยละ 50.2 ของน้ำตาล มะพร้าวมีปริมาณ SO_{2} เกินมาตรฐาน ${ }^{(9)}$ แสดงว่า ในแหล่งผลิตน้ำตาลมะพร้าวยังมีการใช้สารฟอกขาว กลุ่มซัดไฟต์ และในการศึกษานี้ยังพบว่าน้ำตาล มะพร้าวที่ผลิตเพื่อจำหน่ายในแหล่งผลิต คือ สมุทรสงคราม มีการใช้สารซัลไฟต์น้อยกว่าน้ำตาล มะพร้าวที่จำหน่ายในตลาดกรุงเทพมหานคร ซึ่ง เป็นตลาดที่รับน้ำตาลมะพร้าวมาจากแหล่งผลิตที่ ห่างไกลหลายจังหวัด ดังนั้นการควบคุมความ ปลอดภัยด้านอาหารของประเทศอาจยังไม่เหมาะสม พอ ทำให้เกิดการผลิตน้ำตาลมะพร้าวที่มีการใช้ สารฟอกขาวเกินมาตรฐาน อาจเกิดจากผู้ผลิต ขาดความรู้ในการผลิตน้ำตาลมะพร้าวที่มีคุณภาพดี ทั้งการเลือกชนิดของสารฟอกขาวที่ถูกต้อง ดังมี การสำรวจพบการใช้โซเดียมไฮโดรซัลไฟต์เป็น สารฟอกขาวในการผลิตน้ำตาล ${ }^{(3)}$ และการขาด ความรู้ในการใช้สารฟอกขาวในปริมาณที่สามารถ รักษาคุณภาพน้ำตาลไว้ได้ในระยะเวลาที่เหมาะสม

โดยไม่ก่อให้เกิดการตกค้างเกินมาตรจาน จึงเกิด การใช้สารฟอกขาวปริมาณสูงเมื่อต้องการส่งไป จำหน่ายในที่ห่างไกล เพื่อสามารถเก็บน้ำตาลให้ มีสีเหลืองขาวได้นาน เนื่องจากสารฟอกขาวกลุ่ม ของสารซัลไฟต์มีมีรสสิทธิภาพในการยับยั้งปฏิกิริยา การเกิดสีน้ำตาล (Browning Reaction) ของ อาหารได้ทั้งแบบที่เกิดจากการกระตุ้นโดยเอ็นไซม์ และไม่ใช่เอ็นไซม์(6) จึงนิยมนำมาใช้ปัองกัน ปฏิกิริยาการเกิดสีน้ำตาลของน้ำตาลมะพร้าวที่ เกิดจากความร้อน (Caramelization) ที่ไช้ในการ เคี่ยวน้ำตาล และระหว่างการเก็บรักษทที่อุณหภูมิ ห้อง ทำให้สามารถเก็บน้ำตาสได้นานขึ้นโดยยังคง สีเหลืองอ่อนเหมือนเดิม ซึ่งจะเห็นได้จากการที่สี ของน้ำตาลมะพร้าวมีความสัมพันธ์กับปริมาณ
 น้ำตาลมะพร้าวสีเหลืองอ่อนมากกว่าสีน้ำตาลเข้ม (ตารางที่ 4) และน้ำตาลมะพร้าวที่จำหน่ายในตลาด ของกรุงเทพมหานครนั้น พบว่าน้ำตาลมะพร้าว กลุ่มที่มีสีเหลืองอ่อนส่วนใหญ่ (75.0%) มี SO_{2} ตกค้างเกินมาตรรานที่กระทรวงสาธารณสุขกำหนด และว้อยละ 43.8 ของน้ำตาลกลุ่มนี้มี SO_{2} อยู่ ระหว่าง $1,001-2,000$ มก./กก. ซึ่งสูงกว่าปริมาณ ที่อนุญาตให้มีในน้ำตาลมะพร้าวมาก ขณะที่น้ำตาล มะพร้าวกลุ่มที่มีส้น้ำตาลเข้มส่วนใหญ่ (85.7\%) มี SO_{2} อยู่รหหว่าง ND ถึง 40 มก. /กก. ซึ่งอยู่ใน ระดับมาตรฐานที่กระทรวงสาธารณสุขกำหนด แสดงว่าในกลุ่มของน้ำตาลมะพร้าวสีเหลืองอ่อน ส่วนใหญู่มีการใส่สารซัลไฟต์ในปริมาณมาก เพื่อ ช่วยชะลอปฏิกิริยาการเกิดสีน้ำตาล สำหรับการ จำหน่ายในแหล่งผลิตคือสมุทรสงครามนั้น ข้อมูล ที่ได้จากกาวสัมภาษณ์พบว่าน้ำตาลมะพร้าวสามารถ จำหน่ายได้หมดในเวลาอันสั้น และคนท้องถิ่น ทราบถึงความไม่ปลอดภัยในการใช้สารฟอกขาว ในการผลิต จึงเลือกซื้อน้ำตาลที่ผลิตโดยไม่ใส่สาร

ฟอกขาว ทำให้น้ำตาลมะพรัาวส่วนใหญู่ที่ผลิต เพื่อวางจำหน่ายในตลาดของสมุทรสงครามมีการ ใช้สารฟอกขาวน้อย ดังที่พบว่าส่วนใหญู (58.3%) ของน้ำตาลมะพร้าวที่จำหน่ายในตลาดสมุทรสงคราม มี SO_{2} ในปริมาณน้อยจนไม่สามารถวิเคราะห์ได้ ขแะที่สี่วนใหญ่ (55.6%) ของน้ำตาลมะพร้าวที่ จำหน่ายในตลาดกรุงเทพมหานครมี SO_{2} ในปริมาณ ที่สูงกว่ามาตรฐาน เเื่องจากโดยธรรมชาติของ น้ำตาลมะพร้าว เมื่อเก็บไว้นานจะเกิดการเปลี่ยน สีเป็นสีน้ำตาลเข้มขึ้นจากปฏิกิิริยาการเกิดสีน้ำตาล โดยเฉพาะเมื่อเก็บที่อุแหภูมิสูงดังเช่นในอุณหภูมิ ห้อง จะเห็นได้ว่าน้ำตาลที่เพิ่งผลิตใหม่ เช่นที่พบ ในตลาดของสมุทรสงคราม จะมีสีเหลืองอ่อนแม้ ไม่ใส่สารฟอกขาว แต่เมื่อผ่านไป 1 อาทิตย์ จะ เปลี่ยนเป็นสีน้ำตาลเหลือง และน้ำตาลเข้มในเวลา ต่อมา ดังนั้นน้ำตาลที่ถูกส่งมาจำหน่ายที่กรุงเทพมหานคร ถ้าใส่สารฟอกขาวน้อยหรือไม่ใส่มัก จะมีสีน้ำตาลเหลืองจนถึงน้ำตาลเข้ม ดังข้อมูลใน ตารางที่ 4 และจากการที่ผู้บริโภคนิยมเลือกซื้อ น้ำตาลมะพร้าวที่มีสีเหลืองอ่อน ผู้ผลิตจึงจำเป็น ต้องใส่สารฟอกขาวในปริมาณสูงเพื่อชะลอปฏิกิริยา การเกิดสีน้ำตาลในระหว่างขั้นตอนการผลิตและ การเก็บรักษา

นอกจากนี้ยังพบว่าน้ำตาลปี๊บเป็นน้ำตาล ที่มีการใช้สารฟอกขาวในการผลิตสูงกว่าน้ำตาลปืก เนื่องจากการผลิตน้ำตาลปึกนั้นผู้ผลิต นิยมใช้ น้ำตาลสดคุณภาพดีที่รองได้ในวันนั้นมาเคี่ยว เพราะขายได้ราคาดีกว่า สีของน้ำตาลที่เคี่ยไได้จึง เป็นสีเหลืองขาว ไม่จำเป็นต้องใส่สารฟอกขาว มากนัก จากการสัมภาษณ์ข้อมูลการผลิตพบว่าใน การผลิตน้ำตาลปื้บนั้น ผู้ผลิตบางรายนิยมใช้ น้ำตาลค้างคืหที่อุ่นไว้มาผลิต บางครั้งเป็นน้ำตาล เก่าที่ผ่านการเคี่ยวมาแล้วมาผลิต น้ำตาลที่เคี่ยว

ตารางที่ 5 ปริมาณซัลเฟอร์ไดออกไซด์ที่ได้รับจากการบริโภคอาหารชนิดต่างๆ

อาหาร	ปริมาณ บริโภค ${ }^{\text {a }}$ ก./คน/วัน	อาหารดิบ		อาหารสุก			\% intake/ ADI
		$\begin{gathered} \text { ปริมาณ } \mathrm{SO}_{2} \\ \text { (มก. }^{2} \text { /กก.) } \end{gathered}$	การได้รับ SO_{2} (มก./กก./วัน)	ปัจจัยของ การปรุง	ปริมาณ SO_{2} (มก.กกา.)	การได้รับ SO_{2} (มก./กก./วัน)	
น้ำตาลมะพร้าว	1.81	236.4	0.00713	-	-	-	1.02
น้ำตาลทราย	11.42	$70.0{ }^{\text {b }}$	0.01332	-	-	-	1.90
กะปิ	1.18	$540.0{ }^{(12)}$	0.01062	-	-	-	1.52
เส้นหมี่	0.56	$105.2{ }^{(13)}$	0.00098	$0.23{ }^{(13)}$	24.2	0.00023	0.03
ก๋วยเตี๋ยว	2.72	$69.4{ }^{(13)}$	0.00315	$0.29^{(13)}$	$20.0{ }^{(13)}$	0.00091	0.13
วุ้นเส้น	1.59	$64.7{ }^{(13)}$	0.00171	$0.32^{(13)}$	20.7	0.00055	0.08
กุ้งแช่แข็ง	0.33	100.0^{6}	0.00055	0.75	75.0	0.00041	0.06
เนี้อปูสด	0.85	$2.2{ }^{(14)}$	0.00003	0.75	$1.7{ }^{(144)}$	0.00002	0.003
ปูกระป๋อง	0.85	$44.8{ }^{(144)}$	0.00063	0.45	$20.0{ }^{(14)}$	0.00028	0.04
ผักกาดดอง	0.96	$156.4{ }^{(15)}$	0.00250	-	-	-	0.36
หน่อไม้ดอง	1.47	$80.4{ }^{(15)}$	0.00197	-	-	- -	0.28
ขึงหั่นฝอย	0.10	$85.1^{(15)}$	0.00014	-	-	-	0.02
ถั่วงอก	3.56	$4.5{ }^{(15)}$	0.00027	-	-	-	0.04
มะม่วงดอง	-	$55.1^{(15)}$	-	-	-	-	-
กระท้องตอง	-	$99.8{ }^{(15)}$	-	-	-	-	-
มะละกอเชื่อมแห้ง	-	$155.0{ }^{(15)}$	-	-	-	-	-
สับปะรดเชื่อมแห้ง	-	$267.0{ }^{(15)}$	-	-	-	-	-
ลูกเกดแห้ง	-	1500.0°	-	-	-	-	-
กลู่คสไซรัป	-	$400.0^{\text {b }}$	-	-	-	-	-

หมายเหตุ: ปริมาณ SO_{2} ในอาหาร ได้จากการรวบรวมเอกสารงานวิจัย $12-15$
$a=$ ปริมาณนอาหารที่บริโภค จากข้อมูลกรมอนามัย พ.ศ. 2538
$\mathrm{b}=$ ปริมาณ SO_{2} สูงสุดที่อนุญาตให้ใช้ในอาหาร จากข้อมูลตามประกาศของกระทรวงสาธารณสุข
$-=$ ไม่มีข้อมูลที่นำมาคำนวณไต้

ได้จึงมีสีน้ำตาลเข้มดูไม่น่ารับประทาน เนื่องจาก ปฏิกิริยาการเกิดสีน้ำตาลจากความร้อนและ ระหว่างการเก็บรักษา เมื่อนำมาเคี่ยวอีกครั้ง จึง จำเป็นต้องใส่สารฟอกขาวในปริมาณมากเพื่อ ทำให้น้ำตาลที่เคี่ยวได้มีสีน้ำตาลอ่อนลง

การคำนวณปริมาณการได้รับ SO_{2} จากการ บริโภคน้ำตาลมะพร้าว พบว่าผู้บริโภคจะมีความ เสี่ยงต่อการได้รับ SO_{2} จากการบริโภคน้ำตาล มะพร้าวที่จำหน่ายในตลาดกรุงเทพมหานคร สูงกว่าการบริโภคน้ำตาลมะพร้าวในตลาด
$54\left|\begin{array}{l|} \\\right.$\cline { 1 - 3 }\end{array}$|$ วารสารโกชนาการ

สมุทรสงคราม แต่ปริมาณ SO_{2} ที่ได้รับจากการ บริโภคน้ำตาลมะพร้าวของคนกรุงเทพมหานคร และคนสมุทรสงคราม มีค่าเพียงร้อยละ 1.52 และ 0.46 ของค่า ADI ตามลำดับ แสดงว่าการบริโภค น้ำตาลมะพร้าวของคนกรุงเทพมหานครและคน สมุทรสงคราม ไม่ก่อให้เกิดความเสี่ยงต่อการ ได้รับ SO_{2} เกินค่าที่จะก่อให้เกิดอันตรายต่อสุขภาพ แต่ผู้บริโภคมีโอกาสได้รับ SO_{2} จากแหล่งอาหาร อื่นอีก ดังแสดงในตารางที่ 5 จะเห็นว่ามีอาหาร หลายชนิดที่มีการบริโภคในชีวิตประจำวันของคน ไทยมีการใช้สารฟอกขาวกลุ่มของสารซัลไฟต์ เจือปนลงในอาหาร ทั้งในอาหารกลุ่มที่กระทรวง สาธารณสุขอนุญาตและไม่อนุญาตให้ใส่สารฟอก ขาวกลุ่มนี้(12-15) ดังนั้นควรมีการศึกษารวบรวมข้อมูล เพิ่มเติมเกี่ยวกับการตกค้างของ SO_{2} ในอาหารที่ คนไทยบริโภคเพื่อใช้ในการประเมินความเสี่ยงต่อ การได้รับ SO_{2} จากการบริโภคอาหารของคนไทย ซึ่งหลายประเทศได้มีการศึกษารวบรวมข้อมูลใน การประเมินความเสี่ยงต่อการได้รับสารซัลไฟต์ จากการบริโภคอาหารในชีวิตประจำวัน ${ }^{(17)}$

สรุปผลการวิจัย

การพบการตกค้างของ SO_{2} ในน้ำตาลปี๊บ และน้ำตาลปึกที่ผลิตจากน้ำตาลมะพร้าวซึ่งจำหน่าย ในตลาดกรุงเทพมหานครและสมุทรสงคราม โดย มีค่าเฉลี่ยในระดับสูงกว่าที่กระทรวงสาธารณสุข กำหนด แสดงให้เห็นว่ายังมีการใช้สารฟอกขาว

กลุ่มของสารซัลไฟต์ในการผลิตน้ำตาลมะพร้าวอยู่ โดยไม่มีการควบคุมปริมาณการใช้ที่เหมาะสม เมื่อประเมินการได้รับ SO_{2} จากการบริโภคน้ำตาล มะพร้าว พบว่าผู้บริโภคจะมีโอกาสได้รับ SO_{2} จากการบริโภคน้ำตาลมะพร้าวที่จำหน่ายในทั้ง 2 จังหวัดต่ำกว่าค่า $A D I$ มาก อย่างไรก็ตามผู้บริโภค มีโอกาสได้รับ SO_{2} จากการบริโภคอาหารอื่นอีก จากการรวบรวมข้อมูลการตกค้างของ SO_{2} ใน อาหาร พบว่าอาหารหลายประเภทที่จำหน่ายใน ท้องตลาด บางตัวอย่างพบ SO_{2} ปริมาณสูง และ มีการลักลอบใส่สารซัลไฟต์ในอาหารหลายชนิด โดยไม่มีการแสดงฉลาก ดังนั้นผู้บริโภคควรมีความ ใส่ใจในการเลือกซื้ออาหาร หลีกเลี่ยงการบริโภค อาหารที่มีการใช้สารฟอกขาวปริมาณสูง โดย สังเกตจากลักษณะอาหารที่ผิดจากสภาพตาม ธรรมชาติของอาหารนั้น การซื้อน้ำตาลมะพร้าว ควรสังเกตการเปลี่ยนสีของน้ำตาล โดยธรรมชาติ ของน้ำตาลมะพร้าวเมื่อเก็บไว้ $1-2$ อาทิตย์ที่ อุณหภูมิห้องจะเปลี่ยนสีเป็นสีน้ำตาลเข้มและ เยิ้มเหลว การเก็บให้คงสภาพเดิมควรเก็บใน อุณหภูมิต่ำ เช่น ตู้เย็น ถ้าเก็บน้ำตาลมะพร้าว หรือกะปิที่อุณหภูมิห้องโดยไม่เปลี่ยนสีนานหลาย เดือน ถั่วงอกที่เด็ดหางบริเวณรอยเด็ดสียังขาว หน่อไม้หรือขิงหั่นแล้วยังขาวอยู่นาน หัวไชเท้าที่ ขัดถูผิวแล้วยังขาวนวลหลายวัน แสดงว่าอาหาร เหล่านี้อาจมีการใส่สารฟอกขาวเพื่อช่วยในการ รักษาคุณภาพของสีและป้องกันปฏิกิริยาการเกิด สีน้ำตาลอันเป็นสาเหตุสำคัญที่ทำให้เกิดการ เปลี่ยนสีในอาหารหลายประเภท

เอกสารอ้างอิง

1. ประกาศกระทรวงสาธารณสุข ฉบับที่ 84 พ.ศ. 2522 . เรื่องวัตถุเจือปนอาหาร. พระราชบัญถัติอาหาร พ.ศ.2522; ราชกิจจานุเบกษา เล่มที่ $96,2522$.
2. ประกาศสำนักงานคณะกรรมการอาหารและยา พ.ศ. 2532 . เรื่องมาตรฐานน้ำตาลมะพร้าวที่มีซัลเฟอร์ไดออกไซด์ ปนเปื้อน. 26 พฤษภาศม 2532 .
3. ญานี วรรณสถิตย์. การศึกษาวิจัยการใช้สารฟอกสีใน น้ำตาลมะพร้าว. สำนักงานคณะกรรมการอาหารและยา กระทรวงสาธารณสุข 2538.
4. World Health Organization. Safety evaluation of certain food additives: Sulfur dioxide and sulfites. $51^{\text {th }}$ meeting of the Joint FAO/WHO Expert Committee on Food Additives, Geneva 1999.
5. Maga, JA. Tu AT. Food additive toxicology. New York: Marcel Dekker, Inc, 1995.
6. Papazian R. Sulfites: Safe for most, Dangerous for some. The FDA Consumer, 1996.
7. Prenner BM, Stevens JJ . Anaphylaxis after ingestion of sodium bisulfite. Ann Allergy 1976;37:180-2
8. สมพูล กฤตลักษณ์. รายงานการประชุมวิชาการของ สมาคมพิษวิทยาแห่งประเทศไทย เรื่อง การควบศุม สารพิษในอาหารส่งออก. 2532:138-44.
9. ปกรณ์ น้อยประเสริฐ นันทนา กลิ่นสุนทร ภานุโชติ ทองยัง. การตรวจซัลเฟอร์ไดออกไซด์ในน้ำดาลมะพร้าว ที่จังหวัดสมุทรสงครามโดยวิธี Modified Rankine. วารสารกรมวิทยาศาสตร์การแพทย์ 2544;2:166-70.
10. Warner CR, et al. Reevaluation of Monier-Williams method for determining sulfite in food. J Assoc Off Anal Chem 1986;69(1):3-5.
11. กรมอนามัย กระทรวงสาธารณสุข รายงานการสำรวจ ภาวะอาหารและโภชนาการของประเทศไทย 2538.
12. ฉวีวรรณ ศรีโกมล การลดลงของสารซัลไฟต์ในน้ำพริก กะปิ วิทยานิพนธ์วิทยาศาสตร์มหาบัณฑิต สาขา สาธารณสุขศาสตร์ มหาวิทยาลัยมหิดล 2537 .
13. Kingkate A, et al. Residual sulphur dioxide in some Thai noodles. J Food Protect 1981;44(5):334-6.
14. ศรายุทธ ศิวสิริการุณย์ การศึกษาระดับซัลเฟอร์ไดออกไซด์ อีดีทีเอ และโพลีฟอตเฟตในเนื้อปูดิบ เนื้อปูแกะ และเนื้อปูกระป๋อง วิทยานิพนธ์วิทยาศาสตร์มหาบัณฑิต สาขาพิษวิทยาทางอาหารและโภชนาการ มหาวิทยาลัย มหิดล 2546.
15. อุดมเกียรติ พรรธนประเทศ. ปริมาณซัลเฟอร์ไดออกไซด์ในผัก ผลไม้สด ตองและแช่อิ่ม. วารสารกรม วิทยาศาสตร์การแพทย์ 2531;30(1):239-45.
16. Sapers GM. Browning of foods: Control by sulfites, antioxidants, and other means (Scientific Status Summary edited by Mermelstein NH). Food Technol 1993;47(10):75-84.
17. World Health Organization. Safety evaluation of certain food additives: Evaluation of national assessments of intake of sulfites. $51^{\text {th }}$ meeting of the Joint FAO/WHO Expert Committee on Food Additives, Geneva 1999. The Residual of Sulphur Dioxide in Namtanpeep and Namtanpuk Produced from Coconut Sugars Vending in Bangkok and Samut Songkhram Markets.

[^0]: ${ }^{1}$ สถาบันวิจัยโภชนาการ มหาวิทยาลัยมหิดล ${ }^{2}$ สถาบันอาหาร

